diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in index 1f6dd875ffa6b39ab57609d7690c9a9ad3944b44..fa252a3e0ce063697d56e771afbfbde69d0c5641 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in +++ b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> {% for node in nodes %} diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in index 94a8e0a534c04b323b4b66f369ab2d624a2a745f..8074704ece0988d7897c1e93b41f1ea3c43deb35 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in +++ b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in @@ -2,7 +2,6 @@ #include <string> #include <array> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> // For writing binary to file descriptors diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/CMakeLists.txt b/hpvm/test/dnn_benchmarks/hpvm-c/CMakeLists.txt index 9f34317d34157d57468c60cb854828b5c54f1cde..487adc4fa58e0b1ad13402156fdbcbdbe6026aea 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/CMakeLists.txt +++ b/hpvm/test/dnn_benchmarks/hpvm-c/CMakeLists.txt @@ -12,7 +12,7 @@ function(compile_hpvm_c target_name src_filepath codegen_target) DEPENDS ${generated_file_path} hpvm-clang COMMAND hpvm-clang ${generated_file_path} ${output_bin_path} -O3 -fno-exceptions - -t ${codegen_target} -I ${CMAKE_CURRENT_SOURCE_DIR}/include ${ARGN} + -t ${codegen_target} ${ARGN} ) add_custom_target(${target_name} DEPENDS ${output_bin_path}) set(test_compile_targets ${test_compile_targets} ${target_name} PARENT_SCOPE) diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10.cpp index 39f49784d76470c4e0bab213127369806e1e2531..2faf1413bcdb7c87e280107d38913ae86740a414 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10_cudnn.cpp index dafd1a6ae084c4e1bf819ce1ac94e667c696eb24..bca6ca47cd48015524b496b90219f24e1f27ddb9 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10.cpp index 64350c590bb181fa4eaab4b2bf5fb37f69e11c09..d274d52ec18af99393f47d9fdb69b0b593dcbefc 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10_cudnn.cpp index 72af2ff4a1b33aabac427d203101c32c4a7403c7..e82985d04fea11c1d30079e4eacbbee81c95080a 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet.cpp index 37e7a34a51a14b6903d549f271d3c0c83822fec8..c058e913c9f7c5bca6eb304759a380d319495caf 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet.cpp @@ -1,7 +1,6 @@ #include <config.h> #include <hpvm.h> #include <string> -#include <tensorTypes.h> #include <tensorUtils.h> void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet_cudnn.cpp index 1206d7bac4b9dcff2b4cfd7183f4a3e5f65d73d9..26e717fd732567eb9e6b97f19c60428e564fc9e5 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist.cpp index d7ab4238ebac5598b92c432aced85a602bb5ce89..8185d9dc69b6899cad46833d71d18be01653bfb3 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist_cudnn.cpp index 26acc65a99287ea9f20e037dd996635315d76e48..a0cd32151e5743d51df34edbe041e0fe8485aced 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10.cpp index 5f8c63dbfbfb800dc6f60f9ed9a6108dee0a9a48..77b448d81d1b352f8ac4ee9e3fc943e69f466772 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10_cudnn.cpp index 2070089053ef0b6e7e0ca33c2c6cc4cea17b8e29..adb140bd699e74be7199f54888ee4249e5515004 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10.cpp index 5b580f26821e67cc96c8347e485b792f40105176..ef94b055bd6a741405c4c9da55958143d3b8c4d1 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10.cpp @@ -1,7 +1,6 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10_cudnn.cpp index 735e2c9abab91f00560faa5496e234321027b82c..ecfa22957352ca2c418c5beb9b041762da9b6de9 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10_cudnn.cpp @@ -1,7 +1,6 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet.cpp index 160563064cc47effd463c4915b0c7f0d93bff56f..37a4111411229602ca18f806c2186af54728081e 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet_cudnn.cpp index c5cf2cb3a0177a5cce9ad0cf460484e63ded0ecd..1ac5141bca54d7dc60bb63c09cde9dcb8f8c6d32 