import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Rectangle
from guided_mrmp.optimizer import Optimizer
from casadi import *


class TrajOptResolver():
    """
    A class that resolves conflicts using trajectoy optimization.
    """
    def __init__(self, num_robots, robot_radius, starts, goals, circle_obstacles, rectangle_obstacles,
                 rob_dist_weight, obs_dist_weight, control_weight, time_weight, goal_weight, conflicts, all_robots):
        self.num_robots = num_robots
        self.starts = starts
        self.goals = goals
        self.circle_obs = circle_obstacles
        self.rect_obs = rectangle_obstacles
        self.rob_dist_weight = rob_dist_weight
        self.obs_dist_weight = obs_dist_weight
        self.control_weight =control_weight
        self.time_weight = time_weight
        self.robot_radius = MX(robot_radius)
        self.goal_weight = goal_weight
        self.conflicts = conflicts
        self.all_robots = all_robots

    def dist(self, robot_position, circle):
        """
        Returns the distance between a robot and a circle

        params:
            robot_position [x,y]
            circle [x,y,radius]
        """
        return sumsqr(robot_position - transpose(circle[:2])) 

    def apply_quadratic_barrier(self, d_max, d, c):
        """
        Applies a quadratic barrier to some given distance. The quadratic barrier 
        is a soft barrier function. We are using it for now to avoid any issues with
        invalid initial solutions, which hard barrier functions cannot handle. 

        params:
            d (float):      distance to the obstacle
            c (float):      controls the steepness of curve. 
                            higher c --> gets more expensive faster as you move toward obs
            d_max (float):  The threshold distance at which the barrier starts to apply 
        """
        return c*fmax(0, d_max-d)**2
    
    def log_normal_barrier(self, sigma, d, c):
        return c*fmax(0, 2-(d/sigma))**2.5

    def problem_setup(self, N, x_range, y_range):
        """
        Problem setup for the multi-robot collision resolution traj opt problem

        inputs:
            - N (int): number of control intervals
            - x_range (tuple): range of x values
            - y_range (tuple): range of y values

        outputs:
            - problem (dict): dictionary containing the optimization problem 
                              and the decision variables
        """
        opti = Opti() # Optimization problem

        # ---- decision variables --------- #
        X = opti.variable(self.num_robots*3, N+1)   # state trajectory (x,y,heading)
        pos = X[:self.num_robots*2,:]               # position is the first two values
        x = pos[0::2,:]
        y = pos[1::2,:]
        heading = X[self.num_robots*2:,:]           # heading is the last value

        U = opti.variable(self.num_robots*2, N)     # control trajectory (v, omega)
        vel = U[0::2,:]
        omega = U[1::2,:]
        T = opti.variable()                         # final time

        # ---- obstacle setup ------------ #
        circle_obs = DM(self.circle_obs)            # make the obstacles casadi objects 
        
        # ------ Obstacle dist cost ------ #
        # TODO:: Include rectangular obstacles
        dist_to_other_obstacles = 0
        for r in range(self.num_robots):
            for k in range(N):
                for c in range(circle_obs.shape[0]):
                    circle = circle_obs[c, :]
                    d = sumsqr(pos[2*r : 2*(r+1), k] - transpose(circle[:2])) - 2*self.robot_radius - circle[2]
                    dist_to_other_obstacles += self.apply_quadratic_barrier(3*(self.robot_radius + circle[2]), d, 10)


        # ------ Robot dist cost ------ #
        dist_to_other_robots = 0
        for k in range(N):
            for r1 in range(self.num_robots):
                for r2 in range(self.num_robots):
                    if r1 != r2:
                        d = sumsqr(pos[2*r1 : 2*(r1+1), k] - pos[2*r2 : 2*(r2+1), k]) 
                        dist_to_other_robots += self.apply_quadratic_barrier(3*self.robot_radius, d, 2)


        # ---- dynamics constraints ---- #              
        dt = T/N # length of a control interval

        pi = [3.14159]*self.num_robots
        pi = np.array(pi)
        pi = DM(pi)

        for k in range(N): # loop over control intervals
            dxdt = vel[:,k] * cos(heading[:,k])
            dydt = vel[:,k] * sin(heading[:,k])
            dthetadt = omega[:,k]
            opti.subject_to(x[:,k+1]==x[:,k] + dt*dxdt)
            opti.subject_to(y[:,k+1]==y[:,k] + dt*dydt) 
            opti.subject_to(heading[:,k+1]==fmod(heading[:,k] + dt*dthetadt, 2*pi))


        # ------ Control panalty ------ #
        # Calculate the sum of squared differences between consecutive heading angles
        control_penalty = 0
        for k in range(N-1):
            control_penalty += sumsqr(fmod(heading[:,k+1] - heading[:,k] + pi, 2*pi) - pi)
            control_penalty += sumsqr(vel[:,k+1] - vel[:,k])




