class Optimizer: def __init__(self, problem): self.problem = problem def solve_optimization_problem(self, initial_guesses=None, solver_options=None, lam_g=None): opti = self.problem['opti'] X = self.problem['X'] U = self.problem['U'] if initial_guesses: for param, value in initial_guesses.items(): opti.set_initial(self.problem[param], value) if lam_g is not None: opti.set_initial(opti.lam_g, lam_g) # Set numerical backend, with options if provided if solver_options: opti.solver('ipopt', solver_options) else: opti.solver('ipopt') def print_intermediates_callback(i): # print the current value of the objective function print("Iteration:", i, "Current cost cost:", opti.debug.value(self.problem['cost'])) print("Iteration:", i, "Current robot cost:", opti.debug.value(self.problem['dist_to_other_robots'])) # print("Iteration:", i, "Current obstacle cost:", opti.debug.value(self.problem['obs_cost'])) # print("Iteration:", i, "Current control cost:", opti.debug.value(self.problem['control_cost'])) # print("Iteration:", i, "Current time cost:", opti.debug.value(self.problem['time_cost'])) # print("Iteration:", i, "Current goal cost:", opti.debug.value(self.problem['goal_cost'])) # print("Iteration:", i, "Current solution:", opti.debug.value(X), opti.debug.value(U)) # X_debug = opti.debug.value(X) # U_debug = opti.debug.value(U) # plot the state and the control # split a figure in half. The left side will show the positions, the right side will plot the controls # X[i*3, :] is the ith robot's x position, X[i*3+1, :] is the y position, X[i*3+2, :] is the heading # U[i*2, :] is the ith robot's linear velocity, U[i*2+1, :] is the ith robot's angular velocity # import matplotlib.pyplot as plt # fig, axs = plt.subplots(1, 2, figsize=(12, 6)) # for j in range(X_debug.shape[0]//3): # axs[0].plot(X_debug[j*3, :], X_debug[j*3+1, :], label=f"Robot {j}") # axs[0].scatter(X_debug[j*3, 0], X_debug[j*3+1, 0], color='green') # axs[0].scatter(X_debug[j*3, -1], X_debug[j*3+1, -1], color='red') # axs[0].set_title("Robot Positions") # axs[0].set_xlabel("X") # axs[0].set_ylabel("Y") # axs[0].legend() # axs[1].plot(U_debug[j*2, :], label=f"Robot {j} velocity") # axs[1].plot(U_debug[j*2+1, :], label=f"Robot {j} omega") # axs[1].set_title("Robot Controls") # axs[1].set_xlabel("Time") # axs[1].set_ylabel("Control") # axs[1].legend() # plt.show() # opti.callback(print_intermediates_callback) # sol = opti.solve() # print("/solving optimization problem") # import time # start = time.time() try: sol = opti.solve() # actual solve status = 'succeeded' except: sol = None status = 'failed' # end = time.time() # print(f"Time taken to solve optimization problem = {end - start}") results = { 'status' : status, 'solution' : sol, } # print(f"Final total = {sol.value(self.problem['cost'])}") # print(f"robot costs = {sol.value(self.problem['robot_cost'])}") # print(f"obstacle costs = {sol.value(self.problem['obs_cost'])}") # print(f"control costs = {sol.value(self.problem['control_cost'])}") # print(f"time costs = {sol.value(self.problem['time_cost'])}") # print(f"goal costs = {sol.value(self.problem['goal_cost'])}") if sol: for var_name, var in self.problem.items(): if var_name != 'opti': try: results[var_name] = sol.value(var) except: results[var_name] = var opti = self.problem['opti'] lam_g = sol.value(opti.lam_g) results['lam_g'] = lam_g return results