diff --git a/guided_mrmp/conflict_resolvers/traj_opt_db_resolver.py b/guided_mrmp/conflict_resolvers/traj_opt_db_resolver.py
deleted file mode 100644
index 4075e0a21276a87b5f1d560cdb47aca7713322d3..0000000000000000000000000000000000000000
--- a/guided_mrmp/conflict_resolvers/traj_opt_db_resolver.py
+++ /dev/null
@@ -1,301 +0,0 @@
-from .traj_opt_resolver import TrajOptResolver
-from .discrete_resolver import DiscreteResolver
-from guided_mrmp.conflict_resolvers.curve_path import smooth_path
-
-import numpy as np
-
-class DiscreteRobot:
-    def __init__(self, start, goal):
-        self.start = start
-        self.goal = goal
-        self.current_position = start
-
-
-class TrajOptDBResolver(TrajOptResolver):
-        
-    def __init__(self, cell_size, grid_size, all_conflicts, all_robots, trajs,
-                 dt, robot_radius, env, rob_dist_weight, obs_dist_weight, time_weight, lib_2x3, lib_3x3, lib_2x5):
-        """
-        inputs:
-            - cell_size (float): size (height and width) of the cells to be placed in continuous space   
-            - grid_size (int): size of the discrete grid we will place. (nxn grid)  
-            - robots_in_conflict (list): the indices of the robots that are in conflict
-            - all_robots (list): list of all robots 
-        """
-        circle_obstacles = env.circle_obs
-        rectangle_obstacles = env.rect_obs
-        super().__init__(len(all_robots), robot_radius, None, None, circle_obstacles, rectangle_obstacles,
-                 rob_dist_weight, obs_dist_weight, 1, time_weight, 5)
-        self.cell_size = cell_size
-        self.grid_size = grid_size
-        self.all_conflicts = all_conflicts
-        self.all_robots = all_robots
-        self.trajs = trajs
-        self.top_left_grid = None
-        self.grid = None
-        self.lib_2x3 = lib_2x3
-        self.lib_3x3 = lib_3x3
-        self.lib_2x5 = lib_2x5
-        self.x_range = env.boundary[0]
-        self.y_range = env.boundary[1]
-
-    def place_grid(self, robot_locations):
-        """
-        Given the locations of robots that need to be covered in continuous space, find 
-        and place the grid. We don't need a very large grid to place subproblems, so 
-        we will only place a grid of size self.grid_size x self.grid_size
-
-        inputs:
-            - robot_locations (list): locations of robots involved in conflict
-        outputs:
-            - grid (numpy array): The grid that we placed
-            - top_left (tuple): The top left corner of the grid in continuous space
-        """
-        # Find the minimum and maximum x and y coordinates of the robot locations
-        self.min_x = min(robot_locations, key=lambda loc: loc[0])[0]
-        self.max_x = max(robot_locations, key=lambda loc: loc[0])[0]
-        self.min_y = min(robot_locations, key=lambda loc: loc[1])[1]
-        self.max_y = max(robot_locations, key=lambda loc: loc[1])[1]
-
-        # Calculate the top left corner of the grid
-        self.top_left_grid = (self.min_x - .5*self.cell_size, self.max_y + .5*self.cell_size)
-
-        # Initialize the grid
-        grid = np.zeros((self.grid_size, self.grid_size), dtype=int)
-
-        # Place robots in the grid
-        # for location in robot_locations:
-        #     x, y, theta = location
-        #     cell_x = min(max(int((x - min_x) // self.cell_size), 0), self.grid_size - 1)
-        #     cell_y = min(max(int((y - min_y) // self.cell_size), 0), self.grid_size - 1)
-        #     grid[cell_x, cell_y] += 1
-
-        # Check for conflicts and shift the grid if necessary
-        for i in range(self.grid_size):
-            for j in range(self.grid_size):
-                if grid[i, j] > 1:
-                    # Shift the grid by a small amount
-                    shift = np.random.uniform(-0.1, 0.1, size=2)
-                    grid[i, j] -= 1
-                    new_i = min(max(i + int(shift[0]), 0), self.grid_size - 1)
-                    new_j = min(max(j + int(shift[1]), 0), self.grid_size - 1)
-                    grid[new_i, new_j] += 1
-
