diff --git a/guided_mrmp/conflict_resolvers/traj_opt_db_resolver.py b/guided_mrmp/conflict_resolvers/traj_opt_db_resolver.py deleted file mode 100644 index 4075e0a21276a87b5f1d560cdb47aca7713322d3..0000000000000000000000000000000000000000 --- a/guided_mrmp/conflict_resolvers/traj_opt_db_resolver.py +++ /dev/null @@ -1,301 +0,0 @@ -from .traj_opt_resolver import TrajOptResolver -from .discrete_resolver import DiscreteResolver -from guided_mrmp.conflict_resolvers.curve_path import smooth_path - -import numpy as np - -class DiscreteRobot: - def __init__(self, start, goal): - self.start = start - self.goal = goal - self.current_position = start - - -class TrajOptDBResolver(TrajOptResolver): - - def __init__(self, cell_size, grid_size, all_conflicts, all_robots, trajs, - dt, robot_radius, env, rob_dist_weight, obs_dist_weight, time_weight, lib_2x3, lib_3x3, lib_2x5): - """ - inputs: - - cell_size (float): size (height and width) of the cells to be placed in continuous space - - grid_size (int): size of the discrete grid we will place. (nxn grid) - - robots_in_conflict (list): the indices of the robots that are in conflict - - all_robots (list): list of all robots - """ - circle_obstacles = env.circle_obs - rectangle_obstacles = env.rect_obs - super().__init__(len(all_robots), robot_radius, None, None, circle_obstacles, rectangle_obstacles, - rob_dist_weight, obs_dist_weight, 1, time_weight, 5) - self.cell_size = cell_size - self.grid_size = grid_size - self.all_conflicts = all_conflicts - self.all_robots = all_robots - self.trajs = trajs - self.top_left_grid = None - self.grid = None - self.lib_2x3 = lib_2x3 - self.lib_3x3 = lib_3x3 - self.lib_2x5 = lib_2x5 - self.x_range = env.boundary[0] - self.y_range = env.boundary[1] - - def place_grid(self, robot_locations): - """ - Given the locations of robots that need to be covered in continuous space, find - and place the grid. We don't need a very large grid to place subproblems, so - we will only place a grid of size self.grid_size x self.grid_size - - inputs: - - robot_locations (list): locations of robots involved in conflict - outputs: - - grid (numpy array): The grid that we placed - - top_left (tuple): The top left corner of the grid in continuous space - """ - # Find the minimum and maximum x and y coordinates of the robot locations - self.min_x = min(robot_locations, key=lambda loc: loc[0])[0] - self.max_x = max(robot_locations, key=lambda loc: loc[0])[0] - self.min_y = min(robot_locations, key=lambda loc: loc[1])[1] - self.max_y = max(robot_locations, key=lambda loc: loc[1])[1] - - # Calculate the top left corner of the grid - self.top_left_grid = (self.min_x - .5*self.cell_size, self.max_y + .5*self.cell_size) - - # Initialize the grid - grid = np.zeros((self.grid_size, self.grid_size), dtype=int) - - # Place robots in the grid - # for location in robot_locations: - # x, y, theta = location - # cell_x = min(max(int((x - min_x) // self.cell_size), 0), self.grid_size - 1) - # cell_y = min(max(int((y - min_y) // self.cell_size), 0), self.grid_size - 1) - # grid[cell_x, cell_y] += 1 - - # Check for conflicts and shift the grid if necessary - for i in range(self.grid_size): - for j in range(self.grid_size): - if grid[i, j] > 1: - # Shift the grid by a small amount - shift = np.random.uniform(-0.1, 0.1, size=2) - grid[i, j] -= 1 - new_i = min(max(i + int(shift[0]), 0), self.grid_size - 1) - new_j = min(max(j + int(shift[1]), 0), self.grid_size - 1) - grid[new_i, new_j] += 1 - - return grid - - def get_temp_starts_and_goals(self): - - - # temporary starts are just the current positions of the robots - temp_starts = [] - for r in self.all_robots: - x, y, theta = r.current_position - cell_x = min(max(int(round((x - self.min_x) / self.cell_size)), 0), self.grid_size - 1) - cell_y = min(max(int(round((self.max_y - y) / self.cell_size)), 0), self.grid_size - 1) - temp_starts.append([cell_x, cell_y]) - - # # temporary goal