segmentmodel.py 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import numpy as np
from arbdmodel import PointParticle, ParticleType, Group, ArbdModel
from nonbonded import *
from copy import copy, deepcopy
from nbPot import nbDnaScheme


"""
# TODO:


"""

class Location():
    """ Site for connection within an object """
    def __init__(self, container, address, type_):
        self.container = container
        self.address = address
        self.type_ = type_
        self.particle = None

class Connection():
    """ Abstract base class for connection between two elements """
    def __init__(self, A, B, type_ = None):
        assert( isinstance(A,Location) )
        assert( isinstance(B,Location) )
        self.A = A
        self.B = B
        self.type_ = type_
        
# class ConnectableElement(Transformable):
class ConnectableElement():
    """ Abstract base class """
    def __init__(self, connections=[]):
        self.connections = connections

    def _connect(self, other, connection):
        self.connections.append(connection)
        other.connections.append(connection)

    def _find_connections(self, loc):
        return [c for c in self.connections if c.A == loc or c.B == loc]
       
class Segment(ConnectableElement, Group):

    """ Base class that describes a segment of DNA. When built from
    cadnano models, should not span helices """

    """Define basic particle types"""
    dsDNA_particle = ParticleType("D",
                                  diffusivity = 43.5,
                                  mass = 300,
                                  radius = 3,                 
                              )

    ssDNA_particle = ParticleType("S",
                                  diffusivity = 43.5,
                                  mass = 150,
                                  radius = 3,                 
                              )

    def __init__(self, name, num_nts, 
                 start_position = np.array((0,0,0)),
                 end_position = None, 
                 segment_model = None):

        Group.__init__(self, name, children=[])
        ConnectableElement.__init__(self, connections=[])

        self._bead_model_generation = 0    # TODO: remove?
        self.segment_model = segment_model # TODO: remove?

        # self.end5 = Location( self, address=0, type_= "end5" )
        # self.end3 = Location( self, address=-1, type_ = "end3" )

        self.num_nts = num_nts
        if end_position is None:
            end_position = np.array((0,0,self.distance_per_nt*num_nts)) + start_position
        self.start_position = start_position
        self.end_position = end_position

    def _generate_one_bead(self, pos, nts):
        raise NotImplementedError

    def _assign_particles_to_locations(self):
        raise NotImplementedError

    def get_all_consecutive_beads(self, number):
        assert(number >= 1)
        ## Assume that consecutive beads in self.children are bonded
        ret = []
        for i in range(len(self.children)-number+1):
            tmp = [self.children[i+j] for j in range(0,number)]
            ret.append( tmp )
        return ret

    def get_beads_before_bead(self, bead, number, inclusive=True):
        ## Assume that consecutive beads in self.children are bonded
        i = self.children.index(bead)
        l = len(self.children)
        if i-number < 0:
            raise Exception("Not enough beads after bead")
        
        start = 1
        if inclusive: start = 0
        return [self.children[i-j] for j in range(start,number)]

    def get_beads_after_bead(self, bead, number, inclusive=True):
        ## Assume that consecutive beads in self.children are bonded
        i = self.children.index(bead)
        l = len(self.children)
        if i+number >= l:
            raise Exception("Not enough beads after bead")
        
        start = 1
        if inclusive: start = 0
        return [self.children[i+i] for j in range(start,number)]

    def _generate_beads(self, bead_model, max_nts_per_bead=4):
        
        """ Generate beads (positions, types, etcl) and bonds, angles, dihedrals, exclusions """