-        return grid
-    
-    def get_temp_starts_and_goals(self):
-        
-
-        # temporary starts are just the current positions of the robots
-        temp_starts = []
-        for r in self.all_robots:
-            x, y, theta = r.current_position
-            cell_x = min(max(int(round((x - self.min_x) / self.cell_size)), 0), self.grid_size - 1)
-            cell_y = min(max(int(round((self.max_y - y) / self.cell_size)), 0), self.grid_size - 1)
-            temp_starts.append([cell_x, cell_y])
-        
-        # # temporary goal is some point on the robot's guide path in the near future
-        # temp_goals = []
-        # for r in self.all_robots:
-        #     path = compute_path_from_wp(r.waypoints[0], r.waypoints[1], 10)
-        #     ind = get_nn_idx(r.current_position, path)
-        #     print(f"current position = {r.current_position}")
-        #     print(f"closest waypoint = {path[0][ind]}, {path[1][ind]}")
-        #     ind = min(ind+10, len(path[0])-1)
-        #     waypoint = [path[0][ind], path[1][ind]]
-        #     temp_goals.append(waypoint)
-
-        # the temmporary goal is the point at the end of the robot's predicted traj
-        temp_goals = []
-        for r in range(len(self.all_robots)):
-            traj = self.trajs[r]
-            x = traj[0][-1]
-            y = traj[1][-1]
-            cell_x = min(max(int(round((x - self.min_x) / self.cell_size)), 0), self.grid_size - 1)
-            cell_y = min(max(int(round((self.max_y - y) / self.cell_size)), 0), self.grid_size - 1)
-            temp_goals.append([cell_x,cell_y])
-
-        # self.starts = temp_starts
-        # self.goals = temp_goals
-
-        return temp_starts, temp_goals
-    
-    def create_discrete_robots(self, starts, goals):
-        discrete_robots = []
-        for i in range(len(starts)):
-            start = starts[i]
-            goal = goals[i]
-            discrete_robots.append(DiscreteRobot(start, goal))
-        return discrete_robots
-      
-    def get_discrete_solution(self, conflict, grid):
-        #  create an instance of a discrete solver
-
-        starts, goals = self.get_temp_starts_and_goals()
-        print(f"temp starts = {starts}")
-        print(f"temp goals = {goals}")
-
-        disc_robots = self.create_discrete_robots(starts, goals)
-
-
-
-        grid_solver = DiscreteResolver(conflict, disc_robots, starts, goals, self.all_conflicts,grid, self.lib_2x3, self.lib_3x3, self.lib_2x5)
-        subproblem = grid_solver.find_subproblem()
-        print(f"subproblem = {subproblem}")
-        grid_solution = grid_solver.solve_subproblem(subproblem)
-        print(f"grid_solution = {grid_solution}")
-        return grid_solution
-    
-    def get_initial_guess(self, grid_solution, num_robots, N, cp_dist):
-        # turn this solution into an initial guess 
-        initial_guess = np.zeros((num_robots*3, N+1))
-        for i in range(num_robots):
-
-            print(f"Robot {i+1} solution:")
-            rough_points = np.array(grid_solution[i])
-            points = []
-            for point in rough_points:
-                if point[0] == -1: break
-                points.append(point)
-            
-            points = np.array(points)
-            print(f"points = {points}")
-
-            smoothed_curve = smooth_path(points, cp_dist, N)
-            print(f"smoothed_curve = {smoothed_curve}")
-            
-            initial_guess[i*3, :] = self.top_left_grid[0] + (smoothed_curve[:, 0] + .5)*self.cell_size        # x
-            initial_guess[i*3 + 1, :] = self.top_left_grid[1] - (smoothed_curve[:, 1]+.5)*self.cell_size    # y
-
-            
-
-            for j in range(N):
-                dx = smoothed_curve[j+1, 0] - smoothed_curve[j, 0]
-                dy = smoothed_curve[j+1, 1] - smoothed_curve[j, 1]
-                initial_guess[i*3 + 2, j] = np.arctan2(dy, dx)
-
-        return {'X': initial_guess}
-
-    def solve(self, num_control_intervals, x_range, y_range, initial_guess):
-        """
-        Solves the trajectory optimization problem for the robots.