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10.cpp index bec6139c2d089e90d09fa239e1b15c9a835fd4ea..c1de0703df94b3f27dfd55b0379377ecf5f0edbe 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10_cudnn.cpp index 4fa7d5c121bacff122821fe983ed443e3c6db249..7bda1213358d0c37d16623425bf19bace4d3a715 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100.cpp index 8666030fba4390d29d9324f5a5c7d60324325f05..bee78428df49c52f06bfa618afd7920d113e1647 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100_cudnn.cpp index 6d01caa3b7c0875cff4f3e16131ddd09195e92b7..c12855437b28686528ff4c916a987bfa7b2f280e 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet.cpp index b1b2b4f2e312b6372e10a2fce3ef12eab2dddded..b046f4255185e47b44be1a78ca29c05189fc894b 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet_cudnn.cpp index eb29e45805671072428318412f27b05d0da90199..b06c992f3c2108544676c6e7f27810e3ef7244fc 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet_cudnn.cpp @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorTypes.h b/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorTypes.h deleted file mode 100644 index 726080efe7e1a06363e7fca191f9708219d5baeb..0000000000000000000000000000000000000000 --- a/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorTypes.h +++ /dev/null @@ -1,39 +0,0 @@ - -#ifndef TYPES_HEADER -#define TYPES_HEADER - - -/*struct Dimension_t{ - int num_dims; - size_t* dim_sizes; -}; - - -struct Tensor_t{ - int tensor_id; // used for indexing (in the tensor runtime) - int data_type; // {float_type, double_type, half_type, int_type} - int data_format; // {nchw, nhwc} - void* host_data; - size_t num_elems; // Total elements - size_t size_in_bytes; // Total size in bytes - struct Dimension_t dims; -}; - - -enum Tensor_type_t{ - float_type, - double_type, - half_type, - int_type -}; - - -// NOTE: Currently only NCHW is supported due to limited cuDNN support -enum Tensor_format_t{ - nchw, - nhwc -}; - -*/ - -#endif diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorUtils.h b/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorUtils.h deleted file mode 100644 index 1d5ac7d908b0990f21de885c645786997640264c..0000000000000000000000000000000000000000 --- a/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorUtils.h +++ /dev/null @@ -1,758 +0,0 @@ - -// Header guards -#ifndef UTILS_HEADER -#define UTILS_HEADER - -#include <sstream> -#include <vector> -#include <bits/stdc++.h> -#include <tensor_runtime.h> -#include <tensor.h> -#include <cmath> - -std::vector<float> run_accuracies; - -void printTensorInfo(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - if (tensor->gpu_data != NULL) { - printf("Successful cudaMalloc \n"); - } - - printf("tensor dims = %d \n", tensor->dims.num_dims); - printf("dim1_size = %lu \n", tensor->dims.dim_sizes[0]); - printf("dim2_size = %lu \n", tensor->dims.dim_sizes[1]); - printf("num_elems = %lu \n", tensor->num_elems); -} - -// FIXIT: Move this to debug.h and include in all files -void dumpWeightsToFile(char *file_name, void *weights_ptr) { - - struct Tensor *weights = (Tensor *)weights_ptr; - // Move data back to host - hpvm_request_tensor(weights, 0); - - FILE *fp = fopen(file_name, "wb"); - if (fp == NULL) { - printf("File %s could not be created. Check if directory exists \n", - file_name); - abort(); - } - - // printf("size_in_bytes = %lu \n", weights->size_in_bytes); - size_t bytes_written = - fwrite(weights->host_data, 1, weights->size_in_bytes, fp); - // printf("bytes_written = %lu \n", bytes_written); - fclose(fp); -} - -void fillTensorWithOnes(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - data_arr[i] = 1.0; - } - } -} - -void fillWithOnesAndTwos(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems / 2; i++) { - data_arr[i] = 1.0; - } - - for (unsigned int i = tensor->num_elems / 2; i < tensor->num_elems; i++) { - data_arr[i] = 2.0; - } - } -} - -void fillTensorWithVal(void *tensor_ptr, float