diff --git a/guided_mrmp/controllers/multi_mpc.py b/guided_mrmp/controllers/multi_mpc.py
new file mode 100644
index 0000000000000000000000000000000000000000..2df98296ad5a3ca0d22e7d277c1b2ec9dd0036ca
--- /dev/null
+++ b/guided_mrmp/controllers/multi_mpc.py
@@ -0,0 +1,215 @@
+import numpy as np
+import casadi as ca
+from guided_mrmp.optimizer import Optimizer
+
+np.seterr(divide="ignore", invalid="ignore")
+
+class MultiMPC:
+    def __init__(self, num_robots, model, T, DT, state_cost, final_state_cost, input_cost, input_rate_cost, settings, circle_obs):
+        """
+        Initializes the MPC controller.
+        """
+        self.nx = model.state_dimension()  # number of state vars 
+        self.nu = model.control_dimension()  # number of input/control vars
+        self.num_robots = num_robots
+        self.robot_radius = model.radius
+
+        self.robot_model = model
+        self.dt = DT
+
+        self.circle_obs = circle_obs
+
+        # how far we can look into the future divided by our dt 
+        # is the number of control intervals
+        self.control_horizon = int(T / DT) 
+
+        # Weight for the error in state
+        self.Q = np.diag(state_cost)
+
+        # Weight for the error in final state
+        self.Qf = np.diag(final_state_cost)
+
+        # weight for error in control
+        self.R = np.diag(input_cost)
+        self.P = np.diag(input_rate_cost)
+
+        self.acceptable_tol = settings['acceptable_tol']
+        self.acceptable_iter = settings['acceptable_iter']
+        self.print_level = settings['print_level']
+        self.print_time = settings['print_time']
+
+    def apply_quadratic_barrier(self, d_max, d, c):
+        """
+        Applies a quadratic barrier to some given distance. The quadratic barrier 
+        is a soft barrier function. We are using it for now to avoid any issues with
+        invalid initial solutions, which hard barrier functions cannot handle. 
+
+        params:
+            d (float):      distance to the obstacle
+            c (float):      controls the steepness of curve. 
+                            higher c --> gets more expensive faster as you move toward obs
+            d_max (float):  The threshold distance at which the barrier starts to apply 
+        """
+        return c*ca.fmax(0, (d_max-d)**2)
+
+    def setup_mpc_problem(self, initial_state, target, prev_cmd, As, Bs, Cs):
+        """
+        Create the cost function and constraints for the optimization problem.
+
+        inputs:
+            - initial_state (nx3 array): Initial state for each robot
+            - target : Target state for each robot
+            - prev_cmd: Previous control input for each robot
+            - As: List of A matrices for each robot
+            - Bs: List of B matrices for each robot
+            - Cs: List of C matrices for each robot
+        """
+
+        opti = ca.Opti()
+
+        # Decision variables
+        X = opti.variable(self.nx*self.num_robots, self.control_horizon + 1)
+        pos = X[:self.num_robots*2,:]               # position is the first two values
+        x = pos[0::2,:]
+        y = pos[1::2,:]
+        heading = X[self.num_robots*2:,:]           # heading is the last value
+
+        U = opti.variable(self.nu*self.num_robots, self.control_horizon)
+
+        # Parameters
+        initial_state = ca.MX(initial_state)
+
+        # print(f"target = {target}")
+        # target = target
+        # prev_cmd = ca.MX(prev_cmd)
+        # As = ca.MX(As)
+        # Bs = ca.MX(Bs)
+        # Cs = ca.MX(Cs)
+
+        # Cost function
+        cost = 0
+        for k in range(self.control_horizon):
+            for i in range(self.num_robots):# 0, 3 # 3,6
+                # print(f"k = {k}/{self.control_horizon-1}")
+                # print(f"target a = {target[i]}")
+                # print(f"target b = {target[i][:][k]}")
+                # # print(f"target c = {target[i][:][k]}")
+                this_target = [target[i][0][k], target[i][1][k], target[i][2][k]]
+                # print(f"this_target = {this_target}")
+                # difference between the current state and the target state
+                cost += ca.mtimes([(X[i*3 : i*3 +3, k+1] - this_target).T, self.Q, X[i*3 : i*3 +3, k+1] - this_target])
+            
+
+                # control effort
+                cost += ca.mtimes([U[i*2:i*2+2, k].T, self.R, U[i*2:i*2+2, k]])
+            if k > 0:
+                # Penalize large changes in control
+                cost += ca.mtimes([(U[i*2:i*2+2, k] - U[i*2:i*2+2, k-1]).T, self.P, U[i*2:i*2+2, k] - U[i*2:i*2+2, k-1]])
+
+
+        # Final state cost
+        for i in range(self.num_robots):
+            final_target = this_target = [target[i][0][-1], target[i][1][-1], target[i][2][-1]]
+            cost += ca.mtimes([(X[i*3 : i*3 +3, -1] - final_target).T, self.Qf, X[i*3 : i*3 +3, -1] - final_target])
+
+        # robot-robot collision cost
+        dist_to_other_robots = 0
+        for k in range(self.control_horizon):
+            for r1 in range(self.num_robots):
+                for r2 in range(r1+1, self.num_robots):
+                    if r1 != r2:
+                        d = ca.sumsqr(pos[2*r1 : 2*r1+1, k] - pos[2*r2 : 2*r2+1, k]) 
+                        d = ca.sqrt(d)
+                        dist_to_other_robots += self.apply_quadratic_barrier(6*self.robot_radius, d-self.robot_radius*2, 1)
+
+        # obstacle collision cost
+        obstacle_cost = 0
+        for k in range(self.control_horizon):
+            for i in range(self.num_robots):
+                for obs in self.circle_obs:
+                    d = ca.sumsqr(x[i, k] - obs[0]) + ca.sumsqr(y[i, k] - obs[1])
+                    d = ca.sqrt(d)
+                    obstacle_cost += self.apply_quadratic_barrier(6*self.robot_radius, d-self.robot_radius*2, 1)
+
+        opti.minimize(cost + .5*dist_to_other_robots + .5*obstacle_cost)
+
+        # Constraints
+        for i in range(self.num_robots):
+            for k in range(self.control_horizon):
+                A = ca.MX(As[i])
+                B = ca.MX(Bs[i])
+                C = ca.MX(Cs[i])
+                opti.subject_to(X[i*3:i*3+3, k+1] == ca.mtimes(A, X[i*3:i*3+3, k]) + ca.mtimes(B, U[i*2:i*2+2, k]) + C)
+
+        for i in range(self.num_robots):
+            opti.subject_to(X[i*3:i*3+3, 0] == initial_state[i])
+
+        for i in range(self.num_robots):
+            opti.subject_to(opti.bounded(-self.robot_model.max_acc, U[i*2:i*2+2, :], self.robot_model.max_acc))
+            opti.subject_to(ca.fabs(U[i*2, 0] - prev_cmd[i][0]) / self.dt <= self.robot_model.max_d_acc)
+            opti.subject_to(ca.fabs(U[i*2+1, 0] - prev_cmd[i][1]) / self.dt <= self.robot_model.max_d_steer)
+
+            for k in range(1, self.control_horizon):
+                opti.subject_to(ca.fabs(U[i*2, k] - U[i*2, k-1]) / self.dt <= self.robot_model.max_d_acc)
+                opti.subject_to(ca.fabs(U[i*2+1, k] - U[i*2+1, k-1]) / self.dt <= self.robot_model.max_d_steer)
+
+
+        return {
+            'opti': opti,
+            'X': X,
+            'U': U,
+            'initial_state': initial_state,
+            'target': target,
+            'prev_cmd': prev_cmd,
+            'cost': cost,
+            'dist_to_other_robots': dist_to_other_robots
+        }
+
+    def solve_optimization_problem(self, problem, initial_guesses=None, solver_options=None):
+        opt = Optimizer(problem)
+        results = opt.solve_optimization_problem(initial_guesses, solver_options)
+        return results
+
+    def step(self, initial_state, target, prev_cmd, initial_guesses=None):
+        """
+        Sets up and solves the optimization problem.
+        
+        Args:
+            initial_state: List of current estimates of [x, y, heading] for each robot
+            target: State space reference, in the same frame as the provided current state
+            prev_cmd: List of previous commands [v, delta] for all robots  
+            initial_guess: Optional initial guess for the optimizer
+        
+        Returns:
+            x_opt: Optimal state trajectory
+            u_opt: Optimal control trajectory
+        """
+        As, Bs, Cs = [], [], []
+        for i in range(self.num_robots):
+            # print(f"initial_state[i] = {initial_state[i]}")
+            # print(f"prev_cmd[i] = {prev_cmd[i]}")
+            A, B, C = self.robot_model.linearize(initial_state[i], prev_cmd[i], self.dt)
+            As.append(A)
+            Bs.append(B)
+            Cs.append(C)
+
+        solver_options = {'ipopt.print_level': self.print_level, 
+                          'print_time': self.print_time, 
+                        #   'ipopt.tol': 1e-3,
+                          'ipopt.acceptable_tol': self.acceptable_tol, 
+                          'ipopt.acceptable_iter': self.acceptable_iter}
+
+        problem = self.setup_mpc_problem(initial_state, target, prev_cmd, As, Bs, Cs)
+
+        result = self.solve_optimization_problem(problem, initial_guesses, solver_options)
+
+        if result['status'] == 'succeeded':
+            x_opt = result['X']
+            u_opt = result['U']
+        else:
+            print("Optimization failed")
+            x_opt = None
+            u_opt = None
+
+        return x_opt, u_opt
+
diff --git a/guided_mrmp/controllers/multi_path_tracking.py b/guided_mrmp/controllers/multi_path_tracking.py
index 0015cc481695730ffa0ebcd2c38bc934ee94133d..89fe8ee6ba1ceb9957add2015b45edc675adbd47 100644
--- a/guided_mrmp/controllers/multi_path_tracking.py
+++ b/guided_mrmp/controllers/multi_path_tracking.py
@@ -1,111 +1,1028 @@
-from path_tracker import *
-
 from guided_mrmp.planners.singlerobot.RRTStar import RRTStar
 