-        """
-
-        # Get the temporary starts and goals for the robots
-        # starts, goals = self.get_temp_starts_and_goals()
-
-        # self.starts = starts
-        # self.goals = goals
-
-        # call the parent class 
-        # TODO: I need to change the solve function to take start 
-        #       goal as input, don't want to use the class variables
-        sol, pos, vels, omegas, x_vals, y_vals, theta_vals = super().solve(num_control_intervals, x_range, y_range, initial_guess)
-        return sol, pos, vels, omegas,x_vals, y_vals, theta_vals
-        
-    def get_local_controls(self, controls):
-        final_trajs = [None]*len(controls)
-        for c in self.all_conflicts:
-            # Get the robots involved in the conflict
-            robots = [self.all_robots[r.label] for r in c]
-            robot_positions = [r.current_position for r in robots]
-
-            # Put down a local grid
-            self.grid = self.place_grid(robot_positions)
-
-            starts, goals = self.get_temp_starts_and_goals()
-
-            # draw the whole environment with the local grid drawn on top
-            import matplotlib.pyplot as plt
-            import matplotlib.cm as cm
-
-            colors = cm.rainbow(np.linspace(0, 1, len(self.all_robots)))
-
-            # plot the robots' continuous space locations
-            for idx, r in enumerate(self.all_robots):
-                x, y, theta = r.current_position
-                plt.plot(x, y, 'o', color=colors[idx])
-
-                traj = self.trajs[r.label]
-                x = traj[0][-1]
-                y = traj[1][-1]
-                plt.plot(x, y, '^', color=colors[idx])
-
-            # draw the horizontal and vertical lines of the grid
-            for i in range(self.grid_size + 1):
-                # Draw vertical lines
-                plt.plot([self.top_left_grid[0] + i * self.cell_size, self.top_left_grid[0] + i * self.cell_size], 
-                         [self.top_left_grid[1], self.top_left_grid[1] - self.grid_size * self.cell_size], 'k-')
-                # Draw horizontal lines
-                plt.plot([self.top_left_grid[0], self.top_left_grid[0] + self.grid_size * self.cell_size], 
-                         [self.top_left_grid[1] - i * self.cell_size, self.top_left_grid[1] - i * self.cell_size], 'k-')
-
-            
-            # plot robot starts and goals on the grid
-            for i in range(len(starts)):
-                start_x = self.top_left_grid[0] + (starts[i][0] + 0.5) * self.cell_size
-                start_y = self.top_left_grid[1] - (starts[i][1] + 0.5) * self.cell_size
-                goal_x = self.top_left_grid[0] + (goals[i][0] + 0.5) * self.cell_size
-                goal_y = self.top_left_grid[1] - (goals[i][1] + 0.5) * self.cell_size
-
-                plt.plot(start_x, start_y, 'o', color=colors[i])
-                plt.plot(goal_x, goal_y, '^', color=colors[i])
-
-            
-
-            # set the starts (robots' current positions) 
-            self.starts = []
-            self.goals = []
-            for i in range(len(robots)):
-                self.starts.append(self.all_robots[i].current_position)
-                traj = self.trajs[i]
-                x = traj[0][-1]
-                y = traj[1][-1]
-                self.goals.append([x,y])
-
-            
-            # Find a subproblem and solve it
-            grid_solution = self.get_discrete_solution(c, self.grid)
-
-
-
-            initial_guess = self.get_initial_guess(grid_solution, len(robots), 20, 1)
-
-            # plot the initial guess
-            # plt.figure()   
-            # fig, ax = plt.subplots() 
