diff --git a/llvm/projects/keras/src/vgg16_imagenet.py b/llvm/projects/keras/src/vgg16_imagenet.py index 4f24e6b184911537dc425f4db0200f3f0836a48c..91e856d5652585caaef4cfecf78024fdbcd8befb 100644 --- a/llvm/projects/keras/src/vgg16_imagenet.py +++ b/llvm/projects/keras/src/vgg16_imagenet.py @@ -32,7 +32,7 @@ IMAGENET_DIR = '/home/nz11/ILSVRC2012/' OUTPUT_DIR = 'data/vgg16_imagenet_tune/' NUM_CLASSES = 200 -IMAGES_PER_CLASS = 40 +IMAGES_PER_CLASS = 50 # VAL_SIZE = 100 @@ -212,18 +212,22 @@ y_true = np.array(y_true) X_tune = np.array(X_tune) y_tune = np.array(y_tune) +print ('tune size', len(X_tune)) +print ('test size', len(X_test)) -translate_to_approxhpvm(model, OUTPUT_DIR, X_tune, y_tune, 1000) -# dumpCalibrationData2(OUTPUT_DIR + 'test_input_10K.bin', X_test, OUTPUT_DIR + 'test_labels_10K.bin', y_true) -dumpCalibrationData2(OUTPUT_DIR + 'tune_input.bin', X_tune, OUTPUT_DIR + 'tune_labels.bin', y_tune) -dumpCalibrationData2(OUTPUT_DIR + 'test_input.bin', X_test, OUTPUT_DIR + 'test_labels.bin', y_true) +translate_to_approxhpvm(model, OUTPUT_DIR, X_tune, y_tune, 1000, dump_weights=False) + +# # dumpCalibrationData2(OUTPUT_DIR + 'test_input_10K.bin', X_test, OUTPUT_DIR + 'test_labels_10K.bin', y_true) +# dumpCalibrationData2(OUTPUT_DIR + 'tune_input.bin', X_tune, OUTPUT_DIR + 'tune_labels.bin', y_tune) +# dumpCalibrationData2(OUTPUT_DIR + 'test_input.bin', X_test, OUTPUT_DIR + 'test_labels.bin', y_true) pred = np.argmax(model.predict(X_test), axis=1) print ('val accuracy', np.sum(pred == y_true.ravel()) / len(X_test)) -pred = np.argmax(model.predict(X_tune), axis=1) -print ('val accuracy', np.sum(pred == y_tune.ravel()) / len(X_tune)) +# pred = np.argmax(model.predict(X_tune), axis=1) +# print ('val accuracy', np.sum(pred == y_tune.ravel()) / len(X_tune)) +