+from guided_mrmp.utils import Roomba
+from guided_mrmp.utils import Conflict, Robot, Env
 
-from guided_mrmp.utils import Conflict, Robot, Env, Plotting
+import numpy as np
+import matplotlib.pyplot as plt
 
-def plot(x_histories, y_histories, h_histories, wp_paths):
-    plt.style.use("ggplot")
-    fig = plt.figure()
-    plt.ion()
-    plt.show()
-    plt.clf()
+from guided_mrmp.controllers.utils import compute_path_from_wp, get_ref_trajectory
+from guided_mrmp.controllers.multi_mpc import MultiMPC
+from guided_mrmp.conflict_resolvers.discrete_resolver import DiscreteResolver
+from guided_mrmp.utils import Roomba
 
-    print(f"hist = {x_histories}")
+from guided_mrmp.conflict_resolvers.curve_path import smooth_path, calculate_headings
 
-    for x_history, y_history, h_history, path in zip(x_histories, y_histories, h_histories, wp_paths):
-        print(x_history)
-        plt.plot(
-            path[0, :],
-            path[1, :],
-            c="tab:orange",
-            marker=".",
-            label="reference track",
-        )
+def initialize_libraries(library_fnames=["guided_mrmp/database/2x3_library","guided_mrmp/database/3x3_library","guided_mrmp/database/5x2_library"]):
+    """
+    Load the 2x3, 3x3, and 2x5 libraries. Store them in self.lib-x- 
+    Inputs: 
+        library_fnames - the folder containing the library files
+    """
+    from guided_mrmp.utils.library import Library
+    # Create each of the libraries
+    print(f"Loading libraries. This usually takes about 10 seconds...")
+    lib_2x3 = Library(library_fnames[0])
+    lib_2x3.read_library_from_file()
+    
+    lib_3x3 = Library(library_fnames[1])
+    lib_3x3.read_library_from_file()
 