-            # for i in range(len(robots)):
-            #     plt.plot(initial_guess['X'][i*3, :], initial_guess['X'][i*3 + 1, :], label=f'Robot {i+1}')
-            #     plt.scatter(initial_guess['X'][i*3, :], initial_guess['X'][i*3 + 1, :])
-            #     plt.scatter(self.starts[i][0], self.starts[i][1], s=85)
-            #     plt.scatter(self.goals[i][0], self.goals[i][1], s=85, facecolors='none', edgecolors='r')
-
-            plt.show()
-
-            # Solve the trajectory optimization problem, using the grid 
-            # solution as an initial guess
-
-            
-            
-            sol, x_opt, vels, omegas, xs, ys, thetas = self.solve(20, self.x_range, self.y_range,initial_guess)
-
-            # plot the solution
-            # Plot robot paths
-            # for r,color in zip(range(len(starts)),colors):
-            #     if x_opt is not None:
-            #         ax.plot(x_opt[r*2, :], x_opt[r*2+1, :], label=f'Robot {r+1}', color=color)
-            #         ax.scatter(x_opt[r*2, :], x_opt[r*2+1, :], color=color, s=10 )
-            #     ax.scatter(starts[r][0], starts[r][1], s=85,color=color)
-            #     ax.scatter(goals[r][0], goals[r][1], s=135,facecolors='none', edgecolors=color)
-
-
-            # plt.show()  
-            # Update the controls for the robots
-            for r, vel, omega, x,y,theta in zip(robots, vels, omegas, xs,ys, thetas):
-                controls[r.label] = [vel[0], omega[0]]
-                final_trajs[r.label] = [x,y,theta]
-
-        return controls, final_trajs
-    
-
-
diff --git a/guided_mrmp/conflict_resolvers/traj_opt_resolver.py b/guided_mrmp/conflict_resolvers/traj_opt_resolver.py
deleted file mode 100644
index 0160d00bfbbdd7c69792662cb76bc0a093cdbddb..0000000000000000000000000000000000000000
--- a/guided_mrmp/conflict_resolvers/traj_opt_resolver.py
+++ /dev/null
@@ -1,390 +0,0 @@
-import numpy as np
-import matplotlib.pyplot as plt
-from matplotlib.patches import Circle, Rectangle
-from guided_mrmp.optimizer import Optimizer
-from casadi import *
-
-
-class TrajOptResolver():
-    """
-    A class that resolves conflicts using trajectoy optimization.
-    """
-    def __init__(self, num_robots, robot_radius, starts, goals, circle_obstacles, rectangle_obstacles,
-                 rob_dist_weight, obs_dist_weight, control_weight, time_weight, goal_weight, conflicts, all_robots):
-        self.num_robots = num_robots
-        self.starts = starts
-        self.goals = goals
-        self.circle_obs = circle_obstacles
-        self.rect_obs = rectangle_obstacles
-        self.rob_dist_weight = rob_dist_weight
-        self.obs_dist_weight = obs_dist_weight
-        self.control_weight =control_weight
-        self.time_weight = time_weight
-        self.robot_radius = MX(robot_radius)
-        self.goal_weight = goal_weight
-        self.conflicts = conflicts
-        self.all_robots = all_robots
-
-    def dist(self, robot_position, circle):
-        """
-        Returns the distance between a robot and a circle
-
-        params:
-            robot_position [x,y]
-            circle [x,y,radius]
-        """
-        return sumsqr(robot_position - transpose(circle[:2])) 
-
-    def apply_quadratic_barrier(self, d_max, d, c):
-        """
-        Applies a quadratic barrier to some given distance. The quadratic barrier 
-        is a soft barrier function. We are using it for now to avoid any issues with
-        invalid initial solutions, which hard barrier functions cannot handle. 
-
-        params:
-            d (float):      distance to the obstacle
-            c (float):      controls the steepness of curve. 
