import cvxpy as cp import numpy as np import time def place_grid(robot_locations, cell_size, grid_size=5, subgoals=[], obstacles=[]): """ Place a grid to cover robot locations with alignment to centers. inputs: - robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...] - cell_size (float): the width of each grid cell in continuous space - grid_size (tuple): width of the grid in cells - obstacles (list): locations of circular obstacles [[x,y,r], [x,y,r], ...] outputs: - origin (tuple): bottom-left corner of the grid in continuous space - cell_centers (list): centers of grid cells for each robot (same order as robot_locations) """ start_time = time.time() robot_locations = np.array(robot_locations) subgoals = np.array(subgoals) obstacles = np.array(obstacles) num_robots = len(robot_locations) num_obst = len(obstacles) M_ind = 10 * grid_size # Big M relative to grid indices M_cts = 10 * max(max(robot_locations[:,0]) - min(robot_locations[:,0]), max(robot_locations[:,1]) - min(robot_locations[:,1])) # Big M relative to robot locations # Decision variable: Bottom-left corner of the grid in continuous space bottom_left = cp.Variable(2, name='origin') # Defin top right for convenience top_right = bottom_left + grid_size * cell_size # Decision variable: Integer grid indices for each robot grid_indices = cp.Variable((num_robots, 2), integer=True, name='grid_indices') # Calculate cell centers for each robot based on grid indices # Reshape origin to (1, 2) for broadcasting cell_centers = cp.reshape(bottom_left, (1, 2), order='C') + grid_indices * cell_size + cell_size / 2 if obstacles: obstacle_cells = cp.Variable((num_obst, grid_size, grid_size), boolean=True, name='obstacle_cells') # Objective: Minimize the sum of squared distances if obstacles: alpha = 0.10 # Weight cost = (1 - alpha) * cp.sum_squares(robot_locations - cell_centers) + alpha * cp.sum(obstacle_cells) else: cost = cp.sum_squares(robot_locations - cell_centers) # Constraints constraints = [] # Grid indices must be non-negative constraints.append(grid_indices >= 0) # Grid indices must fit within grid bounds constraints.append(grid_indices <= grid_size - 1) # No two robots can share a cell # Use Big M method to ensure unique grid indices for i in range(num_robots): for j in range(i+1, num_robots): # At least one of the two constraints below must be true xsep = cp.Variable(boolean=True) ysep = cp.Variable(boolean=True) constraints.append(xsep + ysep >= 1) # Enforces separation by at least 1 in the x direction b0 = cp.Variable(boolean=True) # b0 = 0 if robot i's x >= robot j's x, 1 otherwise # b0 = 0 constraints.append(robot_locations[j, 0] - robot_locations[i, 0] <= M_cts * b0) constraints.append(grid_indices[i, 0] - grid_indices[j, 0] + M_ind * b0 + M_ind * (1 - xsep) >= 1) # b0 = 1 constraints.append(robot_locations[i, 0] - robot_locations[j, 0] <= M_cts * (1 - b0)) constraints.append(grid_indices[j, 0] - grid_indices[i, 0] + M_ind * (1 - b0) + M_ind * (1 - xsep) >= 1) # Enforces separation by at least 1 in the y direction b1 = cp.Variable(boolean=True) # b1 = 0 if robot i's y >= robot j's y, 1 otherwise # b1 = 0 constraints.append(robot_locations[j, 1] - robot_locations[i, 1] <= M_cts * b1) constraints.append(grid_indices[i, 1] - grid_indices[j, 1] + M_ind * b1 + M_ind * (1 - ysep) >= 1) # b1 = 1 constraints.append(robot_locations[i, 1] - robot_locations[j, 1] <= M_cts * (1 - b1)) constraints.append(grid_indices[j, 1] - grid_indices[i, 1] + M_ind * (1 - b1) + M_ind * (1 - ysep) >= 1) # All robots and subgoals must be within grid bounds for loc in robot_locations: constraints.append(bottom_left <= loc) constraints.append(loc <= top_right) for sg in subgoals: constraints.append(bottom_left <= sg) constraints.append(sg <= top_right) if obstacles: M = 100 for i, (cx, cy, r) in enumerate(obstacles): for x_idx in range(grid_size): for y_idx in range(grid_size): cell_bot_left = bottom_left + np.array([x_idx, y_idx]) * cell_size # Bottom left point of grid cell at (x_idx, y_idx) cell_top_right = cell_bot_left + np.ones(2) * cell_size # Top right point # Is the obstacle center within the x and y ranges of the cell inside_x = cp.Variable(boolean=True) constraints.append(cx >= cell_bot_left[0] - M * (1 - inside_x)) constraints.append(cx <= cell_top_right[0] + M * (1 - inside_x)) constraints.append(cx <= cell_bot_left[0] + M * inside_x) constraints.append(cx >= cell_top_right[0] - M * inside_x) inside_y = cp.Variable(boolean=True) constraints.append(cy >= cell_bot_left[1] - M * (1 - inside_y)) constraints.append(cy <= cell_top_right[1] + M * (1 - inside_y)) constraints.append(cy <= cell_bot_left[1] + M * inside_y) constraints.append(cy >= cell_top_right[1] - M * inside_y) # Checking if the obstacles lie over the x coordinates of vertical edges, y coords of horizontal edges intersects_bottom_y = cp.Variable(boolean=True) intersects_top_y = cp.Variable(boolean=True) intersects_left_x = cp.Variable(boolean=True) intersects_right_x = cp.Variable(boolean=True) constraints.append(cell_bot_left[1] - cy <= r + M * (1 - intersects_bottom_y)) constraints.append(cy - cell_top_right[1] <= r + M * (1 - intersects_top_y)) constraints.append(cell_bot_left[0] - cx <= r + M * (1 - intersects_left_x)) constraints.append(cx - cell_top_right[0] <= r + M * (1 - intersects_right_x)) # Does the obstacle intersect the cell edges intersects_bottom_edge = cp.Variable(boolean=True) intersects_top_edge = cp.Variable(boolean=True) intersects_left_edge = cp.Variable(boolean=True) intersects_right_edge = cp.Variable(boolean=True) constraints.append(intersects_bottom_y + inside_x >= 2 - 3 * (1 - intersects_bottom_edge)) constraints.append(intersects_top_y + inside_x >= 2 - 3 * (1 - intersects_top_edge)) constraints.append(intersects_left_x + inside_y >= 2 - 3 * (1 - intersects_left_edge)) constraints.append(intersects_right_x + inside_y >= 2 - 3 * (1 - intersects_right_edge)) inside_x_and_y_ranges = cp.Variable(boolean=True) constraints.append(inside_x + inside_y >= 2 - 3 * (1 - inside_x_and_y_ranges)) circle_intersects_edge = cp.Variable(boolean=True) constraints.append(intersects_bottom_edge + intersects_top_edge + intersects_left_edge + intersects_right_edge >= 1 - circle_intersects_edge) # Obstacles intersects with the cell if # the center is within the cell OR # the obstacles intersects a cell edge constraints.append(obstacle_cells[i,x_idx,y_idx] >= inside_x_and_y_ranges) constraints.append(obstacle_cells[i,x_idx,y_idx] >= circle_intersects_edge) constraints.append(obstacle_cells[i,x_idx,y_idx] <= inside_x_and_y_ranges + circle_intersects_edge) # Solve the optimization problem prob_init_start_time = time.time() prob = cp.Problem(cp.Minimize(cost), constraints) solve_start_time = time.time() prob.solve(solver=cp.SCIP, verbose=True) solve_end_time = time.time() print("Time to add vars/constraints:", prob_init_start_time - start_time) print("Time to parse:", solve_start_time - prob_init_start_time) print("Time to solve:", solve_end_time - solve_start_time) if prob.status != "optimal": print("Problem could not be solved to optimality.") return None return bottom_left.value, cell_centers.value # Working on making this convex def two_corner_place_grid(robot_locations, grid_size=5, subgoals=[], obstacles=[]): """ Place a grid to cover robot locations with alignment to centers. inputs: - robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...] - cell_size (float): the width of each grid cell in continuous space - grid_size (tuple): width of the grid in cells - obstacles (list): locations of circular obstacles [[x,y,r], [x,y,r], ...] outputs: - origin (tuple): bottom-left corner of the grid in continuous space - cell_centers (list): centers of grid cells for each robot (same order as robot_locations) """ start_time = time.time() robot_locations = np.array(robot_locations) subgoals = np.array(subgoals) obstacles = np.array(obstacles) N = len(robot_locations) # Decision variable: Bottom-left corner of the grid in continuous space bottom_left = cp.Variable(2, name='bottom_left') top_right = cp.Variable(2, name='top_right') # Bottom-right and top-left corners of the grid for convenience # bottom_right = 0.5 * cp.hstack([bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1], # bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]]) # top_left = 0.5 * cp.hstack([bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1], # -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]]) bottom_right = cp.Variable(2, name='bottom_right') top_left = cp.Variable(2, name='top_left') grid_x_hat = cp.Variable(2, name='grid_x_hat') grid_y_hat = cp.Variable(2, name='grid_y_hat') # Decision variable: Integer grid indices