-        plt.plot(
-            x_history,
-            y_history,
-            c="tab:blue",
-            marker=".",
-            alpha=0.5,
-            label="vehicle trajectory",
-        )
+    
+    lib_2x5 = Library(library_fnames[2])
+    lib_2x5.read_library_from_file()
+
+    return lib_2x3, lib_3x3, lib_2x5
+
+class DiscreteRobot:
+    def __init__(self, start, goal, label):
+        self.start = start
+        self.goal = goal
+        self.current_position = start
+        self.label = label
+
+class MultiPathTracker:
+    def __init__(self, env, initial_positions, dynamics, target_v, T, DT, waypoints, settings, lib_2x3, lib_3x3, lib_2x5):
+        """
+        Initializes the PathTracker object.
+        Parameters:
+        - initial_positions: List of the initial positions of the robots [x, y, heading].
+        - dynamics: The dynamics model of the robots.
+        - target_v: The target velocity of the robots.
+        - T: The time horizon for the model predictive control (MPC).
+        - DT: The time step for the MPC.
+        - waypoints: A list of waypoints defining the desired path for each robot.
+        """
+        # State of the robot [x,y, heading]
+        self.env = env
+
+        self.states = initial_positions
+        self.num_robots = len(initial_positions)
+        self.dynamics = dynamics
+        self.T = T
+        self.DT = DT
+        self.target_v = target_v
+
+        self.radius = dynamics.radius
+
+
+        self.update_ref_paths = False
+
+        # helper variable to keep track of mpc output
+        # starting condition is 0,0
+        self.control = np.zeros((self.num_robots, 2))
+
+        self.K = int(T / DT)
+
+        # For a car model 
+        # Q = [20, 20, 10, 20]  # state error cost
+        # Qf = [30, 30, 30, 30]  # state final error cost
+        # R = [10, 10]  # input cost
+        # P = [10, 10]  # input rate of change cost
+        # self.mpc = MPC(VehicleModel(), T, DT, Q, Qf, R, P)
+
+        # libraries for the discrete solver
+        self.lib_2x3 = lib_2x3
+        self.lib_3x3 = lib_3x3
+        self.lib_2x5 = lib_2x5
+
+
+        # For a circular robot (easy dynamics)
+        Q = [40, 40, 0]  # state error cost
+        Qf = [20,20, 0]  # state final error cost
+        R = [10, 10]  # input cost
+        P = [10, 10]  # input rate of change cost
+        self.mpc = MultiMPC(self.num_robots, dynamics, T, DT, Q, Qf, R, P, settings['model_predictive_controller'], settings['environment']['circle_obstacles'])
+
+        self.circle_obs = settings['environment']['circle_obstacles']
+
+        # Path from waypoint interpolation
+        self.paths = []
+        for wp in waypoints:
+            self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
+
+        
+        print(f"paths = {len(self.paths)}")
+
+        # Helper variables to keep track of the sim
+        self.sim_time = 0
+        self.x_history = [ [] for _ in range(self.num_robots) ]
+        self.y_history = [ [] for _ in range(self.num_robots) ]
+        self.v_history = [ [] for _ in range(self.num_robots) ]
+        self.h_history = [ [] for _ in range(self.num_robots) ]
+        self.a_history = [ [] for _ in range(self.num_robots) ]
+        self.d_history = [ [] for _ in range(self.num_robots) ]
+        self.optimized_trajectories_hist = [ [] for _ in range(self.num_robots) ]
+        self.optimized_trajectory = None
+
+
+    def trajectories_overlap(self, traj1, traj2, threshold):
+        """
+        Checks if two trajectories overlap. We only care about xy positions.
+
+        Args:
+            traj1 (3xn numpy array): First trajectory. First row is x, second row is y, third row is heading.
+            traj2 (3xn numpy array): Second trajectory.
+            threshold (float): Distance threshold to consider a collision.
 
-        plot_roomba(x_history[-1], y_history[-1], h_history[-1])
+        Returns:
+            bool: True if trajectories overlap, False otherwise.
+        """
+        for i in range(traj1.shape[1]):
+            for j in range(traj2.shape[1]):
+                if np.linalg.norm(traj1[0:2, i] - traj2[0:2, j]) < 2*threshold:
+                    return True
+        return False
+    
+
+    def ego_to_global_roomba(self, state, mpc_out):
+        """
+        Transforms optimized trajectory XY points from ego (robot) reference
+        into global (map) frame.
+
+        Args:
+            mpc_out (numpy array): Optimized trajectory points in ego reference frame.
+
+        Returns:
+            numpy array: Transformed trajectory points in global frame.
+        """
+        # Extract x, y, and theta from the state
+        x = state[0]
+        y = state[1]
+        theta = state[2]
+
+        # Rotation matrix to transform points from ego frame to global frame
+        Rotm = np.array([
+            [np.cos(theta), -np.sin(theta)],
+            [np.sin(theta), np.cos(theta)]
+        ])
+
+        # Initialize the trajectory array (only considering XY points)
+        trajectory = mpc_out[0:2, :]
+
+        # Apply rotation to the trajectory points
+        trajectory = Rotm.dot(trajectory)
 
+        # Translate the points to the robot's position in the global frame
+        trajectory[0, :] += x
+        trajectory[1, :] += y
 