-                            higher c --> gets more expensive faster as you move toward obs
-            d_max (float):  The threshold distance at which the barrier starts to apply 
-        """
-        return c*fmax(0, d_max-d)**2
-    
-    def log_normal_barrier(self, sigma, d, c):
-        return c*fmax(0, 2-(d/sigma))**2.5
-
-    def problem_setup(self, N, x_range, y_range):
-        """
-        Problem setup for the multi-robot collision resolution traj opt problem
-
-        inputs:
-            - N (int): number of control intervals
-            - x_range (tuple): range of x values
-            - y_range (tuple): range of y values
-
-        outputs:
-            - problem (dict): dictionary containing the optimization problem 
-                              and the decision variables
-        """
-        opti = Opti() # Optimization problem
-
-        # ---- decision variables --------- #
-        X = opti.variable(self.num_robots*3, N+1)   # state trajectory (x,y,heading)
-        pos = X[:self.num_robots*2,:]               # position is the first two values
-        x = pos[0::2,:]
-        y = pos[1::2,:]
-        heading = X[self.num_robots*2:,:]           # heading is the last value
-
-        U = opti.variable(self.num_robots*2, N)     # control trajectory (v, omega)
-        vel = U[0::2,:]
-        omega = U[1::2,:]
-        T = opti.variable()                         # final time
-
-        # ---- obstacle setup ------------ #
-        circle_obs = DM(self.circle_obs)            # make the obstacles casadi objects 
-        
-        # ------ Obstacle dist cost ------ #
-        # TODO:: Include rectangular obstacles
-        dist_to_other_obstacles = 0
-        for r in range(self.num_robots):
-            for k in range(N):
-                for c in range(circle_obs.shape[0]):
-                    circle = circle_obs[c, :]
-                    d = sumsqr(pos[2*r : 2*(r+1), k] - transpose(circle[:2])) - 2*self.robot_radius - circle[2]
-                    dist_to_other_obstacles += self.apply_quadratic_barrier(3*(self.robot_radius + circle[2]), d, 10)
-
-
-        # ------ Robot dist cost ------ #
-        dist_to_other_robots = 0
-        for k in range(N):
-            for r1 in range(self.num_robots):
-                for r2 in range(self.num_robots):
-                    if r1 != r2:
-                        d = sumsqr(pos[2*r1 : 2*(r1+1), k] - pos[2*r2 : 2*(r2+1), k]) 
-                        dist_to_other_robots += self.apply_quadratic_barrier(3*self.robot_radius, d, 2)
-
-
-        # ---- dynamics constraints ---- #              
-        dt = T/N # length of a control interval
-
-        pi = [3.14159]*self.num_robots
-        pi = np.array(pi)
-        pi = DM(pi)
-
-        for k in range(N): # loop over control intervals
-            dxdt = vel[:,k] * cos(heading[:,k])
-            dydt = vel[:,k] * sin(heading[:,k])
-            dthetadt = omega[:,k]
-            opti.subject_to(x[:,k+1]==x[:,k] + dt*dxdt)
-            opti.subject_to(y[:,k+1]==y[:,k] + dt*dydt) 
-            opti.subject_to(heading[:,k+1]==fmod(heading[:,k] + dt*dthetadt, 2*pi))
-
-
-        # ------ Control panalty ------ #
-        # Calculate the sum of squared differences between consecutive heading angles
-        control_penalty = 0
-        for k in range(N-1):
-            control_penalty += sumsqr(fmod(heading[:,k+1] - heading[:,k] + pi, 2*pi) - pi)
-            control_penalty += sumsqr(vel[:,k+1] - vel[:,k])
-
-
-
-
-        
-        # ------ Distance to goal penalty ------ #
-        dist_to_goal = 0
-        for r in range(self.num_robots):
-            # calculate the distance to the goal in the final control interval
-            #
-            dist_to_goal += sumsqr(pos[2*r : 2*(r+1), -1] - self.goals[r])
-
-        robot_cost = self.rob_dist_weight*dist_to_other_robots
-        obs_cost = self.obs_dist_weight*dist_to_other_obstacles
-        time_cost = self.time_weight*T
-        control_cost = self.control_weight*control_penalty
-        goal_cost = self.goal_weight*dist_to_goal
-
-        # ------ cost function ------ #
-        cost = robot_cost + obs_cost  + control_cost + time_cost +goal_cost 
-
-        opti.minimize(cost)
-
-
-        # ------ control constraints ------ #
-        for k in range(N):
-            for r in range(self.num_robots):
-                opti.subject_to(sumsqr(vel[r,k]) <= .5**2)