is some point on the robot's guide path in the near future - # temp_goals = [] - # for r in self.all_robots: - # path = compute_path_from_wp(r.waypoints[0], r.waypoints[1], 10) - # ind = get_nn_idx(r.current_position, path) - # print(f"current position = {r.current_position}") - # print(f"closest waypoint = {path[0][ind]}, {path[1][ind]}") - # ind = min(ind+10, len(path[0])-1) - # waypoint = [path[0][ind], path[1][ind]] - # temp_goals.append(waypoint) - - # the temmporary goal is the point at the end of the robot's predicted traj - temp_goals = [] - for r in range(len(self.all_robots)): - traj = self.trajs[r] - x = traj[0][-1] - y = traj[1][-1] - cell_x = min(max(int(round((x - self.min_x) / self.cell_size)), 0), self.grid_size - 1) - cell_y = min(max(int(round((self.max_y - y) / self.cell_size)), 0), self.grid_size - 1) - temp_goals.append([cell_x,cell_y]) - - # self.starts = temp_starts - # self.goals = temp_goals - - return temp_starts, temp_goals - - def create_discrete_robots(self, starts, goals): - discrete_robots = [] - for i in range(len(starts)): - start = starts[i] - goal = goals[i] - discrete_robots.append(DiscreteRobot(start, goal)) - return discrete_robots - - def get_discrete_solution(self, conflict, grid): - # create an instance of a discrete solver - - starts, goals = self.get_temp_starts_and_goals() - print(f"temp starts = {starts}") - print(f"temp goals = {goals}") - - disc_robots = self.create_discrete_robots(starts, goals) - - - - grid_solver = DiscreteResolver(conflict, disc_robots, starts, goals, self.all_conflicts,grid, self.lib_2x3, self.lib_3x3, self.lib_2x5) - subproblem = grid_solver.find_subproblem() - print(f"subproblem = {subproblem}") - grid_solution = grid_solver.solve_subproblem(subproblem) - print(f"grid_solution = {grid_solution}") - return grid_solution - - def get_initial_guess(self, grid_solution, num_robots, N, cp_dist): - # turn this solution into an initial guess - initial_guess = np.zeros((num_robots*3, N+1)) - for i in range(num_robots): - - print(f"Robot {i+1} solution:") - rough_points = np.array(grid_solution[i]) - points = [] - for point in rough_points: - if point[0] == -1: break - points.append(point) - - points = np.array(points) - print(f"points = {points}") - - smoothed_curve = smooth_path(points, cp_dist, N) - print(f"smoothed_curve = {smoothed_curve}") - - initial_guess[i*3, :] = self.top_left_grid[0] + (smoothed_curve[:, 0] + .5)*self.cell_size # x - initial_guess[i*3 + 1, :] = self.top_left_grid[1] - (smoothed_curve[:, 1]+.5)*self.cell_size # y - - - - for j in range(N): - dx = smoothed_curve[j+1, 0] - smoothed_curve[j, 0] - dy = smoothed_curve[j+1, 1] - smoothed_curve[j, 1] - initial_guess[i*3 + 2, j] = np.arctan2(dy, dx) - - return {'X': initial_guess} - - def solve(self, num_control_intervals, x_range, y_range, initial_guess): - """ - Solves the trajectory optimization problem for the robots. - """ - - # Get the temporary starts and goals for the robots - # starts, goals = self.get_temp_starts_and_goals() - - # self.starts = starts - # self.goals = goals - - # call the parent class - # TODO: I need to change the solve function to take start - # goal as input, don't want to use the class variables - sol, pos, vels, omegas, x_vals, y_vals, theta_vals = super().solve(num_control_intervals, x_range, y_range, initial_guess) - return sol, pos, vels, omegas,x_vals, y_vals, theta_vals - - def get_local_controls(self, controls): - final_trajs = [None]*len(controls) - for c in self.all_conflicts: - # Get the robots involved in the conflict - robots = [self.all_robots[r.label] for r in c] - robot_positions = [r.current_position for r in robots] - - # Put down a local grid - self.grid = self.place_grid(robot_positions) - - starts, goals = self.get_temp_starts_and_goals() - - # draw the whole environment with the local grid drawn on top - import matplotlib.pyplot as plt - import matplotlib.cm as cm - - colors = cm.rainbow(np.linspace(0, 1, len(self.all_robots))) - - # plot the robots' continuous space locations - for idx, r in enumerate(self.all_robots): - x, y, theta = r.current_position - plt.plot(x, y, 'o', color=colors[idx]) - - traj = self.trajs[r.label] - x = traj[0][-1] - y = traj[1][-1] - plt.plot(x, y, '^', color=colors[idx]) - - # draw the horizontal and vertical lines of the grid - for i in range(self.grid_size + 1): - # Draw vertical lines - plt.plot([self.top_left_grid[0] + i * self.cell_size, self.top_left_grid[0] + i * self.cell_size], - [self.top_left_grid[1], self.top_left_grid[1] - self.grid_size * self.cell_size], 'k-') - # Draw horizontal lines - plt.plot([self.top_left_grid[0], self.top_left_grid[0] + self.grid_size * self.cell_size], - [self.top_left_grid[1] - i * self.cell_size, self.top_left_grid[1] - i * self.cell_size], 'k-') - - - # plot robot starts and goals on the grid - for i in range(len(starts)): - start_x = self.top_left_grid[0] + (starts[i][0] + 0.5) * self.cell_size - start_y = self.top_left_grid[1] - (starts[i][1] + 0.5) * self.cell_size - goal_x = self.top_left_grid[0] + (goals[i][0] + 0.5) * self.cell_size - goal_y = self.top_left_grid[1] - (goals[i][1] + 0.5) * self.cell_size - - plt.plot(start_x, start_y, 'o', color=colors[i]) - plt.plot(goal_x, goal_y, '^', color=colors[i]) - - - - # set the starts (robots' current positions) - self.starts = [] - self.goals = [] - for i in range(len(robots)): - self.starts.append(self.all_robots[i].current_position) - traj = self.trajs[i] - x = traj[0][-1] - y = traj[1][-1] - self.goals.append([x,y]) - - - # Find a subproblem and solve it - grid_solution = self.get_discrete_solution(c, self.grid) - - - - initial_guess = self.get_initial_guess(grid_solution, len(robots), 20, 1) - - # plot the initial guess - # plt.figure() - # fig, ax = plt.subplots() - # for i in range(len(robots)): - # plt.plot(initial_guess['X'][i*3, :], initial_guess['X'][i*3 + 1, :], label=f'Robot {i+1}') - # plt.scatter(initial_guess['X'][i*3, :], initial_guess['X'][i*3 + 1, :]) - # plt.scatter(self.starts[i][0], self.starts[i][1], s=85) - # plt.scatter(self.goals[i][0], self.goals[i][1], s=85, facecolors='none', edgecolors='r') - - plt.show() - - # Solve the trajectory optimization problem, using the grid - # solution as an initial guess - - - - sol, x_opt, vels, omegas, xs, ys, thetas = self.solve(20, self.x_range, self.y_range,initial_guess) - - # plot the solution - # Plot robot paths - # for r,color in zip(range(len(starts)),colors): - # if x_opt is not None: - # ax.plot(x_opt[r*2, :], x_opt[r*2+1, :], label=f'Robot {r+1}', color=color) - # ax.scatter(x_opt[r*2, :], x_opt[r*2+1, :], color=color, s=10 ) - # ax.scatter(starts[r][0], starts[r][1], s=85,color=color) - # ax.scatter(goals[r][0], goals[r][1], s=135,facecolors='none', edgecolors=color) - - - # plt.show() - # Update the controls for the robots - for r, vel, omega, x,y,theta in zip(robots, vels, omegas, xs,ys, thetas): - controls[r.label] = [vel[0], omega[0]] - final_trajs[r.label] = [x,y,theta] - - return controls, final_trajs - - - diff --git a/guided_mrmp/conflict_resolvers/traj_opt_resolver.py b/guided_mrmp/conflict_resolvers/traj_opt_resolver.py deleted file mode 100644 index 0160d00bfbbdd7c69792662cb76bc0a093cdbddb..0000000000000000000000000000000000000000 --- a/guided_mrmp/conflict_resolvers/traj_opt_resolver.py +++ /dev/null @@ -1,390 +0,0 @@ -import numpy as np -import matplotlib.pyplot as plt -from matplotlib.patches import Circle, Rectangle -from guided_mrmp.optimizer import Optimizer -from casadi import * - - -class TrajOptResolver(): - """ - A class that resolves conflicts using trajectoy optimization. - """ - def __init__(self, num_robots, robot_radius, starts, goals, circle_obstacles, rectangle_obstacles, - rob_dist_weight, obs_dist_weight, control_weight, time_weight, goal_weight, conflicts, all_robots): - self.num_robots = num_robots - self.starts = starts - self.goals = goals - self.circle_obs = circle_obstacles - self.rect_obs = rectangle_obstacles - self.rob_dist_weight = rob_dist_weight - self.obs_dist_weight = obs_dist_weight - self.control_weight =control_weight - self.time_weight = time_weight - self.robot_radius = MX(robot_radius) - self.goal_weight = goal_weight - self.conflicts = conflicts - self.all_robots = all_robots - - def dist(self, robot_position, circle): - """ - Returns the distance between a robot and a circle - - params: - robot_position [x,y] - circle [x,y,radius] - """ - return sumsqr(robot_position - transpose(circle[:2])) - - def apply_quadratic_barrier(self, d_max, d, c): - """ - Applies a quadratic barrier to some given distance. The quadratic barrier - is a soft barrier function. We are using it for now to avoid any issues with - invalid initial solutions, which hard barrier functions cannot handle. - - params: - d (float): distance to the obstacle - c (float): controls the steepness of curve. - higher c --> gets more expensive faster as you move toward obs - d_max (float): The threshold distance at which the barrier starts to apply - """ - return c*fmax(0, d_max-d)**2 - - def log_normal_barrier(self, sigma, d, c): - return c*fmax(0, 2-(d/sigma))**2.5 - - def problem_setup(self, N, x_range, y_range): - """ - Problem setup for the multi-robot collision resolution traj opt problem - - inputs: - - N (int): number of control intervals - - x_range (tuple): range of x values - - y_range (tuple): range of y values - - outputs: - - problem (dict): dictionary containing the optimization problem - and the decision variables - """ - opti = Opti() # Optimization problem - - # ---- decision variables --------- # - X = opti.variable(self.num_robots*3, N+1) # state trajectory (x,y,heading) - pos = X[:self.num_robots*2,:] # position is the first two values - x = pos[0::2,:] - y = pos[1::2,:] - heading = X[self.num_robots*2:,:] # heading is the last value - - U = opti.variable(self.num_robots*2, N) # control trajectory (v, omega) - vel = U[0::2,:] - omega = U[1::2,:] - T = opti.variable() # final time - - # ---- obstacle setup ------------ # - circle_obs = DM(self.circle_obs) # make the obstacles casadi objects - - # ------ Obstacle dist cost ------ # - # TODO:: Include rectangular obstacles - dist_to_other_obstacles = 0 - for r in range(self.num_robots): - for k in range(N): - for c in range(circle_obs.shape[0]): - circle = circle_obs[c, :] - d = sumsqr(pos[2*r : 2*(r+1), k] - transpose(circle[:2])) - 2*self.robot_radius - circle[2] - dist_to_other_obstacles += self.apply_quadratic_barrier(3*(self.robot_radius + circle[2]), d, 10) - - - # ------ Robot dist cost ------ # - dist_to_other_robots = 0 - for k in range(N): - for r1 in range(self.num_robots): - for r2 in range(self.num_robots): - if r1 != r2: - d = sumsqr(pos[2*r1 : 2*(r1+1), k] - pos[2*r2 : 2*(r2+1), k]) - dist_to_other_robots += self.apply_quadratic_barrier(3*self.robot_radius, d, 2) - - - # ---- dynamics constraints ---- # - dt = T/N # length of a control interval - - pi = [3.14159]*self.num_robots - pi = np.array(pi) - pi = DM(pi) - - for k in range(N): # loop over control intervals - dxdt = vel[:,k] * cos(heading[:,k]) - dydt = vel[:,k] * sin(heading[:,k]) - dthetadt = omega[:,k] - opti.subject_to(x[:,k+1]==x[:,k] + dt*dxdt) - opti.subject_to(y[:,k+1]==y[:,k] + dt*dydt) - opti.subject_to(heading[:,k+1]==fmod(heading[:,k] + dt*dthetadt, 2*pi)) - - - # ------ Control panalty ------ # - # Calculate the sum of squared differences between consecutive heading angles - control_penalty = 0 - for k in range(N-1): - control_penalty += sumsqr(fmod(heading[:,k+1] - heading[:,k] + pi, 2*pi) - pi) - control_penalty += sumsqr(vel[:,k+1] - vel[:,k]) - - - - - - # ------ Distance to goal penalty ------ # - dist_to_goal = 0 - for r in range(self.num_robots): - # calculate the distance to the goal in the final control interval - # - dist_to_goal += sumsqr(pos[2*r : 2*(r+1), -1] - self.goals[r]) - - robot_cost = self.rob_dist_weight*dist_to_other_robots - obs_cost = self.obs_dist_weight*dist_to_other_obstacles - time_cost = self.time_weight*T - control_cost = self.control_weight*control_penalty - goal_cost = self.goal_weight*dist_to_goal - - # ------ cost function ------ # - cost = robot_cost + obs_cost + control_cost + time_cost +goal_cost - - opti.minimize(cost) - - - # ------ control constraints ------ # - for k in range(N): - for r in range(self.num_robots): - opti.subject_to(sumsqr(vel[r,k]) <= .5**2) - opti.subject_to(sumsqr(omega[r,k]) <= .5**2) - - # ------ bound x, y, and time ------ # - opti.subject_to(opti.bounded(x_range[0]+self.robot_radius,x,x_range[1]-self.robot_radius)) - opti.subject_to(opti.bounded(y_range[0]+self.robot_radius,y,y_range[1]-self.robot_radius)) - opti.subject_to(opti.bounded(0,T,50)) - - # ------ initial conditions ------ # - for r in range(self.num_robots): - - opti.subject_to(heading[r, 0]==self.starts[r][2]) - opti.subject_to(pos[2*r : 2*(r+1), 0]==self.starts[r][0:2]) - # opti.subject_to(sumsqr(pos[2*r : 2*(r+1), -1] - self.goals[r]) < 1**2) - - return {'opti':opti, 'X':X, 'U':U, 'T':T, 'cost':cost, 'robot_cost':robot_cost, 'obs_cost':obs_cost, 'time_cost':time_cost, 'control_cost':control_cost, 'goal_cost':goal_cost} - - def solve_optimization_problem(self, problem, initial_guesses=None, solver_options=None, prior_solution=None): - opt = Optimizer(problem) - results,sol = opt.solve_optimization_problem(initial_guesses, solver_options, prior_solution) - return results,sol - - def solve(self, N, x_range, y_range, initial_guesses=None, solver_options=None, prior_solution=None): - """ - Setup and solve a multi-robot traj opt problem - - input: - - N (int): the number of control intervals - - x_range (tuple): - - y_range (tuple): - """ - problem = self.problem_setup(N, x_range, y_range) - - - results,old_sol = self.solve_optimization_problem(problem, initial_guesses, solver_options, prior_solution) - - if results['status'] == 'failed': - return None, None, None, None, None, None, None, None - - X = results['X'] - sol = results['solution'] - U = results['U'] - T = results['T'] - lam_g = results['lam_g'] - - # Extract the values that we want from the optimizer's solution - pos = X[:self.num_robots*2,:] - x_vals = pos[0::2,:] - y_vals = pos[1::2,:] - theta_vals = X[self.num_robots*2:,:] - - vels = U[0::2,:] - omegas = U[1::2,:] - - return lam_g,sol,pos, vels, omegas, x_vals, y_vals, theta_vals, T - - def get_local_controls(self, controls): - """ - Get the local controls for the robots in the conflict - """ - - l = self.num_robots - - final_trajs = [None]*l - - for c in self.conflicts: - # Get the robots involved in the conflict - robots = [self.all_robots[r.label] for r in c] - - # Solve the trajectory optimization problem - initial_guess = None - solver_options = {'ipopt.print_level': 1, 'print_time': 1} - - # y range is the smallest y of the starts/goals to the largest y of the starts/goals - y_range = (min([r[1]-self.robot_radius for r in self.starts + self.goals]), max([r[1]+self.robot_radius for r in self.starts + self.goals])) - x_range = (min([r[0]-self.robot_radius for r in self.starts + self.goals]), max([r[0]+self.robot_radius for r in self.starts + self.goals])) - - sol, x_opt, vels, omegas, xs,ys, thetas, T = self.solve(20, x_range, y_range,initial_guess, solver_options) - - if sol is None: - print("Failed to solve the optimization problem") - - pos_vals = np.array(sol.value(x_opt)) - - # Update the controls for the robots - for r, vel, omega, x,y in zip(robots, vels, omegas, xs,ys): - controls[r.label] = [vel[0], omega[0]] - final_trajs[r.label] = [x,y] - - return controls, final_trajs - - def plot_paths(self, x_opt): - fig, ax = plt.subplots() - - # Plot obstacles - for obstacle in self.circle_obs: - # if len(obstacle) == 2: # Circle - ax.add_patch(Circle(obstacle, obstacle[2], color='red')) - # elif len(obstacle) == 4: # Rectangle - # ax.add_patch(Rectangle((obstacle[0], obstacle[1]), obstacle[2], obstacle[3], color='red')) - - if self.num_robots > 20: - colors = plt.cm.hsv(np.linspace(0.2, 1.0, self.num_robots)) - elif self.num_robots > 10: - colors = plt.cm.tab20(np.linspace(0, 1, self.num_robots)) - else: - colors = plt.cm.tab10(np.linspace(0, 1, self.num_robots)) - - # Plot robot paths - for r,color in zip(range(self.num_robots),colors): - ax.plot(x_opt[r*2, :], x_opt[r*2+1, :], label=f'Robot {r+1}', color=color) - ax.scatter(x_opt[r*2, :], x_opt[r*2+1, :], color=color, s=10 ) - ax.scatter(self.starts[r][0], self.starts[r][1], s=85,color=color) - ax.scatter(self.goals[r][0], self.goals[r][1], s=85,facecolors='none', edgecolors=color) - - ax.set_xlabel('X') - ax.set_ylabel('Y') - ax.legend() - ax.set_aspect('equal', 'box') - - plt.ylim(0,640) - plt.xlim(0,480) - plt.title('Robot Paths') - plt.grid(False) - plt.show() - - -def check_goal_overlap(goal1, goal2, rad): - """ - Check if the goals overlap - """ - # get the vector between the two goals - v = np.array(goal2) - np.array(goal1) - - # check if the distance between the two goals is less than 2*rad - if np.linalg.norm(v) < 2*rad: - return True - - return False - -def fix_goal_overlap(start1, goal1, start2, goal2): - """ - Fix the goal overlap - """ - # get the vectors between the starts and goals - v1 = np.array(goal1) - np.array(start1) - v2 = np.array(goal2) - np.array(start2) - - # get the vectors orthogonal to the vectors between the starts and goals - v1_orth = np.array([-v1[1], v1[0]]) - v2_orth = np.array([-v2[1], v2[0]]) - - # move the goals in the direction of the orthogonal vectors - goal1 = goal1 + .5*v1_orth - goal2 = goal2 + .5*v2_orth - - - return goal1, goal2 - -if __name__ == "__main__": - # load all the data from test/db_opt_data1.yaml - import yaml - with open('guided_mrmp/tests/db_opt_data2.yaml') as file: - data = yaml.load(file, Loader=yaml.Loader) - - from guided_mrmp.utils import Env - - starts = data['starts'] - goals = data['goals'] - circle_obstacles = data['env'].circle_obs - rectangle_obstacles = data['env'].rect_obs - rob_dist_weight = data['rob_dist_weight'] - obs_dist_weight = data['obstacle_weight'] - control_weight = data['control_weight'] - time_weight = data['time_weight'] - goal_weight = data['goal_weight'] - robot_radius = data['rad'] - conflicts = data['conflicts'] - all_robots = data['robots'] - - next_desired_controls = data['next_desired_controls'] - current_trajs = data['trajectories'] - - old_goals = goals.copy() - - start1 = starts[0][:2] - start2 = starts[1][:2] - - goals[0], goals[1] = fix_goal_overlap(start1, goals[0], start2, goals[1]) - - - - - # create the TrajOptResolver object - resolver = TrajOptResolver(len(starts), - robot_radius, - starts, - goals, - circle_obstacles, - rectangle_obstacles, - rob_dist_weight, - obs_dist_weight, - 2, - time_weight, - goal_weight, - conflicts, - all_robots) - - next_desired_controls, new_trajs = resolver.get_local_controls(next_desired_controls) - - # use matplotlib to plot the current trajectories of the robots, and - # the new trajectories of the robots - import matplotlib.pyplot as plt - fig, ax = plt.subplots() - for r in range(len(current_trajs)): - - # plot the starts and goals of the robots as circles with radius rad - ax.add_patch(plt.Circle(starts[r], robot_radius, color='green', fill=True)) - ax.add_patch(plt.Circle(goals[r], robot_radius, color='green', fill=False)) - - # plot the old goals of the robots as circles with radius rad - ax.add_patch(plt.Circle(old_goals[r], robot_radius, color='red', fill=False)) - - ax.plot(current_trajs[r][0], current_trajs[r][1], label=f'Robot {r+1} current', color='red') - ax.plot(new_trajs[r][0], new_trajs[r][1], label=f'Robot {r+1} new', color='blue') - - - - ax.set_xlabel('X') - ax.set_ylabel('Y') - ax.legend() - - plt.show() - - -