-        plt.ylabel("y")
-        plt.yticks(
-            np.arange(min(path[1, :]) - 1.0, max(path[1, :] + 1.0) + 1, 1.0)
+        return trajectory
+    
+    def get_next_control(self, state, show_plots=False):
+        # optimization loop
+        # start=time.time()
+
+        # Get Reference_traj -> inputs are in worldframe
+        # 1. Get the reference trajectory for each robot
+        targets = []
+        for i in range(self.num_robots):
+            targets.append(get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT, len(self.x_history[i])+1))
+
+        # dynamycs w.r.t robot frame
+        # curr_state = np.array([0, 0, self.state[2], 0])
+        curr_states = np.zeros((self.num_robots, 3))
+        x_mpc, u_mpc = self.mpc.step(
+            curr_states,
+            targets,
+            self.control
         )
-        plt.xlabel("x")
-        plt.xticks(
-            np.arange(min(path[0, :]) - 1.0, max(path[0, :] + 1.0) + 1, 1.0)
+        
+        # only the first one is used to advance the simulation
+        # self.control[:] = [u_mpc[0, 0], u_mpc[1, 0]]
+
+        self.control = []
+        for i in range(self.num_robots):
+            self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])
+
+        return x_mpc, self.control
+    
+
+    def done(self):
+        for i in range(self.num_robots):
+            # print(f"state = {self.states[i]}")
+            # print(f"path = {self.paths[i][:, -1]}")
+            if (np.sqrt((self.states[i][0] - self.paths[i][0, -1]) ** 2 + (self.states[i][1] - self.paths[i][1, -1]) ** 2) > 1):
+                return False
+        return True
+    
+    def plot_current_world_state(self):
+        """
+        Plot the current state of the world.
+        """
+
+        import matplotlib.pyplot as plt
+        import matplotlib.cm as cm
+
+        # Plot the current state of each robot using the most recent values from
+        # x_history, y_history, and h_history
+        colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
+
+        for i in range(self.num_robots):
+            plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
+
+        # plot the goal of each robot with solid circle
+        for i in range(self.num_robots):
+            x, y, theta = self.paths[i][:, -1]
+            plt.plot(x, y, 'o', color=colors[i])
+            circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
+            plt.gca().add_artist(circle1)
+
+        # plot the ref path of each robot
+        for i in range(self.num_robots):
+            plt.plot(self.paths[i][0, :], self.paths[i][1, :], '--', color=colors[i])
+
+
+        # set the size of the plot to be 10x10
+        plt.xlim(0, 10)
+        plt.ylim(0, 10)
+
+        # force equal aspect ratio
+        plt.gca().set_aspect('equal', adjustable='box')
+
+        
+        plt.show()
+
+    def run(self, show_plots=False):
+        """
+        Run the path tracker algorithm.
+        Parameters:
+        - show_plots (bool): Flag indicating whether to show plots during the simulation. Default is False.
+        Returns:
+        - numpy.ndarray: Array containing the history of x, y, and h coordinates.
+        """
+
+        # Add the initial state to the histories
+        self.states = np.array(self.states)
+        for i in range(self.num_robots):
+            self.x_history[i].append(self.states[i, 0])
+            self.y_history[i].append(self.states[i, 1])
+            self.h_history[i].append(self.states[i, 2])
+        if show_plots: self.plot_sim()
+
+        self.plot_current_world_state()
+        
+        while 1:
+            # check if all robots have reached their goal
+            if self.done():
+                print("Success! Goal Reached")
+                return np.asarray([self.x_history, self.y_history, self.h_history])
+            
+            # plot the current state of the robots
+            self.plot_current_world_state()
+            
+            # get the next control for all robots
+            x_mpc, controls = self.get_next_control(self.states)
+
+            next_states = []
+            for i in range(self.num_robots):
+                next_states.append(self.dynamics.next_state(self.states[i], controls[i], self.DT))
+
+            self.states = next_states
+
+            self.states = np.array(self.states)
+            for i in range(self.num_robots):
+                self.x_history[i].append(self.states[i, 0])
+                self.y_history[i].append(self.states[i, 1])
+                self.h_history[i].append(self.states[i, 2])
+            
+            if self.update_ref_paths:
+                self.update_reference_paths()
+                self.update_ref_paths = False            
+
+            # use the optimizer output to preview the predicted state trajectory
+            # self.optimized_trajectory = self.ego_to_global(x_mpc.value)
+            if show_plots: self.optimized_trajectory = self.ego_to_global_roomba(x_mpc)
+            if show_plots: self.plot_sim()
+            
+
+class MultiPathTrackerDatabase(MultiPathTracker):
+    def get_temp_starts_and_goals(self):
+        # the temporary starts are the current positions of the robots snapped to the grid
+        # based on the continuous space location of the robot, we find the cell in the grid that 
+        # includes that continuous space location using the top left of the grid as a reference point
+
+        import math
+        temp_starts = []
+        for r in range(self.num_robots):
+            print(f"self.states = {self.states}")
+            x, y, theta = self.states[r]
+            cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
+            cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
+            temp_starts.append([cell_x, cell_y])
+
+
+        # the temmporary goal is the point at the end of the robot's predicted traj
+        temp_goals = []
+        for r in range(self.num_robots):
+            traj = self.ego_to_global_roomba(self.states[r], self.trajs[r])
+            x = traj[0][-1]
+            y = traj[1][-1]
+            cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
+            cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
+            temp_goals.append([cell_x,cell_y])
+
+        # self.starts = temp_starts
+        # self.goals = temp_goals
+
+        return temp_starts, temp_goals
+    
+    def create_discrete_robots(self, starts, goals):
+        discrete_robots = []
+        for i in range(len(starts)):
+            start = starts[i]
+            goal = goals[i]
+            discrete_robots.append(DiscreteRobot(start, goal, i))
+        return discrete_robots
+      
+    def get_discrete_solution(self, conflict, all_conflicts, grid):
+        #  create an instance of a discrete solver
+
+        starts, goals = self.get_temp_starts_and_goals()
+        # print(f"temp starts = {starts}")
+        # print(f"temp goals = {goals}")
+
+        disc_robots = self.create_discrete_robots(starts, goals)
+
+        disc_conflict = []
+        for c in conflict:
+            disc_conflict.append(disc_robots[c])
+
+        disc_all_conflicts = []
+        for c in all_conflicts:
+            this_conflict = []
+            for i in c:
+                this_conflict.append(disc_robots[i])
+            disc_all_conflicts.append(this_conflict)
+
+    
+
+        print(f"this conflict = {disc_conflict}")
+        print(f"all conflicts = {all_conflicts}")
+
+        # visualize the grid
+        self.draw_grid()
+
+        grid_solver = DiscreteResolver(disc_conflict, disc_robots, starts, goals, disc_all_conflicts,grid, self.lib_2x3, self.lib_3x3, self.lib_2x5)
+        subproblem = grid_solver.find_subproblem()
+
+        if subproblem is None:
+            print("Couldn't find a discrete subproblem")
+            return None
+        # print(f"subproblem = {subproblem}")
+        grid_solution = grid_solver.solve_subproblem(subproblem)
+        # print(f"grid_solution = {grid_solution}")
+        return grid_solution
+    
+    def get_initial_guess(self, grid_solution, num_robots, N, cp_dist):
+        # turn this solution into an initial guess 
+        # turn this solution into an initial guess 
+        initial_guess_state = np.zeros((num_robots*3, N+1))
+        # the initial guess for time is the length of the longest path in the solution
+        initial_guess_T = 2*max([len(grid_solution[i]) for i in range(num_robots)])
+
+        for i in range(num_robots):
+
+            print(f"Robot {i+1} solution:")
+            rough_points = np.array(grid_solution[i])
+            points = []
+            for point in rough_points:
+                if point[0] == -1: break
+                points.append(point)
+            
+            points = np.array(points)
+            print(f"points = {points}")
+
+            smoothed_curve, _ = smooth_path(points, N+1, cp_dist)
+
+            print(f"smoothed_curve = {smoothed_curve}")
+
+            
+
+            # translate the smoothed curve so that the first point is at the current robot position
+            # smoothed_curve[:, 0] += current_robot_x_pos
+            # smoothed_curve[:, 1] += current_robot_y_pos
+ 
+            initial_guess_state[i*3, :] = (smoothed_curve[:, 0])*self.cell_size      # x
+            initial_guess_state[i*3 + 1, :] = (smoothed_curve[:, 1])*self.cell_size    # y
+
+            current_robot_x_pos = self.states[i][0]
+            current_robot_y_pos = self.states[i][1]
+
+        
+            # translate the initial guess so that the first point is at (0,0)
+            initial_guess_state[i*3, :] -= initial_guess_state[i*3, 0]