-                opti.subject_to(sumsqr(omega[r,k]) <= .5**2)
-
-        # ------ bound x, y, and time  ------ #
-        opti.subject_to(opti.bounded(x_range[0]+self.robot_radius,x,x_range[1]-self.robot_radius))
-        opti.subject_to(opti.bounded(y_range[0]+self.robot_radius,y,y_range[1]-self.robot_radius))
-        opti.subject_to(opti.bounded(0,T,50))
-
-        # ------ initial conditions ------ #
-        for r in range(self.num_robots):
-            
-            opti.subject_to(heading[r, 0]==self.starts[r][2])
-            opti.subject_to(pos[2*r : 2*(r+1), 0]==self.starts[r][0:2])
-            # opti.subject_to(sumsqr(pos[2*r : 2*(r+1), -1] - self.goals[r]) < 1**2)
-
-        return {'opti':opti, 'X':X, 'U':U, 'T':T, 'cost':cost, 'robot_cost':robot_cost, 'obs_cost':obs_cost, 'time_cost':time_cost, 'control_cost':control_cost, 'goal_cost':goal_cost}
-
-    def solve_optimization_problem(self, problem, initial_guesses=None, solver_options=None, prior_solution=None):
-        opt = Optimizer(problem)
-        results,sol = opt.solve_optimization_problem(initial_guesses, solver_options, prior_solution)
-        return results,sol
-    
-    def solve(self, N, x_range, y_range, initial_guesses=None, solver_options=None, prior_solution=None):
-        """
-        Setup and solve a multi-robot traj opt problem
-
-        input: 
-            - N (int): the number of control intervals
-            - x_range (tuple): 
-            - y_range (tuple): 
-        """
-        problem = self.problem_setup(N, x_range, y_range)
-
-
-        results,old_sol = self.solve_optimization_problem(problem, initial_guesses, solver_options, prior_solution)
-
-        if results['status'] == 'failed':
-            return None, None, None, None, None, None, None, None
-
-        X = results['X']
-        sol = results['solution']
-        U = results['U']
-        T = results['T']
-        lam_g = results['lam_g']
-
-        # Extract the values that we want from the optimizer's solution
-        pos = X[:self.num_robots*2,:]               
-        x_vals = pos[0::2,:]                             
-        y_vals = pos[1::2,:]
-        theta_vals = X[self.num_robots*2:,:]
-
-        vels = U[0::2,:]
-        omegas = U[1::2,:]
-
-        return lam_g,sol,pos, vels, omegas, x_vals, y_vals, theta_vals, T
-
-    def get_local_controls(self, controls):
-        """ 
-        Get the local controls for the robots in the conflict
-        """
-
-        l = self.num_robots
-
-        final_trajs = [None]*l
-
-        for c in self.conflicts:
-            # Get the robots involved in the conflict
-            robots = [self.all_robots[r.label] for r in c]
-
-            # Solve the trajectory optimization problem
-            initial_guess = None
-            solver_options = {'ipopt.print_level': 1, 'print_time': 1}
-
-            # y range is the smallest y of the starts/goals to the largest y of the starts/goals
-            y_range = (min([r[1]-self.robot_radius for r in self.starts + self.goals]), max([r[1]+self.robot_radius for r in self.starts + self.goals]))
-            x_range = (min([r[0]-self.robot_radius for r in self.starts + self.goals]), max([r[0]+self.robot_radius for r in self.starts + self.goals]))
-
-            sol, x_opt, vels, omegas, xs,ys, thetas, T = self.solve(20, x_range, y_range,initial_guess, solver_options)
-
-            if sol is None:
-                print("Failed to solve the optimization problem")
-
-            pos_vals = np.array(sol.value(x_opt))
-
-            # Update the controls for the robots
-            for r, vel, omega, x,y in zip(robots, vels, omegas, xs,ys):
-                controls[r.label] = [vel[0], omega[0]]
-                final_trajs[r.label] = [x,y]
-
-        return controls, final_trajs
-
-    def plot_paths(self, x_opt):
-        fig, ax = plt.subplots()
-
-        # Plot obstacles
-        for obstacle in self.circle_obs:
-            # if len(obstacle) == 2:  # Circle
-            ax.add_patch(Circle(obstacle, obstacle[2], color='red'))
-            # elif len(obstacle) == 4:  # Rectangle
-            #     ax.add_patch(Rectangle((obstacle[0], obstacle[1]), obstacle[2], obstacle[3], color='red'))
-
-        if self.num_robots > 20:
-            colors = plt.cm.hsv(np.linspace(0.2, 1.0, self.num_robots))
-        elif self.num_robots > 10:
