import unittest import torch from model_zoo import CIFAR, VGG16Cifar10 from predtuner import TorchApp, accuracy, config_pylogger, get_knobs_from_file from torch.nn import Conv2d, Linear from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Subset msg_logger = config_pylogger(output_dir="/tmp", verbose=True) class TestTorchApp(unittest.TestCase): def setUp(self): dataset = CIFAR.from_file( "model_data/cifar10/input.bin", "model_data/cifar10/labels.bin" ) self.dataset = Subset(dataset, range(100)) self.module = VGG16Cifar10() self.module.load_state_dict(torch.load("model_data/vgg16_cifar10.pth.tar")) def get_app(self): return TorchApp( "TestTorchApp", self.module, DataLoader(self.dataset, batch_size=500), DataLoader(self.dataset, batch_size=500), get_knobs_from_file(), accuracy, ) def test_init(self): app = self.get_app() n_knobs = {op: len(ks) for op, ks in app.op_knobs.items()} self.assertEqual(len(n_knobs), 34) for op_name, op in app.midx.name_to_module.items(): if isinstance(op, Conv2d): nknob = 56 elif isinstance(op, Linear): nknob = 2 else: nknob = 1 self.assertEqual(n_knobs[op_name], nknob) def test_baseline_qos(self): app = self.get_app() qos, _ = app.measure_qos_perf({}, False) self.assertAlmostEqual(qos, 88.0) def test_tuning(self): app = self.get_app() baseline, _ = app.measure_qos_perf({}, False) tuner = app.get_tuner() tuner.tune(100, baseline - 3.0) configs = tuner.get_all_configs() for conf in configs: self.assertTrue(conf.qos > baseline - 3.0)