+            initial_guess_state[i*3 + 1, :] -= initial_guess_state[i*3+1, 0]
+
+            # translate the initial guess so that the first point is at the current robot position
+            initial_guess_state[i*3, :] += current_robot_x_pos
+            initial_guess_state[i*3 + 1, :] += current_robot_y_pos + self.cell_size
+
+            
+            headings = calculate_headings(smoothed_curve)
+            headings.append(headings[-1])
+
+            initial_guess_state[i*3 + 2, :] = headings
+
+        
+
+        initial_guess_control = np.zeros((num_robots*2, N))
+
+        dt = initial_guess_T / N
+        change_in_position = []
+        for i in range(num_robots):
+            x = initial_guess_state[i*3, :]         # x
+            y = initial_guess_state[i*3 + 1, :]    # y
+
+
+            change_in_position = []
+            for j in range(len(x)-1):
+                pos1 = np.array([x[j], y[j]])
+                pos2 = np.array([x[j+1], y[j+1]])
+
+                change_in_position.append(np.linalg.norm(pos2 - pos1))
+
+            velocity = np.array(change_in_position) / dt
+            initial_guess_control[i*2, :] = velocity
+
+            # omega is the difference between consecutive headings
+            headings = initial_guess_state[i*3 + 2, :]
+            omega = np.diff(headings)
+            initial_guess_control[i*2 + 1, :] = omega
+
+        return {'X': initial_guess_state, 'U': initial_guess_control, 'T': initial_guess_T}
+
+    def place_grid(self, robot_locations):
+        """
+        Given the locations of robots that need to be covered in continuous space, find 
+        and place the grid. We don't need a very large grid to place subproblems, so 
+        we will only place a grid of size self.grid_size x self.grid_size
+
+        inputs:
+            - robot_locations (list): locations of robots involved in conflict
+        outputs:
+            - grid (numpy array): The grid that we placed
+            - top_left (tuple): The top left corner of the grid in continuous space
+        """
+        # Find the minimum and maximum x and y coordinates of the robot locations
+        self.min_x = min(robot_locations, key=lambda loc: loc[0])[0]
+        self.max_x = max(robot_locations, key=lambda loc: loc[0])[0]
+        self.min_y = min(robot_locations, key=lambda loc: loc[1])[1]
+        self.max_y = max(robot_locations, key=lambda loc: loc[1])[1]
+
+        # find the average x and y coordinates of the robot locations
+        avg_x = sum([loc[0] for loc in robot_locations]) / len(robot_locations)
+        avg_y = sum([loc[1] for loc in robot_locations]) / len(robot_locations)
+
+        self.temp_avg_x = avg_x 
+        self.temp_avg_y = avg_y
+
+        print(f"avg_x = {avg_x}, avg_y = {avg_y}")
+
+        # Calculate the top left corner of the grid
+        # make it so that the grid is centered around the robots
+        self.cell_size = self.radius*3
+        self.grid_size = 5
+
+        print(f"avg_x = {avg_x} - {int(self.grid_size*self.cell_size/2)}")
+        print(f"avg_y = {avg_y} - {int(self.grid_size*self.cell_size/2)}")
+        self.top_left_grid = (avg_x - int(self.grid_size*self.cell_size/2), avg_y + int(self.grid_size*self.cell_size/2))
+        print(f"self.grid_size = {self.grid_size}")
+        print(f"top_left_grid = {self.top_left_grid}")
+        
+        self.draw_grid()
+
+        # Check if, for every robot, the cell value of the start and the cell value 
+        # of the goal are the same. If they are, then we can't find a discrete solution that 
+        # will make progress.
+        all_starts_goals_equal = self.all_starts_goals_equal()
+
+        
+
+        import copy
+        original_top_left = copy.deepcopy(self.top_left_grid)
+
+        x_shift = [-5,5]
+        y_shift = [-5,5]
+        for x in np.arange(x_shift[0], x_shift[1],.5):
+            y =0 
+            # print(f"x = {x}, y = {y}")
+            self.top_left_grid = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
+            all_starts_goals_equal = self.all_starts_goals_equal()
+            # self.draw_grid()
+            if not all_starts_goals_equal: break
+
+        if all_starts_goals_equal:
+            for y in np.arange(y_shift[0], y_shift[1],.5):
+                x =0 
+                # print(f"x = {x}, y = {y}")
+                self.top_left_grid = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
+                all_starts_goals_equal = self.all_starts_goals_equal()
+                # self.draw_grid()
+                if not all_starts_goals_equal: break
+
+        print(f"updated top_left_grid = {self.top_left_grid}")  
+        # self.draw_grid()
+
+        if all_starts_goals_equal:
+            print("All starts and goals are equal")
+            return None
+
+        grid = self.get_obstacle_map()
+        
+        return grid
+    
+    def get_obstacle_map(self):
+        """
+        Create a map of the environment with obstacles
+        """
+        # create a grid of size self.grid_size x self.grid_size
+        grid = np.zeros((self.grid_size, self.grid_size))
+
+        # check if there are any obstacles in any of the cells
+        grid = np.zeros((self.grid_size, self.grid_size)) 
+        for i in range(self.grid_size):
+            for j in range(self.grid_size):
+                x, y = self.get_grid_cell_location(i, j)
+                for obs in []:
+                # for obs in self.circle_obs:
+                    if np.linalg.norm(np.array([x, y]) - np.array(obs[:2])) < obs[2] + self.radius:
+                        grid[j, i] = 1
+                        break
+
+        return grid
+    
+    def get_grid_cell(self, x, y):
+        """
+        Given a continuous space x and y, find the cell in the grid that includes that location
+        """
+        import math
+
+        # find the closest grid cell that is not an obstacle
+        cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
+        cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
+
+        return cell_x, cell_y
+    
+    def get_grid_cell_location(self, cell_x, cell_y):
+        """
+        Given a cell in the grid, find the center of that cell in continuous space
+        """
+        x = self.top_left_grid[0] + (cell_x + 0.5) * self.cell_size
+        y = self.top_left_grid[1] - (cell_y + 0.5) * self.cell_size
+        return x, y
+  
+    def plot_trajs(self, traj1, traj2, radius):
+        """
+        Plot the trajectories of two robots.
+        """
+        import matplotlib.pyplot as plt
+        import matplotlib.cm as cm
+
+        # Plot the current state of each robot using the most recent values from
+        # x_history, y_history, and h_history
+        colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
+
+        for i in range(self.num_robots):
+            plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
+
+        # plot the goal of each robot with solid circle
+        for i in range(self.num_robots):
+            x, y, theta = self.paths[i][:, -1]
+            plt.plot(x, y, 'o', color=colors[i])
+            circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
+            plt.gca().add_artist(circle1)
+
+        
+        for i in range(traj1.shape[1]):
+            circle1 = plt.Circle((traj1[0, i], traj1[1, i]), radius, color='k', fill=False)
+            plt.gca().add_artist(circle1)
+
+        for i in range(traj2.shape[1]):
+            circle2 = plt.Circle((traj2[0, i], traj2[1, i]), radius, color='k', fill=False)
+            plt.gca().add_artist(circle2)
+
+        
+
+        # set the size of the plot to be 10x10
+        plt.xlim(0, 10)
+        plt.ylim(0, 10)
+
+        # force equal aspect ratio
+        plt.gca().set_aspect('equal', adjustable='box')
+        
+
+        plt.show()
+
+    def draw_grid(self):
+        starts, goals = self.get_temp_starts_and_goals()
+
+        # draw the whole environment with the local grid drawn on top
+        import matplotlib.pyplot as plt
+        import matplotlib.cm as cm
+
+        # Plot the current state of each robot using the most recent values from
+        # x_history, y_history, and h_history
+        colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
+
+        for i in range(self.num_robots):
+            plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
+
+        # plot the goal of each robot with solid circle
+        for i in range(self.num_robots):
+            x, y, theta = self.paths[i][:, -1]
+            plt.plot(x, y, 'o', color=colors[i])
+            circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
+            plt.gca().add_artist(circle1)
+
+        # draw the horizontal and vertical lines of the grid
+        for i in range(self.grid_size + 1):
+            # Draw vertical lines
+            plt.plot([self.top_left_grid[0] + i * self.cell_size, self.top_left_grid[0] + i * self.cell_size], 
+                        [self.top_left_grid[1], self.top_left_grid[1] - self.grid_size * self.cell_size], 'k-')
+            # Draw horizontal lines
+            plt.plot([self.top_left_grid[0], self.top_left_grid[0] + self.grid_size * self.cell_size], 
+                        [self.top_left_grid[1] - i * self.cell_size, self.top_left_grid[1] - i * self.cell_size], 'k-')
+
+        # draw the obstacles
+        for obs in self.circle_obs:
+            circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
+            plt.gca().add_artist(circle)
+
+
+        # plot the robots' continuous space subgoals
+        for idx in range(self.num_robots):