        # self._bead_model_generation += 1
        # self._bead_model_max_nts_per_bead = max_nts_per_bead

        direction = self.end_position - self.start_position
        num_beads = (self.num_nts // max_nts_per_bead) + 1
        nts_per_bead = float(self.num_nts)/num_beads

        last = None

        for i in range(num_beads+1):
            nts = nts_per_bead
            if i == 0 or i == num_beads: 
                nts *= 0.5

            s = i*float(nts_per_bead)/(self.num_nts) # contour
            pos = direction * s + self.start_position

            b = self._generate_one_bead(pos,nts)
            self.children.append(b)
            # if last is not None:
            #     self.add_bond( i=last, j=b, bond="ssdna" )
            # last = b
        self._assign_particles_to_locations()

    def _regenerate_beads(self, max_nts_per_bead=4, ):
        ...

    def _generate_atomic(self, atomic_model):
        ...
    

class DoubleStrandedSegment(Segment):

    """ Class that describes a segment of ssDNA. When built from
    cadnano models, should not span helices """

    def __init__(self, name, num_nts, start_position = np.array((0,0,0)),
                 end_position = None, 
                 segment_model = None,
                 twist = None,
                 start_orientation = None):

        self.distance_per_nt = 5
        Segment.__init__(self, name, num_nts, 
                         start_position,
                         end_position, 
                         segment_model)

        self.nicks = []

        self.start5 = Location( self, address=0, type_= "end5" )
        self.start3 = Location( self, address=0, type_ = "end3" )

        self.end5 = Location( self, address=-1, type_= "end5" )
        self.end3 = Location( self, address=-1, type_ = "end3" )

    ## Convenience methods
    def connect_start5(self, end3, force_connection=False):
        if isinstance(end3, SingleStrandedSegment):
            end3 = end3.end3
        self._connect_ends( self.start5, end3, force_connection = force_connection )
    def connect_start3(self, end5, force_connection=False):
        if isinstance(end5, SingleStrandedSegment):
            end5 = end5.end5
        self._connect_ends( self.start3, end5, force_connection = force_connection )
    def connect_end3(self, end5, force_connection=False):
        if isinstance(end5, SingleStrandedSegment):
            end5 = end5.end5
        self._connect_ends( self.end3, end5, force_connection = force_connection )
    def connect_end5(self, end3, force_connection=False):
        if isinstance(end3, SingleStrandedSegment):
            end3 = end3.end3
        self._connect_ends( self.end5, end3, force_connection = force_connection )

        
    ## Real work
    def _connect_ends(self, end1, end2, force_connection):

        ## validate the input
        for end in (end1, end2):
            assert( isinstance(end, Location) )
            assert( end.type_ in ("end3","end5") )
        assert( end1.type_ != end2.type_ )

        end1.container._connect( end2.container, Connection( end1, end2, type_="intrahelical" ) )

    def _generate_one_bead(self, pos, nts):
        return PointParticle( Segment.dsDNA_particle, pos, nts,
                              num_nts=nts, parent=self )

    def _assign_particles_to_locations(self):
        self.start3.particle =  self.start5.particle = self.children[0]
        self.end3.particle =  self.end5.particle = self.children[-1]

    def _generate_atomic(self, atomic_model):
        ...
    
        
    # def add_crossover(self, locationInA, B, locationInB):
    #     j = Crossover( [self, B], [locationInA, locationInB] )
    #     self._join(B,j)

    # def add_internal_crossover(self, locationInA, B, locationInB):
    #     j = Crossover( [self, B], [locationInA, locationInB] )
    #     self._join(B,j)


    # def stack_end(self, myEnd):
    #     ## Perhaps this should not really be possible; these ends should be part of same helix
    #     ...