        
        # ------ Distance to goal penalty ------ #
        dist_to_goal = 0
        for r in range(self.num_robots):
            # calculate the distance to the goal in the final control interval
            #
            dist_to_goal += sumsqr(pos[2*r : 2*(r+1), -1] - self.goals[r])

        robot_cost = self.rob_dist_weight*dist_to_other_robots
        obs_cost = self.obs_dist_weight*dist_to_other_obstacles
        time_cost = self.time_weight*T
        control_cost = self.control_weight*control_penalty
        goal_cost = self.goal_weight*dist_to_goal

        # ------ cost function ------ #
        cost = robot_cost + obs_cost  + control_cost + time_cost +goal_cost 

        opti.minimize(cost)


        # ------ control constraints ------ #
        for k in range(N):
            for r in range(self.num_robots):
                opti.subject_to(sumsqr(vel[r,k]) <= .5**2)
                opti.subject_to(sumsqr(omega[r,k]) <= .5**2)

        # ------ bound x, y, and time  ------ #
        opti.subject_to(opti.bounded(x_range[0]+self.robot_radius,x,x_range[1]-self.robot_radius))
        opti.subject_to(opti.bounded(y_range[0]+self.robot_radius,y,y_range[1]-self.robot_radius))
        opti.subject_to(opti.bounded(0,T,50))

        # ------ initial conditions ------ #
        for r in range(self.num_robots):
            
            opti.subject_to(heading[r, 0]==self.starts[r][2])
            opti.subject_to(pos[2*r : 2*(r+1), 0]==self.starts[r][0:2])
            # opti.subject_to(sumsqr(pos[2*r : 2*(r+1), -1] - self.goals[r]) < 1**2)

        return {'opti':opti, 'X':X, 'U':U, 'T':T, 'cost':cost, 'robot_cost':robot_cost, 'obs_cost':obs_cost, 'time_cost':time_cost, 'control_cost':control_cost, 'goal_cost':goal_cost}

    def solve_optimization_problem(self, problem, initial_guesses=None, solver_options=None, prior_solution=None):
        opt = Optimizer(problem)
        results,sol = opt.solve_optimization_problem(initial_guesses, solver_options, prior_solution)
        return results,sol
    
    def solve(self, N, x_range, y_range, initial_guesses=None, solver_options=None, prior_solution=None):
        """
        Setup and solve a multi-robot traj opt problem

        input: 
            - N (int): the number of control intervals
            - x_range (tuple): 
            - y_range (tuple): 
        """
        problem = self.problem_setup(N, x_range, y_range)


        results,old_sol = self.solve_optimization_problem(problem, initial_guesses, solver_options, prior_solution)

        if results['status'] == 'failed':
            return None, None, None, None, None, None, None, None

        X = results['X']
        sol = results['solution']
        U = results['U']
        T = results['T']
        lam_g = results['lam_g']

        # Extract the values that we want from the optimizer's solution
        pos = X[:self.num_robots*2,:]               
        x_vals = pos[0::2,:]                             
        y_vals = pos[1::2,:]
        theta_vals = X[self.num_robots*2:,:]

        vels = U[0::2,:]
        omegas = U[1::2,:]

        return lam_g,sol,pos, vels, omegas, x_vals, y_vals, theta_vals, T

    def get_local_controls(self, controls):
        """ 
        Get the local controls for the robots in the conflict
        """

        l = self.num_robots

        final_trajs = [None]*l

        for c in self.conflicts:
            # Get the robots involved in the conflict
            robots = [self.all_robots[r.label] for r in c]

            # Solve the trajectory optimization problem
            initial_guess = None
            solver_options = {'ipopt.print_level': 1, 'print_time': 1}

            # y range is the smallest y of the starts/goals to the largest y of the starts/goals
            y_range = (min([r[1]-self.robot_radius for r in self.starts + self.goals]), max([r[1]+self.robot_radius for r in self.starts + self.goals]))
            x_range = (min([r[0]-self.robot_radius for r in self.starts + self.goals]), max([r[0]+self.robot_radius for r in self.starts + self.goals]))

            sol, x_opt, vels, omegas, xs,ys, thetas, T = self.solve(20, x_range, y_range,initial_guess, solver_options)

            if sol is None:
                print("Failed to solve the optimization problem")

            pos_vals = np.array(sol.value(x_opt))

            # Update the controls for the robots
            for r, vel, omega, x,y in zip(robots, vels, omegas, xs,ys):
                controls[r.label] = [vel[0], omega[0]]
                final_trajs[r.label] = [x,y]

        return controls, final_trajs

    def plot_paths(self, x_opt):
        fig, ax = plt.subplots()