+        
+            traj = self.ego_to_global_roomba(self.states[idx], self.trajs[idx])
+            x = traj[0][-1]
+            y = traj[1][-1]
+            plt.plot(x, y, '^', color=colors[idx])
+            circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
+            plt.gca().add_artist(circle1)
+
+        # set the size of the plot to be 10x10
+        plt.xlim(0, 10)
+        plt.ylim(0, 10)
+
+        # force equal aspect ratio
+        plt.gca().set_aspect('equal', adjustable='box')
+
+        plt.show()
+
+    def draw_grid_solution(self, state):
+        
+        # draw the whole environment with the local grid drawn on top
+        import matplotlib.pyplot as plt
+        import matplotlib.cm as cm
+
+        # Plot the current state of each robot using the most recent values from
+        # x_history, y_history, and h_history
+        colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
+
+        for i in range(self.num_robots):
+            plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
+
+        # plot the goal of each robot with solid circle
+        for i in range(self.num_robots):
+            x, y, theta = self.paths[i][:, -1]
+            plt.plot(x, y, 'o', color=colors[i])
+            circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
+            plt.gca().add_artist(circle1)
+
+        # draw the horizontal and vertical lines of the grid
+        for i in range(self.grid_size + 1):
+            # Draw vertical lines
+            plt.plot([self.top_left_grid[0] + i * self.cell_size, self.top_left_grid[0] + i * self.cell_size], 
+                        [self.top_left_grid[1], self.top_left_grid[1] - self.grid_size * self.cell_size], 'k-')
+            # Draw horizontal lines
+            plt.plot([self.top_left_grid[0], self.top_left_grid[0] + self.grid_size * self.cell_size], 
+                        [self.top_left_grid[1] - i * self.cell_size, self.top_left_grid[1] - i * self.cell_size], 'k-')
+
+        # draw the obstacles
+        for obs in self.circle_obs:
+            circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
+            plt.gca().add_artist(circle)
+
+        for i in range(self.num_robots):
+            x = state[i*3, :]
+            y = state[i*3 + 1, :]
+            plt.plot(x, y, 'x', color=colors[i])
+
+        # plot the robots' continuous space subgoals
+        for idx in range(self.num_robots):
+        
+            traj = self.ego_to_global_roomba(self.states[idx], self.trajs[idx])
+            x = traj[0][-1]
+            y = traj[1][-1]
+            plt.plot(x, y, '^', color=colors[idx])
+            circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
+            plt.gca().add_artist(circle1)
+
+        # set the size of the plot to be 10x10
+        plt.xlim(0, 10)
+        plt.ylim(0, 10)
+
+        # force equal aspect ratio
+        plt.gca().set_aspect('equal', adjustable='box')
+
+        # title
+        plt.title("Discrete Solution")
+
+        plt.show()
+
+    def all_starts_goals_equal(self):
+        """
+        Check if, for every robot, the cell value of the start and the cell value 
+        of the goal are the same. 
+        """
+        all_starts_goals_equal = True
+        for r in range(self.num_robots):
+            start = self.states[r]
+            traj = self.ego_to_global_roomba(start, self.trajs[r])
+            goal = [traj[0, -1], traj[1, -1]]
+            
+            start_cell = self.get_grid_cell(start[0], start[1])
+            goal_cell = self.get_grid_cell(goal[0], goal[1])
+
+            if start_cell != goal_cell:
+                all_starts_goals_equal = False
+                break
+
+        return all_starts_goals_equal
+    
+    def get_next_control(self, state, show_plots=False):
+        # optimization loop
+        # start=time.time()
+
+        self.update_ref_paths = False
+
+        # Get Reference_traj -> inputs are in worldframe
+        # 1. Get the reference trajectory for each robot
+        targets = []
+        for i in range(self.num_robots):
+            ref = get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT,0)
+            
+            print(f"Robot {i} reference trajectory = {ref}")
+            targets.append(ref)
+        self.trajs = targets
+
+        # 2. Check if the targets of any two robots overlap
+        self.all_conflicts = []
+        for i in range(self.num_robots):
+            for j in range(i + 1, self.num_robots):
+                print(f"targets[i] = {targets[i]}")
+                traj1 = self.ego_to_global_roomba(state[i], targets[i])
+                traj2 = self.ego_to_global_roomba(state[j], targets[j])
+                if self.trajectories_overlap(traj1, traj2, self.radius):
+                    # plot the trajectories
+                    
+                    self.plot_trajs(traj1, traj2, self.radius)
+
+
+                    print(f"Collision detected between robot {i} and robot {j}")
+                    self.all_conflicts.append((i, j))
+
+        
+
+        for c in self.all_conflicts:
+            # 3. If they do collide, then reroute the reference trajectories of these robots
+
+            # Get the robots involved in the conflict
+            robots = c
+            robot_positions = [state[i] for i in robots]
+
+            # Put down a local grid
+            self.grid = self.place_grid(robot_positions)
+
+            # set the starts (robots' current positions) 
+            self.starts = []
+            self.goals = []
+            for i in range(self.num_robots):
+                self.starts.append(self.states[i])
+
+                traj = self.ego_to_global_roomba(self.states[i], self.trajs[i])
+                x = traj[0][-1]
+                y = traj[1][-1]
+                self.goals.append([x,y])
+
+            
+
+            # Solve a discrete version of the problem 
+            # Find a subproblem and solve it
+            grid_solution = self.get_discrete_solution(c, [c],self.grid)
+
+            
+
+            if grid_solution:
+                
+                self.update_ref_paths = False
+                initial_guess = self.get_initial_guess(grid_solution, self.num_robots, 20, 1)
+                initial_guess_state = initial_guess['X']
+
+                self.draw_grid_solution(initial_guess_state)
+                
+                print(f"initial_guess_state shape = {initial_guess_state.shape}")
+                print(f"initial_guess_state = {initial_guess_state}")
+
+                # for each robot in conflict, reroute its reference trajectory to match the grid solution
+                num_robots_in_conflict = len(c)
+                import copy
+                old_paths = copy.deepcopy(self.paths)
+
+                self.paths = []
+                for i in range(num_robots_in_conflict):
+                    r = c[i]
+                    new_ref = initial_guess_state[i*3:i*3+3, :]
+                    print(f"Robot {r} rerouting to {new_ref}")
+
+                    # plan from the last point of the ref path to the robot's goal
+                    # plan an RRT path from the current state to the goal
+                    x_start = (new_ref[:, -1][0], new_ref[:, -1][1])
+                    x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])
+
+                    print(f"x_start = {x_start}, x_goal = {x_goal}")
+
+                    rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 1000, r=2.0)
+                    rrtstarpath2,tree = rrtstar2.run()
+                    rrtstarpath2 = list(reversed(rrtstarpath2))
+                    xs = new_ref[0, :].tolist()
+                    ys = new_ref[1, :].tolist()
+                    for node in rrtstarpath2:
+                        xs.append(node[0])
+                        ys.append(node[1])
+
+                    wp = [xs,ys]
+
+                    # Path from waypoint interpolation
+                    self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
+
+                targets = []
+                for i in range(self.num_robots):
+                    ref = get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT,0)
+                    
+                    print(f"Robot {i} reference trajectory = {ref}")
+                    targets.append(ref)
+                self.trajs = targets
+
+            if grid_solution is None:
+                # if there isnt a grid solution, the most likely scenario is that the robots 
+                # are not close enough together to place down a subproblem
+                # in this case, we just allow the robts to continue on their paths and resolve 
+                # the conflict later
+                print("No grid solution found, proceeding with the current paths")
+
+        
+                     
+
+        # dynamycs w.r.t robot frame
+        # curr_state = np.array([0, 0, self.state[2], 0])
+        curr_states = np.zeros((self.num_robots, 3))
+        x_mpc, u_mpc = self.mpc.step(
+            curr_states,
+            targets,
+            self.control
         )
-    plt.axis("equal")
+        
+        # only the first one is used to advance the simulation
+        # self.control[:] = [u_mpc[0, 0], u_mpc[1, 0]]
+
+        self.control = []
+        for i in range(self.num_robots):
+            self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])
+
+        # if len(self.all_conflicts) > 0:
+        #     # update the reference paths for each robot
+        #     if grid_solution:
+        #         self.update_reference_paths()
+
+        return x_mpc, self.control
     