    # def connect_strand(self, other):
    #     ...
        
    # def break_apart(self):
    #     """Break into smaller pieces so that "crossovers" are only at the ends"""
    #     ...

class SingleStrandedSegment(Segment):

    """ Class that describes a segment of ssDNA. When built from
    cadnano models, should not span helices """

    def __init__(self, name, num_nts, start_position = np.array((0,0,0)),
                 end_position = None, 
                 segment_model = None):

        self.distance_per_nt = 5
        Segment.__init__(self, name, num_nts, 
                         start_position,
                         end_position, 
                         segment_model)

        self.start = self.end5 = Location( self, address=0, type_= "end5" )
        self.end = self.end3 = Location( self, address=-1, type_ = "end3" )

    def connect_3end(self, end5, force_connection=False):
        self._connect_end( end5,  _5_to_3 = False, force_connection = force_connection )

    def connect_5end(self, end3, force_connection=False):
        self._connect_end( end3,  _5_to_3 = True, force_connection = force_connection )

    def _connect_end(self, other, _5_to_3, force_connection):
        assert( isinstance(other, Location) )
        if _5_to_3 == True:
            my_end = self.end5
            assert( other.type_ == "end3" )
        else:
            my_end = self.end3
            assert( other.type_ == "end5" )

        self._connect( other.container, Connection( my_end, other, type_="intrahelical" ) )

    def _generate_one_bead(self, pos, nts):
        return PointParticle( Segment.ssDNA_particle, pos, nts,
                              num_nts=nts, parent=self )

    def _assign_particles_to_locations(self):
        self.start.particle = self.children[0]
        self.end.particle = self.children[-1]

    def _generate_atomic(self, atomic_model):
        ...
    

class SegmentModel(ArbdModel):
    def __init__(self, segments = [], 
                 max_basepairs_per_bead = 7,
                 max_nucleotides_per_bead = 4,
                 dimensions=(1000,1000,1000), temperature=291,
                 timestep=50e-6, cutoff=50, 
                 decompPeriod=10000, pairlistDistance=None, 
                 nonbondedResolution=0):


        ArbdModel.__init__(self,segments,
                           dimensions, temperature, timestep, cutoff, 
                           decompPeriod, pairlistDistance=None,
                           nonbondedResolution=0)

        self.max_basepairs_per_bead = max_basepairs_per_bead     # dsDNA
        self.max_nucleotides_per_bead = max_nucleotides_per_bead # ssDNA
        self.children = self.segments = segments

        self._bonded_potential = dict() # cache bonded potentials

        self._generate_bead_model(segments, max_nucleotides_per_bead, max_nucleotides_per_bead)
    
    def _get_intrahelical_beads(self):
        ret = []
        for s in self.segments:
            ret.extend( s.get_all_consecutive_beads(2) )

        for s in self.segments:
            for c in s.connections:
                if c.type_ == "intrahelical":
                    if c.A.container == s: # avoid double-counting
                        b1,b2 = [loc.particle for loc in (c.A,c.B)]
                        for b in (b1,b2): assert( b is not None )
                        ret.append( [b1,b2] )
        return ret

    def _get_intrahelical_angle_beads(self):
        ret = []
        for s in self.segments:
            ret.extend( s.get_all_consecutive_beads(3) )

        for s1 in self.segments:
            for c in s1.connections:
                if c.A.container != s1: continue
                s2 = c.B.container
                if c.type_ == "intrahelical":
                    b1,b2 = [loc.particle for loc in (c.A,c.B)]
                    for b in (b1,b2): assert( b is not None )
                    try:
                        b0 = s1.get_beads_before_bead(b1,1)[0]
                        assert( b0 is not None )
                        ret.append( [b0,b1,b2] )
                    except:
                        ...
                    try:
                        b0 = s1.get_beads_after_bead(b1,1)[0]
                        assert( b0 is not None )
                        ret.append( [b2,b1,b0] )
                    except:
                        ...
                    try:
                        b3 = s2.get_beads_before_bead(b2,1)[0]
                        assert( b3 is not None )
                        ret.append( [b3,b2,b1] )
                    except:
                        ...
                    try:
                        b3 = s2.get_beads_after_bead(b2,1)[0]
                        assert( b3 is not None )
                        ret.append( [b1,b2,b3] )
                    except:
                        ...
        return ret