target_value) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - data_arr[i] = target_value; - } - } -} - -void fillTensorWithNegOnes(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - data_arr[i] = -1.0; - } - } -} - -void fillTensorVals(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - data_arr[i] = i + 1; - } - } -} - -void printTensorValues(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // printing is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - printf("%f,", data_arr[i]); - } - } - - printf("\n"); -} - -void printTensorDims(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - printf("Num_elems = %lu \n", tensor->num_elems); - for (int i = 0; i < tensor->dims.num_dims; i++) { - printf("dim[%d] = %lu \n", i, tensor->dims.dim_sizes[i]); - } -} - -void compareTensors(void *tensor1_ptr, void *tensor2_ptr) { - - struct Tensor *tensor1 = (struct Tensor *)tensor1_ptr; - struct Tensor *tensor2 = (struct Tensor *)tensor2_ptr; - - hpvm_request_tensor(tensor1, 0); - hpvm_request_tensor(tensor2, 0); - - float *tensor_data1 = (float *)tensor1->host_data; - float *tensor_data2 = (float *)tensor2->host_data; - - for (unsigned int i = 0; i < tensor1->num_elems; i++) { - if (tensor_data1[i] != tensor_data2[i]) { - printf("Tensor data mismatch at index %d \n", i); - abort(); - } - } -} - -void compareValues(void *tensor_ptr, float *data, size_t num_elems) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - float *tensor_data = (float *)tensor->host_data; - for (unsigned int i = 0; i < num_elems; i++) { - if (tensor_data[i] != data[i]) { - printf("Tensor data mismatch"); - abort(); - } - } -} - -void *readInputTensor(const char *file_name, int data_type, int dim1_size, - int dim2_size, int dim3_size, int dim4_size) { - - int type_size = 4; // NOTE: Assuming floating point tensors - int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - int size_in_bytes = type_size * dim1_size * dim2_size * dim3_size * dim4_size; - uint8_t *file_data = (uint8_t *)malloc(sizeof(char) * num_elems); - float *tensor_data = (float *)malloc(sizeof(float) * num_elems); - int file_header_size = 16; - - FILE *file = fopen(file_name, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting... \n", file_name); - abort(); - } - - fseek(file, file_header_size, SEEK_CUR); // Skipping the file header - size_t bytes_read = fread(file_data, 1, sizeof(uint8_t) * num_elems, file); - - fclose(file); - - for (size_t i = 0; i < num_elems; ++i) { - tensor_data[i] = (float)file_data[i] / 255.0f; - } - - // NOTE: Using NCHW format - struct Tensor *input = (struct Tensor *)create4DTensor( - data_type, nchw, dim1_size, dim2_size, dim3_size, dim4_size); - - initTensorData(input, tensor_data, size_in_bytes); - // compareValues(input, tensor_data, num_elems); - - return input; -} - -//*** FIXIT: Move this to CPU-only -struct Tensor *readTrainedWeightsCPU(const char *file_name, int data_type, - int dim1_size, int dim2_size, - int dim3_size, int dim4_size) { - - // FIXIT: Don't assume floating point types - int type_size = 4; // NOTE: Assuming floating point tensors - long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - long int size_in_bytes = - type_size * dim1_size * dim2_size * dim3_size * dim4_size; - float *tensor_data = (float *)malloc(sizeof(float) * num_elems); - int file_header_size = 0; - - FILE *file = fopen(file_name, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting... \n", file_name); - abort(); - } - - fseek(file, file_header_size, SEEK_CUR); // Skipping the file header - size_t bytes_read = fread(tensor_data, 1, size_in_bytes, file); - - printf("size in bytes = %lu, bytes read = %lu \n", size_in_bytes, bytes_read); - - fclose(file); - - struct Tensor *weights = (struct Tensor *)create4DTensor( - data_type, nchw, dim1_size, dim2_size, dim3_size, dim4_size); - - initTensorData(weights, tensor_data, size_in_bytes); - // compareValues(weights, tensor_data, num_elems); - free(tensor_data); - - return