+    def update_reference_paths(self):
+        """
+        Update the reference paths for each robot.
+        """
+        # create copy of current self.paths
+        import copy
+        old_paths = copy.deepcopy(self.paths)
 
-    plt.tight_layout()
+        self.paths = []
+        for i in range(self.num_robots):
+            # plan an RRT path from the current state to the goal
+            x_start = (self.states[i][0], self.states[i][1])
+            x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])
+            rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 1000, r=2.0)
+            rrtstarpath2,tree = rrtstar2.run()
+            rrtstarpath2 = list(reversed(rrtstarpath2))
+            xs = []
+            ys = []
+            for node in rrtstarpath2:
+                xs.append(node[0])
+                ys.append(node[1])
 
-    plt.draw()
-    plt.pause(0.1)
-    input()
+            wp = [xs,ys]
 
-if __name__ == "__main__":
+            # Path from waypoint interpolation
+            self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
+
+def main():
+    import os
+    import numpy as np
+    import random
+
+    # load the settings
+    file_path = "settings_files/settings.yaml"
+    import yaml
+    with open(file_path, 'r') as file:
+        settings = yaml.safe_load(file)
+
+    seed = 1123
+    print(f"***Setting Python Seed {seed}***")
+    os.environ['PYTHONHASHSEED'] = str(seed)
+    np.random.seed(seed)
+    random.seed(seed)
 
-    initial_pos_1 = np.array([0.0, 0.1, 0.0, 0.0])
+
+    initial_pos_1 = np.array([6.0, 2.0, 2.2])
     target_vocity = 3.0 # m/s
-    T = 1  # Prediction Horizon [s]
-    DT = 0.2  # discretization step [s]
+    T = .5  # Prediction Horizon [s]
+    DT = 0.1  # discretization step [s]
 
 
-    x_start = (0, 0)  # Starting node
-    x_goal = (10, 3)  # Goal node
+    x_start = (6, 2)  # Starting node
+    x_goal = (6.5, 8)  # Goal node
 
     env = Env([0,10], [0,10], [], [])
 
-    rrtstar = RRTStar(env, x_start, x_goal, 0.5, 0.05, 500, r=2.0)
-    rrtstarpath = rrtstar.run()
-    rrtstarpath = list(reversed(rrtstarpath))
+    dynamics = Roomba(settings)
+
+    rrtstar1 = RRTStar(env, x_start, x_goal, 0.5, 0.05, 500, r=2.0)
+    rrtstarpath1,tree = rrtstar1.run()
+    rrtstarpath1 = list(reversed(rrtstarpath1))
     xs = []
     ys = []
-    for node in rrtstarpath:
+    for node in rrtstarpath1:
+        print(node)
+        print()
         xs.append(node[0])
         ys.append(node[1])
 
     wp_1 = [xs,ys]
-    sim = PathTracker(initial_position=initial_pos_1, target_v=target_vocity, T=T, DT=DT, waypoints=wp_1)
-    x1,y1,h1 = sim.run(show_plots=False)
-    path1 = sim.path
+
+    print(f"wp_1 = {wp_1}")
+    # sim = PathTracker(initial_position=initial_pos_1, dynamics=dynamics,target_v=target_vocity, T=T, DT=DT, waypoints=wp_1, settings=settings)
+    # x1,y1,h1 = sim.run(show_plots=False)
+    # path1 = sim.path
     