    def _get_potential(self, type_, kSpring, d):
        key = (type_,kSpring,d)
        if key not in self._bonded_potential:
            if type_ == "bond":
                self._bonded_potential[key] = HarmonicBond(kSpring,d)
            elif type_ == "angle":
                self._bonded_potential[key] = HarmonicAngle(kSpring,d)
            elif type_ == "dihedral":
                self._bonded_potential[key] = HarmonicDihedral(kSpring,d)
            else:
                raise Exception("Unhandled potential type '%s'" % type_)
        return self._bonded_potential[key]
    def get_bond_potential(self, kSpring, d):
        return self._get_potential("bond", kSpring, d)
    def get_angle_potential(self, kSpring, d):
        return self._get_potential("angle", kSpring, d)
    def get_dihedral_potential(self, kSpring, d):
        return self._get_potential("dihedral", kSpring, d)


    def _generate_bead_model(self, segments,
                             max_basepairs_per_bead = 7,
                             max_nucleotides_per_bead = 4):


        """ Generate beads """
        for s in segments:
            s._generate_beads( max_nucleotides_per_bead )

        """ Combine beads at junctions as needed """
        for s in segments:
            for c in s.connections:
                if c.A.container == s:
                    ...

        """ Reassign bead types """
        beadtype_s = dict()
        for segment in segments:
            for b in segment:
                key = (b.type_.name[0].upper(), b.num_nts)
                if key in beadtype_s:
                    b.type_ = beadtype_s[key]
                else:
                    t = deepcopy(b.type_)
                    if key[0] == "D":
                        t.__dict__["nts"] = b.num_nts*2
                    elif key[0] == "S":
                        t.__dict__["nts"] = b.num_nts
                    else:
                        raise Exception("TODO")
                    print(t.nts)
                    t.name = t.name + "%03d" % (100*t.nts)
                    beadtype_s[key] = b.type_ = t


        """ Add intrahelical potentials """
        ## First replace intrahelical bonds
        for b1,b2 in self._get_intrahelical_beads():
            if b1.parent == b2.parent:
                sep = 0.5*(b1.num_nts+b2.num_nts)
                parent = b1.parent
            else:
                sep = 1
                parent = self
                
            if b1.type_.name[0] == "D" and b1.type_.name[0] == "D":
                k = 10.0/np.sqrt(sep) # TODO: determine from simulations
                d = 3.4*sep
            else:
                ## TODO: get correct numbers from ssDNA model
                k = 1.0/np.sqrt(sep)
                d = 5*sep

            bond = self.get_bond_potential(k,d)
            parent.add_bond( b1, b2, bond, exclude=True )
            

        """ Add connection potentials """
        ## TODO


    # def get_bead(self, location):
    #     if type(location.container) is not list:
    #         s = self.segments.index(location.container)
    #         s.get_bead(location.address)
    #     else:
    #         r
    #         ...
    


if __name__ == "__main__":

    seg1 = DoubleStrandedSegment("strand", num_nts = 46)
    seg2 = SingleStrandedSegment("strand", 
                                 start_position = seg1.end_position + np.array((1,0,1)),
                                 num_nts = 12)

    seg3 = SingleStrandedSegment("strand", 
                                 start_position = seg1.start_position + np.array((-1,0,-1)),
                                 end_position = seg1.end_position + np.array((-1,0,1)),
                                 num_nts = 128)

    seg1.start3
    seg1.start5
    seg1.end3
    seg1.end5

    seg1.connect_end3(seg2)
    seg1.connect_end5(seg3)
    seg1.connect_start3(seg3)

    model = SegmentModel( [seg1, seg2, seg3],
                          dimensions=(5000,5000,5000),
                      )
    model.useNonbondedScheme( nbDnaScheme )
    model.simulate( outputPrefix = 'strand-test', outputPeriod=1e4, numSteps=1e6, gpu=1 )



    # seg = SingleStrandedSegment("strand", num_nts = 21)
    # generate_bead_model( [seg] )
    # for b in seg:
    #     print(b.num_nts, b.position)