-            colors = plt.cm.tab20(np.linspace(0, 1, self.num_robots))
-        else:
-            colors = plt.cm.tab10(np.linspace(0, 1, self.num_robots))
-
-        # Plot robot paths
-        for r,color in zip(range(self.num_robots),colors):
-            ax.plot(x_opt[r*2, :], x_opt[r*2+1, :], label=f'Robot {r+1}', color=color)
-            ax.scatter(x_opt[r*2, :], x_opt[r*2+1, :], color=color, s=10 )
-            ax.scatter(self.starts[r][0], self.starts[r][1], s=85,color=color)
-            ax.scatter(self.goals[r][0], self.goals[r][1], s=85,facecolors='none', edgecolors=color)
-
-        ax.set_xlabel('X')
-        ax.set_ylabel('Y')
-        ax.legend()
-        ax.set_aspect('equal', 'box')
-
-        plt.ylim(0,640)
-        plt.xlim(0,480)
-        plt.title('Robot Paths')
-        plt.grid(False)
-        plt.show()
-
-
-def check_goal_overlap(goal1, goal2, rad):
-    """
-    Check if the goals overlap
-    """
-    # get the vector between the two goals
-    v = np.array(goal2) - np.array(goal1)
-
-    # check if the distance between the two goals is less than 2*rad
-    if np.linalg.norm(v) < 2*rad:
-        return True
-
-    return False
-
-def fix_goal_overlap(start1, goal1, start2, goal2):
-    """
-    Fix the goal overlap
-    """
-    # get the vectors between the starts and goals
-    v1 = np.array(goal1) - np.array(start1)
-    v2 = np.array(goal2) - np.array(start2)
-
-    # get the vectors orthogonal to the vectors between the starts and goals
-    v1_orth = np.array([-v1[1], v1[0]])
-    v2_orth = np.array([-v2[1], v2[0]])
-
-    # move the goals in the direction of the orthogonal vectors
-    goal1 = goal1 + .5*v1_orth
-    goal2 = goal2 + .5*v2_orth
-
-
-    return goal1, goal2
-
-if __name__ == "__main__":
-    # load all the data from test/db_opt_data1.yaml
-    import yaml
-    with open('guided_mrmp/tests/db_opt_data2.yaml') as file:
-        data = yaml.load(file, Loader=yaml.Loader)
-
-    from guided_mrmp.utils import Env
-
-    starts = data['starts']
-    goals = data['goals']
-    circle_obstacles = data['env'].circle_obs
-    rectangle_obstacles = data['env'].rect_obs
-    rob_dist_weight = data['rob_dist_weight']
-    obs_dist_weight = data['obstacle_weight']
-    control_weight = data['control_weight']
-    time_weight = data['time_weight']
-    goal_weight = data['goal_weight']
-    robot_radius = data['rad']
-    conflicts = data['conflicts']
-    all_robots = data['robots']
-
-    next_desired_controls = data['next_desired_controls']
-    current_trajs = data['trajectories']
-
-    old_goals = goals.copy()
-
-    start1 = starts[0][:2]
-    start2 = starts[1][:2]
-    
-    goals[0], goals[1] = fix_goal_overlap(start1, goals[0], start2, goals[1])
-
-    
-
-
-    # create the TrajOptResolver object
-    resolver = TrajOptResolver(len(starts), 
-                               robot_radius, 
-                               starts, 
-                               goals, 
-                               circle_obstacles, 
-                               rectangle_obstacles, 
-                               rob_dist_weight, 
-                               obs_dist_weight, 
-                               2, 
-                               time_weight, 
-                               goal_weight, 
-                               conflicts, 
-                               all_robots)
-    
-    next_desired_controls, new_trajs = resolver.get_local_controls(next_desired_controls)
-
-    # use matplotlib to plot the current trajectories of the robots, and 
-    # the new trajectories of the robots
-    import matplotlib.pyplot as plt
-    fig, ax = plt.subplots()
-    for r in range(len(current_trajs)):
-
-        # plot the starts and goals of the robots as circles with radius rad
-        ax.add_patch(plt.Circle(starts[r], robot_radius, color='green', fill=True))
-        ax.add_patch(plt.Circle(goals[r], robot_radius, color='green', fill=False))
-
-        # plot the old goals of the robots as circles with radius rad
-        ax.add_patch(plt.Circle(old_goals[r], robot_radius, color='red', fill=False))
-
-        ax.plot(current_trajs[r][0], current_trajs[r][1], label=f'Robot {r+1} current', color='red')
-        ax.plot(new_trajs[r][0], new_trajs[r][1], label=f'Robot {r+1} new', color='blue')
-
-        
-
-    ax.set_xlabel('X')
-    ax.set_ylabel('Y')
-    ax.legend()
-
-    plt.show()
-
-
-