for each robot grid_indices = cp.Variable((N, 2), integer=True, name='grid_indices') # Calculate cell centers for each robot based on grid indices # Reshape origin to (1, 2) for broadcasting grid_x_offsets = cp.Variable((N, 2), name='grid_x_offsets') grid_y_offsets = cp.Variable((N, 2), name='grid_y_offsets') cell_centers = cp.reshape(bottom_left, (1, 2), order='C') + grid_x_offsets + grid_y_offsets # Objective: Minimize the sum of squared distances cost = cp.sum_squares(robot_locations - cell_centers) # Constraints constraints = [] # Ensure top-right and bottom-left corners are in the right orientation constraints.append(top_right >= bottom_left) # Fixing bottom-right and top-left corners constraints.append(2 * bottom_right[0] == bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1]) constraints.append(2 * bottom_right[1] == bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]) constraints.append(2 * top_left[0] == bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1]) constraints.append(2 * top_left[1] == -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]) # Defining grid_x_hat and grid_y_hat based on corners constraints.append(grid_x_hat == (bottom_right - bottom_left) * (1 / grid_size)) constraints.append(grid_y_hat == (top_left - bottom_left) * (1 / grid_size)) # Defining offsets in cell centers calculation constraints.append(grid_x_offsets == grid_x_hat * grid_indices) # Grid indices must be non-negative constraints.append(grid_indices >= 0) # Grid indices must fit within grid bounds constraints.append(grid_indices <= grid_size - 1) # No two robots can share a cell # Use Big M method to ensure unique grid indices M_ind = 10 * grid_size # Big M relative to grid indices M_cts = 10 * max(max(robot_locations[:,0]) - min(robot_locations[:,0]), max(robot_locations[:,1]) - min(robot_locations[:,1])) # Big M relative to robot locations for i in range(N): for j in range(i+1, N): # At least one of the two constraints below must be true xsep = cp.Variable(boolean=True) ysep = cp.Variable(boolean=True) constraints.append(xsep + ysep >= 1) # Enforces separation by at least 1 in the x direction b0 = cp.Variable(boolean=True) # b0 = 0 if robot i's x >= robot j's x, 1 otherwise # b0 = 0 constraints.append(robot_locations[j, 0] - robot_locations[i, 0] <= M_cts * b0) constraints.append(grid_indices[i, 0] - grid_indices[j, 0] + M_ind * b0 + M_ind * (1 - xsep) >= 1) # b0 = 1 constraints.append(robot_locations[i, 0] - robot_locations[j, 0] <= M_cts * (1 - b0)) constraints.append(grid_indices[j, 0] - grid_indices[i, 0] + M_ind * (1 - b0) + M_ind * (1 - xsep) >= 1) # Enforces separation by at least 1 in the y direction b1 = cp.Variable(boolean=True) # b1 = 0 if robot i's y >= robot j's y, 1 otherwise # b1 = 0 constraints.append(robot_locations[j, 1] - robot_locations[i, 1] <= M_cts * b1) constraints.append(grid_indices[i, 1] - grid_indices[j, 1] + M_ind * b1 + M_ind * (1 - ysep) >= 1) # b1 = 1 constraints.append(robot_locations[i, 1] - robot_locations[j, 1] <= M_cts * (1 - b1)) constraints.append(grid_indices[j, 1] - grid_indices[i, 1] + M_ind * (1 - b1) + M_ind * (1 - ysep) >= 1) # Solve the optimization problem prob_init_start_time = time.time() prob = cp.Problem(cp.Minimize(cost), constraints) solve_start_time = time.time() prob.solve(solver=cp.SCIP) solve_end_time = time.time() print("Time to add vars/constraints:", prob_init_start_time - start_time) print("Time to parse:", solve_start_time - prob_init_start_time) print("Time to solve:", solve_end_time - solve_start_time) if prob.status != "optimal": print("Problem could not be solved to optimality.") return None print("Grid Indices:", grid_indices.value) return bottom_left.value, cell_centers.value def mccormick_envelope(w, x, xl, xu, y, yl, yu): """ Generates McCormick envelope constraints """ mec = [] mec.append(w >= xl*y + x*yl - xl*yl) mec.append(w >= xu*y + x*yu - xu*yu) mec.append(w <= xu*y + x*yl - xu*yl) mec.append(w >= x*yu + xl*y - xl*yu) return mec def plot_grid(bottom_left, top_right, grid_size): import matplotlib.pyplot as plt bottom_left = np.array(bottom_left) top_right = np.array(top_right) bottom_right = np.array([bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1], bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]]) / 2 top_left = np.array([bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1], -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]]) / 2 x_prime_hat = (bottom_right - bottom_left) / grid_size y_prime_hat = (top_left - bottom_left) / grid_size # Draw the grid for i in range(grid_size + 1): # Draw vertical lines plt.plot([(bottom_left + i * x_prime_hat)[0], (top_left + i * x_prime_hat)[0]], [(bottom_left + i * x_prime_hat)[1], (top_left + i * x_prime_hat)[1]], 'k-') # Draw horizontal lines plt.plot([(bottom_left + i * y_prime_hat)[0], (bottom_right + i * y_prime_hat)[0]], [(bottom_left + i * y_prime_hat)[1], (bottom_right + i * y_prime_hat)[1]], 'k-') def get_roomba_locs(low, high, num_robots, radius=0.5, obstacles=[]): """ Generates a list of roomba locations within the box bounded by points (low, low), (high, low), (high, high), (low, high). The roombas must be separated by at least 2 * radius """ locs = [] while len(locs) < num_robots: locs.append(np.random.uniform(low, high, 2)) invalid = False for (obst_x, obst_y, obst_r) in obstacles: if np.linalg.norm(np.array(locs[-1]) - np.array([obst_x, obst_y])) <= radius + obst_r: invalid = True break for other_loc in locs[:-1]: if np.linalg.norm(np.array(locs[-1]) - np.array(other_loc)) <= 2 * radius: invalid = True break if invalid: locs = locs[:-1] return np.array(locs) def main(seed, num_robots, plot, two_corner): if seed is not None: np.random.seed(seed) if not two_corner: roomba_radius = 0.5 cell_size = 2.5 * roomba_radius grid_size = 5 obstacles = np.array([[2, 2, 0.75], [4, 4, 0.5]]) # robot_locations = np.random.uniform(low=0, high=5, size=(num_robots, 2)) robot_locations = get_roomba_locs(low=0, high=6, num_robots=num_robots, radius=roomba_radius, obstacles=obstacles) # subgoals = np.array([[0, 0], [0, 6], [6, 6], [6, 0]]) subgoals = get_roomba_locs(low=0, high=6, num_robots=num_robots, radius=roomba_radius, obstacles=obstacles) # bottom_left, cell_centers = place_grid(robot_locations=robot_locations, # cell_size=cell_size, # grid_size=grid_size, # subgoals=subgoals) bottom_left, cell_centers = place_grid(robot_locations=robot_locations, cell_size=cell_size, grid_size=grid_size, subgoals=subgoals, obstacles=obstacles) print("Grid Origin (Bottom-Left Corner):", bottom_left) print("Cell Centers:", cell_centers) top_right = np.array(bottom_left) + grid_size * cell_size else: grid_size = 5 robot_locations = np.random.uniform(low=0, high=5, size=(num_robots, 2)) print("Robot Locations:", robot_locations) bottom_left, top_right, grid_indices = two_corner_place_grid(robot_locations, grid_size) print("Grid Bottom-Left Corner:", bottom_left) print("Grid Top-Right Corner:", top_right) print("Grid Indices:", grid_indices) if plot: import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots() plot_grid(bottom_left, top_right, grid_size=grid_size) # Plot cell centers cell_centers = np.array(cell_centers) plt.scatter(cell_centers[:, 0], cell_centers[:, 1], c='b', label='Cell Centers') for center in cell_centers: square = patches.Rectangle(center - cell_size/2, cell_size, cell_size, edgecolor='b', facecolor='b', alpha=0.2, linewidth=2) ax.add_patch(square) # Plot robot locations robot_locations = np.array(robot_locations) plt.scatter(robot_locations[:, 0], robot_locations[:, 1], c='r', label='Robot Locations') for (x, y) in robot_locations: circle = patches.Circle((x, y), radius=roomba_radius, edgecolor='r', fill=False, linewidth=2) ax.add_patch(circle) if not two_corner: subgoals = np.array(subgoals) plt.scatter(subgoals[:, 0], subgoals[:, 1], c='orange', marker='^', label='Subgoals') for (x, y) in subgoals: circle = patches.Circle((x, y), radius=roomba_radius, edgecolor='orange', fill=False, linewidth=2) ax.add_patch(circle) obstacles = np.array(obstacles) plt.scatter(obstacles[:, 0], obstacles[:, 1], c='black', marker='s', label='Obstacles') for (x, y, r) in obstacles: circle = patches.Circle((x, y), radius=r, edgecolor='black', fill=False, linewidth=2) ax.add_patch(circle) plt.legend(loc='upper left') ax.set_aspect('equal') plt.show() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--seed", type=int, default=None ) parser.add_argument( "--num_robots", type=int, default=3 ) parser.add_argument( "--plot", action='store_true' ) parser.add_argument( "--two_corner", action='store_true' ) args = parser.parse_args() main(args.seed, args.num_robots, args.plot, args.two_corner)