import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle, Rectangle from casadi import * class TrajOptResolver(): """ A class that resolves conflicts using trajectoy optimization. """ def __init__(self, num_robots, robot_radius, starts, goals, circle_obstacles, rectangle_obstacles, rob_dist_weight, obs_dist_weight, control_weight, time_weight): self.num_robots = num_robots self.starts = starts self.goals = goals self.circle_obs = circle_obstacles self.rect_obs = rectangle_obstacles self.rob_dist_weight = rob_dist_weight self.obs_dist_weight = obs_dist_weight self.control_weight =control_weight self.time_weight = time_weight self.robot_radius = MX(robot_radius) def dist(self, robot_position, circle): """ Returns the distance between a robot and a circle params: robot_position [x,y] circle [x,y,radius] """ return sumsqr(robot_position - transpose(circle[:2])) def apply_quadratic_barrier(self, d_max, d, c): """ Applies a quadratic barrier to some given distance. The quadratic barrier is a soft barrier function. We are using it for now to avoid any issues with invalid initial solutions, which hard barrier functions cannot handle. params: d (float): distance to the obstacle c (float): controls the steepness of curve. higher c --> gets more expensive faster as you move toward obs d_max (float): The threshold distance at which the barrier starts to apply """ return c*fmax(0, d_max-d)**2 def log_normal_barrier(self, sigma, d, c): return c*fmax(0, 2-(d/sigma))**2.5 def problem_setup(self, N, x_range, y_range): """ Problem setup for the multi-robot collision resolution traj opt problem inputs: - N (int): number of control intervals - x_range (tuple): range of x values - y_range (tuple): range of y values outputs: - problem (dict): dictionary containing the optimization problem and the decision variables """ opti = Opti() # Optimization problem # ---- decision variables --------- # X = opti.variable(self.num_robots*3, N+1) # state trajectory (x,y,heading) pos = X[:self.num_robots*2,:] # position is the first two values x = pos[0::2,:] y = pos[1::2,:] heading = X[self.num_robots*2:,:] # heading is the last value U = opti.variable(self.num_robots*2, N) # control trajectory (v, omega) vel = U[0::2,:] omega = U[1::2,:] T = opti.variable() # final time # ---- obstacle setup ------------ # circle_obs = DM(self.circle_obs) # make the obstacles casadi objects # ------ Obstacle dist cost ------ # # TODO:: Include rectangular obstacles dist_to_other_obstacles = 0 for r in range(self.num_robots): for k in range(N): for c in range(circle_obs.shape[0]): circle = circle_obs[c, :] d = self.dist(pos[2*r : 2*(r+1), k], circle) dist_to_other_obstacles += self.apply_quadratic_barrier(2*(self.robot_radius + circle[2]), d, 5) # ------ Robot dist cost ------ # dist_to_other_robots = 0 for k in range(N): for r1 in range(self.num_robots): for r2 in range(self.num_robots): if r1 != r2: d = sumsqr(pos[2*r1 : 2*(r1+1), k] - pos[2*r2 : 2*(r2+1), k]) dist_to_other_robots += self.apply_quadratic_barrier(2*self.robot_radius, d, 1) # ---- dynamics constraints ---- # dt = T/N # length of a control interval pi = [3.14159]*self.num_robots pi = np.array(pi) pi = DM(pi) for k in range(N): # loop over control intervals dxdt = vel[:,k] * cos(heading[:,k]) dydt = vel[:,k] * sin(heading[:,k]) dthetadt = omega[:,k] opti.subject_to(x[:,k+1]==x[:,k] + dt*dxdt) opti.subject_to(y[:,k+1]==y[:,k] + dt*dydt) opti.subject_to(heading[:,k+1]==fmod(heading[:,k] + dt*dthetadt, 2*pi)) # ------ Control panalty ------ # # Calculate the sum of squared differences between consecutive heading angles heading_diff_penalty = 0 for k in range(N-1): heading_diff_penalty += sumsqr(fmod(heading[:,k+1] - heading[:,k] + pi, 2*pi) - pi) # ------ cost function ------ # opti.minimize(self.rob_dist_weight*dist_to_other_robots + self.obs_dist_weight*dist_to_other_obstacles + self.time_weight*T + self.control_weight*heading_diff_penalty) # ------ control constraints ------ # for k in range(N): for r in range(self.num_robots): opti.subject_to(sumsqr(vel[r,k]) <= 0.2**2) opti.subject_to(sumsqr(omega[r,k]) <= 0.2**2) # ------ bound x, y, and time ------ # opti.subject_to(opti.bounded(x_range[0],x,x_range[1])) opti.subject_to(opti.bounded(y_range[0],y,y_range[1])) opti.subject_to(opti.bounded(0,T,100)) # ------ initial conditions ------ # for r in range(self.num_robots): opti.subject_to(heading[r, 0]==self.starts[r][2]) opti.subject_to(pos[2*r : 2*(r+1), 0]==self.starts[r][0:2]) opti.subject_to(pos[2*r : 2*(r+1), -1]==self.goals[r]) return {'opti':opti, 'X':X, 'T':T} def solve_optimization_problem(self, problem, initial_guesses=None, solver_options=None): opti = problem['opti'] if initial_guesses: for param, value in initial_guesses.items(): print(f"param = {param}") print(f"value = {value}") opti.set_initial(problem[param], value) # Set numerical backend, with options if provided if solver_options: opti.solver('ipopt', solver_options) else: opti.solver('ipopt') try: sol = opti.solve() # actual solve status = 'succeeded' except: sol = None status = 'failed' results = { 'status' : status, 'solution' : sol, } if sol: for var_name, var in problem.items(): if var_name != 'opti': results[var_name] = sol.value(var) return results def solve(self, N, x_range, y_range, initial_guesses): """ Setup and solve a multi-robot traj opt problem input: - N (int): the number of control intervals - x_range (tuple): - y_range (tuple): """ problem = self.problem_setup(N, x_range, y_range) results = self.solve_optimization_problem(problem, initial_guesses) X = results['X'] sol = results['solution'] # Extract the values that we want from the optimizer's solution pos = X[:self.num_robots*2,:] x_vals = pos[0::2,:] y_vals = pos[1::2,:] theta_vals = X[self.num_robots*2:,:] return sol,pos, x_vals, y_vals, theta_vals def get_local_controls(self, controls): """ Get the local controls for the robots in the conflict """ l = self.num_robots final_trajs = [None]*l for c in self.conflicts: # Get the robots involved in the conflict robots = [self.all_robots[r.label] for r in c] # Solve the trajectory optimization problem initial_guess = None sol, x_opt, vels, omegas, xs,ys = self.solve(20, initial_guess) pos_vals = np.array(sol.value(x_opt)) # Update the controls for the robots for r, vel, omega, x,y in zip(robots, vels, omegas, xs,ys): controls[r.label] = [vel, omega] final_trajs[r.label] = [x,y] return controls, final_trajs def plot_paths(self, x_opt): fig, ax = plt.subplots() # Plot obstacles for obstacle in self.circle_obs: # if len(obstacle) == 2: # Circle ax.add_patch(Circle(obstacle, obstacle[2], color='red')) # elif len(obstacle) == 4: # Rectangle # ax.add_patch(Rectangle((obstacle[0], obstacle[1]), obstacle[2], obstacle[3], color='red')) if self.num_robots > 20: colors = plt.cm.hsv(np.linspace(0.2, 1.0, self.num_robots)) elif self.num_robots > 10: colors = plt.cm.tab20(np.linspace(0, 1, self.num_robots)) else: colors = plt.cm.tab10(np.linspace(0, 1, self.num_robots)) # Plot robot paths for r,color in zip(range(self.num_robots),colors): ax.plot(x_opt[r*2, :], x_opt[r*2+1, :], label=f'Robot {r+1}', color=color) ax.scatter(x_opt[r*2, :], x_opt[r*2+1, :], color=color, s=10 ) ax.scatter(self.starts[r][0], self.starts[r][1], s=85,color=color) ax.scatter(self.goals[r][0], self.goals[r][1], s=85,facecolors='none', edgecolors=color) ax.set_xlabel('X') ax.set_ylabel('Y') ax.legend() ax.set_aspect('equal', 'box') plt.ylim(0,640) plt.xlim(0,480) plt.title('Robot Paths') plt.grid(False) plt.show()