From aa28a41ca12b15af31e1d15b687367e27cde3878 Mon Sep 17 00:00:00 2001 From: Yifan Zhao <yifanz16@illinois.edu> Date: Fri, 26 Mar 2021 14:08:06 -0500 Subject: [PATCH] Moved from markdown readme to rst --- README.md | 56 ------------------------------------------------ README.rst | 63 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ setup.py | 4 ++-- 3 files changed, 65 insertions(+), 58 deletions(-) delete mode 100644 README.md create mode 100644 README.rst diff --git a/README.md b/README.md deleted file mode 100644 index 784aebb..0000000 --- a/README.md +++ /dev/null @@ -1,56 +0,0 @@ -# Autotuning and Predictive Autotuning - -`predtuner` performs autotuning on program approximation knobs using an error-predictive proxy -in place of the original program, to greatly speedup autotuning while getting results -comparable in quality. `current_version == 0.3`. - -## Requirements - -`predtuner` requires `python >= 3.7` and `pip`, preferrably `pip >= 20`. -To install from PyPI (currently TestPyPI), use - -```bash -python -m pip install -i https://test.pypi.org/simple/ predtuner -``` - -### Install from Source - -Alternatively, you can install this package from source. -At the root directory of this repository, do: - -```bash -python -m pip install -e ./ -``` - -With the flag `-e`, any changes to code in this repo is reflected on the installed version automatically. -It can be omitted if you don't intend to modify the code in this package. - -## Getting Started - -The documentation page contains a full tutorial. -Build the documentation by: - -```bash -pip install sphinx sphinx_rtd_theme sphinx_autodoc_typehints -cd doc -make html -``` - -The documentation page will be created as `doc/build/html/index.html`. -You can open this in the browser and browse to "Getting Started" section. - -### Model Data for Example / Testing - -`predtuner` contains 10 demo models which are also used in tests. - -- Download and extract [this](https://drive.google.com/file/d/1V_yd9sKcZQ7zhnO5YhRpOsaBPLEEvM9u/view?usp=sharing) file containing all 10 models, for testing purposes. -- The "Getting Started" example on the documentation page only uses VGG16-CIFAR10. - If you don't need the other models, get the data for VGG16-CIFAR10 - [here](https://drive.google.com/file/d/1Z84z-nsv_nbrr8t9i28UoxSJg-Sd_Ddu/view?usp=sharing). - -In either case, there should be a `model_params/` folder at the root of repo after extraction. - -## Tuning with HPVM Binary - -This branch (`hpvm`) contains beta support for HPVM binaries. -Please refer to `examples/tune_hpvm_bin.py` for an example with explanations. diff --git a/README.rst b/README.rst new file mode 100644 index 0000000..1e72611 --- /dev/null +++ b/README.rst @@ -0,0 +1,63 @@ +Autotuning and Predictive Autotuning +==================================== + +``predtuner`` performs autotuning on program approximation knobs using an error-predictive proxy +in place of the original program, to greatly speedup autotuning while getting results +comparable in quality. ``current_version == 0.3``. + +Requirements +------------ + +``predtuner`` requires ``python >= 3.7`` and ``pip``, preferrably ``pip >= 20``. +To install from PyPI (currently TestPyPI), use + +.. code-block:: bash + + python -m pip install -i https://test.pypi.org/simple/ predtuner + +Install from Source +^^^^^^^^^^^^^^^^^^^ + +Alternatively, you can install this package from source. +At the root directory of this repository, do: + +.. code-block:: bash + + python -m pip install -e ./ + +With the flag ``-e``, any changes to code in this repo is reflected on the installed version automatically. +It can be omitted if you don't intend to modify the code in this package. + +Getting Started +--------------- + +The documentation page contains a full tutorial. +Build the documentation by: + +.. code-block:: bash + + pip install sphinx sphinx_rtd_theme sphinx_autodoc_typehints + cd doc + make html + +The documentation page will be created as ``doc/build/html/index.html``. +You can open this in the browser and browse to "Getting Started" section. + +Model Data for Example / Testing +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +``predtuner`` contains 10 demo models which are also used in tests. + + +* Download and extract `this <https://drive.google.com/file/d/1V_yd9sKcZQ7zhnO5YhRpOsaBPLEEvM9u/view?usp=sharing>`_ file containing all 10 models, for testing purposes. +* The "Getting Started" example on the documentation page only uses VGG16-CIFAR10. + If you don't need the other models, get the data for VGG16-CIFAR10 + `here <https://drive.google.com/file/d/1Z84z-nsv_nbrr8t9i28UoxSJg-Sd_Ddu/view?usp=sharing>`_. + +In either case, there should be a ``model_params/`` folder at the root of repo after extraction. + +Tuning with HPVM Binary +----------------------- + +This branch (``hpvm``) contains beta support for HPVM binaries. +Please refer to ``examples/tune_hpvm_bin.py`` for an example with explanations. diff --git a/setup.py b/setup.py index a4bda7a..512eb5a 100644 --- a/setup.py +++ b/setup.py @@ -1,6 +1,6 @@ import setuptools -with open("README.md", "r", encoding="utf-8") as fh: +with open("README.rst", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( @@ -10,7 +10,7 @@ setuptools.setup( author_email="yifanz16@illinois.edu", description="A package for predictive and empirical approximation autotuning", long_description=long_description, - long_description_content_type="text/markdown", + long_description_content_type="text/x-rst", url="https://github.com/Evan-Zhao/predictive-tuner", packages=setuptools.find_packages(), package_data={ -- GitLab