        # Plot obstacles
        for obstacle in self.circle_obs:
            # if len(obstacle) == 2:  # Circle
            ax.add_patch(Circle(obstacle, obstacle[2], color='red'))
            # elif len(obstacle) == 4:  # Rectangle
            #     ax.add_patch(Rectangle((obstacle[0], obstacle[1]), obstacle[2], obstacle[3], color='red'))

        if self.num_robots > 20:
            colors = plt.cm.hsv(np.linspace(0.2, 1.0, self.num_robots))
        elif self.num_robots > 10:
            colors = plt.cm.tab20(np.linspace(0, 1, self.num_robots))
        else:
            colors = plt.cm.tab10(np.linspace(0, 1, self.num_robots))

        # Plot robot paths
        for r,color in zip(range(self.num_robots),colors):
            ax.plot(x_opt[r*2, :], x_opt[r*2+1, :], label=f'Robot {r+1}', color=color)
            ax.scatter(x_opt[r*2, :], x_opt[r*2+1, :], color=color, s=10 )
            ax.scatter(self.starts[r][0], self.starts[r][1], s=85,color=color)
            ax.scatter(self.goals[r][0], self.goals[r][1], s=85,facecolors='none', edgecolors=color)

        ax.set_xlabel('X')
        ax.set_ylabel('Y')
        ax.legend()
        ax.set_aspect('equal', 'box')

        plt.ylim(0,640)
        plt.xlim(0,480)
        plt.title('Robot Paths')
        plt.grid(False)
        plt.show()


def check_goal_overlap(goal1, goal2, rad):
    """
    Check if the goals overlap
    """
    # get the vector between the two goals
    v = np.array(goal2) - np.array(goal1)

    # check if the distance between the two goals is less than 2*rad
    if np.linalg.norm(v) < 2*rad:
        return True

    return False

def fix_goal_overlap(start1, goal1, start2, goal2):
    """
    Fix the goal overlap
    """
    # get the vectors between the starts and goals
    v1 = np.array(goal1) - np.array(start1)
    v2 = np.array(goal2) - np.array(start2)

    # get the vectors orthogonal to the vectors between the starts and goals
    v1_orth = np.array([-v1[1], v1[0]])
    v2_orth = np.array([-v2[1], v2[0]])

    # move the goals in the direction of the orthogonal vectors
    goal1 = goal1 + .5*v1_orth
    goal2 = goal2 + .5*v2_orth


    return goal1, goal2

if __name__ == "__main__":
    # load all the data from test/db_opt_data1.yaml
    import yaml
    with open('guided_mrmp/tests/db_opt_data2.yaml') as file:
        data = yaml.load(file, Loader=yaml.Loader)

    from guided_mrmp.utils import Env

    starts = data['starts']
    goals = data['goals']
    circle_obstacles = data['env'].circle_obs
    rectangle_obstacles = data['env'].rect_obs
    rob_dist_weight = data['rob_dist_weight']
    obs_dist_weight = data['obstacle_weight']
    control_weight = data['control_weight']
    time_weight = data['time_weight']
    goal_weight = data['goal_weight']
    robot_radius = data['rad']
    conflicts = data['conflicts']
    all_robots = data['robots']

    next_desired_controls = data['next_desired_controls']
    current_trajs = data['trajectories']

    old_goals = goals.copy()

    start1 = starts[0][:2]
    start2 = starts[1][:2]
    
    goals[0], goals[1] = fix_goal_overlap(start1, goals[0], start2, goals[1])

    


    # create the TrajOptResolver object
    resolver = TrajOptResolver(len(starts), 
                               robot_radius, 
                               starts, 
                               goals, 
                               circle_obstacles, 
                               rectangle_obstacles, 
                               rob_dist_weight, 
                               obs_dist_weight, 
                               2, 
                               time_weight, 
                               goal_weight, 
                               conflicts, 
                               all_robots)
    
    next_desired_controls, new_trajs = resolver.get_local_controls(next_desired_controls)

    # use matplotlib to plot the current trajectories of the robots, and 
    # the new trajectories of the robots
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    for r in range(len(current_trajs)):

        # plot the starts and goals of the robots as circles with radius rad
        ax.add_patch(plt.Circle(starts[r], robot_radius, color='green', fill=True))
        ax.add_patch(plt.Circle(goals[r], robot_radius, color='green', fill=False))

        # plot the old goals of the robots as circles with radius rad
        ax.add_patch(plt.Circle(old_goals[r], robot_radius, color='red', fill=False))

        ax.plot(current_trajs[r][0], current_trajs[r][1], label=f'Robot {r+1} current', color='red')
        ax.plot(new_trajs[r][0], new_trajs[r][1], label=f'Robot {r+1} new', color='blue')

        

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.legend()

    plt.show()