-    initial_pos_2 = np.array([10.0, 5.1, 0.0, 0.0])
+    initial_pos_2 = np.array([6.0, 8.0, 4.8])
     target_vocity = 3.0 # m/s
 
 
-    x_start = (10, 5)  # Starting node
-    x_goal = (1, 1)  # Goal node
-    rrtstar = RRTStar(env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
-    rrtstarpath = rrtstar.run()
-    rrtstarpath = list(reversed(rrtstarpath))
+    x_start = (6, 8)  # Starting node
+    x_goal = (6.5, 2)  # Goal node
+    rrtstar2 = RRTStar(env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
+    rrtstarpath2,tree = rrtstar2.run()
+    rrtstarpath2 = list(reversed(rrtstarpath2))
     xs = []
     ys = []
-    for node in rrtstarpath:
+    for node in rrtstarpath2:
         xs.append(node[0])
         ys.append(node[1])
 
     wp_2 = [xs,ys]
 
-    
-    sim2 = PathTracker(initial_position=initial_pos_2, target_v=target_vocity, T=T, DT=DT, waypoints=wp_2)
-    x2,y2,h2 = sim2.run(show_plots=False)
-    path2 = sim2.path
+    lib_2x3, lib_3x3, lib_2x5 = initialize_libraries()    
 
-    # for 
+    sim = MultiPathTrackerDatabase(env, [initial_pos_1, initial_pos_2], dynamics, target_vocity, T, DT, [wp_1, wp_2], settings, lib_2x3, lib_3x3, lib_2x5)
+    xs, ys, hs = sim.run(show_plots=False)
+    paths = sim.paths
 
-    plot([x1,x2], [y1,y2], [h1,h2], [path1, path2])
+    print(f"path length here = {len(paths)}")
 
+    # plot(xs, ys, hs, paths, [rrtstar1.sampled_vertices, rrtstar2.sampled_vertices],2)
 
-    
-    
\ No newline at end of file
+    # plot_sim(xs, ys, hs, paths)
+
+def plot_roomba(x, y, yaw, color, fill, radius):
+    """
+
+    Args:
+        x ():
+        y ():
+        yaw ():
+    """
+    fig = plt.gcf()
+    ax = fig.gca()
+    if fill: alpha = .3
+    else: alpha = 1
+    circle = plt.Circle((x, y), radius, color=color, fill=fill, alpha=alpha)
+    ax.add_patch(circle)
+
+    # Plot direction marker
+    dx = 1 * np.cos(yaw)
+    dy = 1 * np.sin(yaw)
+    ax.arrow(x, y, dx, dy, head_width=0.1, head_length=0.1, fc='r', ec='r')
+
+
+
+if __name__ == "__main__":
+    main()
\ No newline at end of file
diff --git a/guided_mrmp/controllers/path_tracker.py b/guided_mrmp/controllers/path_tracker.py
index 29fedd80b582e9c53cc5364d1f0de0d3730d9528..5f7b987265f5ba1160a0d8be6952af09d9267663 100644
--- a/guided_mrmp/controllers/path_tracker.py
+++ b/guided_mrmp/controllers/path_tracker.py
@@ -7,7 +7,7 @@ from guided_mrmp.utils import Roomba
 
 # Classes
 class PathTracker:
-    def __init__(self, initial_position, dynamics, target_v, T, DT, waypoints):
+    def __init__(self, initial_position, dynamics, target_v, T, DT, waypoints, settings):
         """
         Initializes the PathTracker object.
         Parameters:
@@ -44,7 +44,7 @@ class PathTracker:
         Qf = [30, 30, 30]  # state final error cost
         R = [10, 10]  # input cost
         P = [10, 10]  # input rate of change cost
-        self.mpc = MPC(dynamics, T, DT, Q, Qf, R, P)
+        self.mpc = MPC(dynamics, T, DT, Q, Qf, R, P, settings['model_predictive_controller'])
 
         # Path from waypoint interpolation
         self.path = compute_path_from_wp(waypoints[0], waypoints[1], 0.05)
@@ -125,7 +125,7 @@ class PathTracker:
         # start=time.time()
 
         # Get Reference_traj -> inputs are in worldframe
-        target = get_ref_trajectory(np.array(state), np.array(self.path), self.target_v, self.T, self.DT)
+        target = get_ref_trajectory(np.array(state), np.array(self.path), self.target_v, self.T, self.DT,0)
 
         # dynamycs w.r.t robot frame
         # curr_state = np.array([0, 0, self.state[2], 0])
@@ -137,7 +137,7 @@ class PathTracker:
         )
         
         # only the first one is used to advance the simulation
-        self.control[:] = [u_mpc.value[0, 0], u_mpc.value[1, 0]]
+        self.control[:] = [u_mpc[0, 0], u_mpc[1, 0]]
         # self.state = self.predict_next_state(
         #     self.state, [self.control[0], self.control[1]], DT
         # )
@@ -174,10 +174,9 @@ class PathTracker:
             
             # use the optimizer output to preview the predicted state trajectory
             # self.optimized_trajectory = self.ego_to_global(x_mpc.value)
-            if show_plots: self.optimized_trajectory = self.ego_to_global_roomba(x_mpc.value)
+            if show_plots: self.optimized_trajectory = self.ego_to_global_roomba(x_mpc)
             if show_plots: self.plot_sim()
             
-
     def plot_sim(self):
         self.sim_time = self.sim_time + self.DT
         # self.x_history.append(self.state[0])
@@ -291,19 +290,21 @@ def plot_roomba(x, y, yaw):
     dy = 1 * np.sin(yaw)
     ax.arrow(x, y, dx, dy, head_width=0.1, head_length=0.1, fc='r', ec='r')
 
-
-
-
 if __name__ == "__main__":
 
     # Example usage
 
+    file_path = "settings_files/settings.yaml"
+    import yaml
+    with open(file_path, 'r') as file:
+        settings = yaml.safe_load(file)
+
     initial_pos = np.array([0.0, 0.5, 0.0, 0.0])
-    dynamics = Roomba()
+    dynamics = Roomba(settings)
     target_vocity = 3.0 # m/s
     T = 1  # Prediction Horizon [s]
     DT = 0.2  # discretization step [s]
     wp = [[0, 3, 4, 6, 10, 12, 13, 13, 6, 1, 0],
           [0, 0, 2, 4, 3, 3, -1, -2, -6, -2, -2]]
-    sim = PathTracker(initial_position=initial_pos, dynamics=dynamics, target_v=target_vocity, T=T, DT=DT, waypoints=wp)
+    sim = PathTracker(initial_position=initial_pos, dynamics=dynamics, target_v=target_vocity, T=T, DT=DT, waypoints=wp, settings=settings)
     x,y,h = sim.run(show_plots=True)
\ No newline at end of file