diff --git a/guided_mrmp/optimizers/optimizer.py b/guided_mrmp/optimizers/optimizer.py deleted file mode 100644 index d793675399525b92111933b51487edbbdab124a5..0000000000000000000000000000000000000000 --- a/guided_mrmp/optimizers/optimizer.py +++ /dev/null @@ -1,63 +0,0 @@ -import cvxpy as opt -import numpy as np - -class Optimizer: - def __init__(self): - pass - - def solve(self, cost_function, constraints, initial_guess): - """ - Solve the optimization problem. - - Parameters: - - cost_function: Function to minimize - - constraints: List of constraints - - initial_guess: Initial guess for the optimizer - - Returns: - - optimal_solution: The optimal control input found by the optimizer - """ - raise NotImplementedError("This method should be implemented by a specific optimizer.") - -class iLQR(Optimizer): - def __init__(self, nx, nu, control_horizon): - self.nx = nx - self.nu = nu - self.control_horizon = control_horizon - - def solve(self, x,u,cost, constraints, initial_guess=None): - """ - Solve the optimization problem. - - Parameters: - - cost_function: Function to minimize - - constraints: List of constraints - - initial_guess: Optional initial guess for the optimizer - - Returns: - - x_opt: Optimal state trajectory - - u_opt: Optimal control trajectory - """ - # Set up variables for the optimization problem - # x = opt.Variable((self.nx, self.control_horizon + 1)) - # u = opt.Variable((self.nu, self.control_horizon)) - - # If initial guess is provided, set the initial values - # if initial_guess: - # x.value = initial_guess['x'] - # u.value = initial_guess['u'] - - - - prob = opt.Problem(opt.Minimize(cost), constraints) - - # Solve the problem - prob.solve(solver=opt.OSQP, warm_start=True, verbose=False) - - if prob.status != opt.OPTIMAL: - raise ValueError("The optimization problem did not solve successfully.") - - # print(f"x val = {x.value}") - # print(f"u val = {u.value}") - - return x.value, u.value \ No newline at end of file diff --git a/guided_mrmp/tests/traj_from_points_test.py b/guided_mrmp/tests/traj_from_points_test.py deleted file mode 100644 index 5d74788b6465097432821585ab4d6d2e7d283497..0000000000000000000000000000000000000000 --- a/guided_mrmp/tests/traj_from_points_test.py +++ /dev/null @@ -1,77 +0,0 @@ -import time -import numpy as np -from guided_mrmp.utils import get_traj_from_points, plot_sim, Env, Roomba -from guided_mrmp.planners import RRTStar - - - -def test_traj_from_points(): - T = 1 # Prediction Horizon [s] - DT = 0.2 # discretization step [s] - target_velocity = 3.0 # m/s - num_robots = 20 - dynamics = Roomba() - radius = 10 - N = 20 - env = Env([-10,10], [-10,10], [], []) - - # Generate start and goal positions in a circle - angles = np.linspace(0, 2 * np.pi, num_robots, endpoint=False) - robot_starts = [(radius * np.cos(angle), radius * np.sin(angle)) for angle in angles] - robot_goals = [(radius * np.cos(angle + np.pi), radius * np.sin(angle + np.pi)) for angle in angles] - - success_count = 0 - total_time = 0 - - x_hists, y_hists, h_hists, paths = [], [], [], [] - - for i in range(num_robots): - start_time = time.time() - start = robot_starts[i] - goal = robot_goals[i] - - - try: - rrtstar = RRTStar(env, (start[0], start[1]), (goal[0], goal[1]), 0.5, 0.05, 500, r=2.0) - rrtstarpath = rrtstar.run() - rrtstarpath = list(reversed(rrtstarpath)) - xs = [] - ys = [] - for node in rrtstarpath: - xs.append(node[0]) - ys.append(node[1]) - - dx = xs[1] - xs[0] - dy = ys[1] - ys[0] - theta = np.arctan2(dy, dx) - - x,y,h,path = get_traj_from_points(np.array([start[0], start[1],theta]), dynamics, target_velocity, T, DT, [xs, ys]) - x_hists.append(x) - y_hists.append(y) - h_hists.append(h) - paths.append(path) - success_count += 1 - - except Exception as e: - print(f"Robot {i} failed to find a valid trajectory: {e}") - - end_time = time.time() - total_time += (end_time - start_time) - print(f"Robot {i} took {end_time - start_time:.2f} seconds to find a trajectory") - - print(f"Success rate: {success_count}/{num_robots}") - print(f"Average time per robot: {total_time / num_robots:.2f} seconds") - - plot_sim(x_hists, y_hists, h_hists, paths) - - -if __name__ == "__main__": - - import os - import random - seed = 42 - print(f"***Setting Python Seed {seed}***") - os.environ['PYTHONHASHSEED'] = str(seed) - np.random.seed(seed) - random.seed(seed) - test_traj_from_points() \ No newline at end of file