weights; -} - -struct Tensor *readTrainedWeights(const char *file_name, int data_type, - long int dim1_size, long int dim2_size, - long int dim3_size, long int dim4_size) { - - // FIXIT: Don't assume floating point types - int type_size = 4; // NOTE: Assuming floating point tensors - long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - long int size_in_bytes = - type_size * dim1_size * dim2_size * dim3_size * dim4_size; - float *tensor_data = (float *)malloc(sizeof(float) * num_elems); - printf("size_in_bytes = %lu \n", size_in_bytes); - - int file_header_size = 0; - - FILE *file = fopen(file_name, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting... \n", file_name); - abort(); - } - - fseek(file, file_header_size, SEEK_CUR); // Skipping the file header - size_t bytes_read = fread(tensor_data, 1, size_in_bytes, file); - - // printf("size in bytes = %lu, bytes read = %lu \n", size_in_bytes, - // bytes_read); - - fclose(file); - - struct Tensor *weights = (struct Tensor *)create4DTensor( - data_type, nchw, dim1_size, dim2_size, dim3_size, dim4_size); - - initTensorData(weights, tensor_data, size_in_bytes); - // compareValues(weights, tensor_data, num_elems); - free(tensor_data); - - return weights; -} - -struct Tensor *readInputBatch(const char *file_name, long data_type, long start, - long end, long dim2_size, long dim3_size, - long dim4_size) { - - long int dim1_size = end - start; - // FIXIT: Don't assume floating point types - long int type_size = 4; // NOTE: Assuming floating point tensors - long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - long int size_in_bytes = - type_size * dim1_size * dim2_size * dim3_size * dim4_size; - float *tensor_data = (float *)malloc(sizeof(float) * num_elems); - long int file_header_size = - type_size * start * dim2_size * dim3_size * dim4_size; - - FILE *file = fopen(file_name, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting... \n", file_name); - abort(); - } - - fseek(file, file_header_size, SEEK_SET); // Skipping the file header - size_t bytes_read = fread(tensor_data, 1, size_in_bytes, file); - - fclose(file); - - // printf ("FIXED input BATCH read \n"); - - struct Tensor *weights = (struct Tensor *)create4DTensor( - data_type, nchw, dim1_size, dim2_size, dim3_size, dim4_size); - - initTensorData(weights, tensor_data, size_in_bytes); - free(tensor_data); - - return weights; -} - -uint8_t *readLabels(const char *labels_file, int num_labels) { - - uint8_t *labels = (uint8_t *)malloc(sizeof(uint8_t) * num_labels); - FILE *file = fopen(labels_file, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting...\n", labels_file); - abort(); - } - - size_t bytes_read = fread(labels, 1, sizeof(uint8_t) * num_labels, file); - - fclose(file); - - return labels; -} - -uint32_t *readLabels3(const char *labels_file, int num_labels) { - - uint32_t *labels = (uint32_t *)malloc(sizeof(uint32_t) * num_labels); - FILE *file = fopen(labels_file, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting...\n", labels_file); - abort(); - } - - size_t bytes_read = fread(labels, 1, sizeof(uint32_t) * num_labels, file); - - fclose(file); - - return labels; -} - -uint8_t *readLabelsBatch(const char *labels_file, int start, int end) { - - int num_labels = end - start; - int file_header_size = sizeof(uint8_t) * start; - - uint8_t *labels = (uint8_t *)malloc(sizeof(uint8_t) * num_labels); - FILE *file = fopen(labels_file, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting...\n", labels_file); - abort(); - } - - fseek(file, file_header_size, SEEK_SET); // Skipping the file header - - size_t bytes_read = fread(labels, 1, sizeof(uint8_t) * num_labels, file); - - fclose(file); - - // printf("--labels bytes_read = %lu \n", bytes_read); - return labels; -} - -uint32_t *readLabelsBatch3(const char *labels_file, int start, int end) { - - int num_labels = end - start; - int file_header_size = sizeof(uint32_t) * start; - - uint32_t *labels = (uint32_t *)malloc(sizeof(uint32_t) * num_labels); - FILE *file = fopen(labels_file, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting...\n", labels_file); - abort(); - } - - fseek(file, file_header_size, SEEK_SET); // Skipping the file header - - size_t bytes_read = fread(labels, 1, sizeof(uint32_t) * num_labels, file); - - fclose(file); - - return labels; -} - -void computeAccuracy(const char *labels_file, int num_labels, - void *result_ptr) { - - struct Tensor *result = (struct Tensor *)result_ptr; - - uint8_t *labels = readLabels(labels_file, num_labels); - size_t batch_dim = result->dims.dim_sizes[0]; - size_t channels = result->dims.dim_sizes[1]; - float *data = (float *)result->host_data; - int num_errors = 0; - - for (int i = 0; i < batch_dim; i++) { - int chosen = 0; - for (int id = 1; id < 10; ++id) { - if (data[i * channels + chosen] < data[i * channels + id]) - chosen = id; - } - - // printf("chosen = %d, label = %d \n", chosen, labels[i]); - if (chosen != labels[i]) - num_errors++; - } - - float accuracy = ((batch_dim - num_errors) * 1.0 / batch_dim * 1.0) * 100.0; - printf("****** Accuracy = %f \n\n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - fclose(fp); - } -} - -// NOTE: batch_size and num_classes are Unused arguments -float computeAccuracy2(uint8_t *labels, int batch_size, void *result_ptr, - size_t num_classes = 10) { - - struct Tensor *result = (struct Tensor *)result_ptr; - - size_t batch_dim = result->dims.dim_sizes[0]; - num_classes = result->dims.dim_sizes[1]; - float *data = (float *)result->host_data; - int num_errors = 0; - - printf("batch_dim = %lu, channels = %lu \n", batch_dim, num_classes); - - for (unsigned int i = 0; i < batch_dim; i++) { - - int chosen = 0; - for (int id = 1; id < num_classes; ++id) { - if (data[i * num_classes + chosen] < data[i * num_classes + id]) - chosen = id; - } - - if (chosen != labels[i]) - num_errors++; - } - - float accuracy = ((batch_dim - num_errors) * 1.0 / batch_dim * 1.0) * 100.0; - printf("****** Accuracy = %f \n\n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); - - return accuracy; -} - -float computeAccuracy3(uint32_t *labels, void *result_ptr) { - - struct Tensor *result = (struct Tensor *)result_ptr; - - size_t batch_dim = result->dims.dim_sizes[0]; - size_t num_classes = result->dims.dim_sizes[1]; - float *data = (float *)result->host_data; - int num_errors = 0; - - printf("batch_dim = %lu, num_classes = %lu \n", batch_dim, num_classes); - - for (int i = 0; i < batch_dim; i++) { - - int chosen = 0; - for (int id = 1; id < num_classes; ++id) { - if (data[i * num_classes + chosen] < data[i * num_classes + id]) - chosen = id; - } - - if (chosen != labels[i]) - num_errors++; - } - - float accuracy = ((batch_dim - num_errors) * 1.0 / batch_dim * 1.0) * 100.0; - printf("****** Accuracy = %f \n\n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); - - return accuracy; -} - -struct ClassProb { - float prob; - int index; -}; - -bool descendFloatComp(ClassProb obj1, ClassProb obj2) { - return obj1.prob > obj2.prob; -} - -float computeTop5Accuracy(uint8_t *labels, int num_labels, void *result_ptr, - unsigned num_classes = 10) { - - struct Tensor *result = (struct Tensor *)result_ptr; - - size_t batch_dim = result->dims.dim_sizes[0]; - size_t channels = result->dims.dim_sizes[1]; - float *data = (float *)result->host_data; - int num_errors = 0; - - printf("batch_dim = %lu, channels = %lu \n", batch_dim, channels); - - for (int i = 0; i < num_labels; i++) { - - std::vector<ClassProb> elem_probs; - for (int id = 0; id < num_classes; ++id) { - ClassProb cProb; - cProb.prob = data[i * channels + id]; - cProb.index = id; - elem_probs.push_back(cProb); - } - - std: - sort(elem_probs.begin(), elem_probs.end(), descendFloatComp); - // Check if any of top-5 predictions matches - bool matched = false; - for (int j = 0; j < 5; j++) { - ClassProb cProb = elem_probs[j]; - if (cProb.index == labels[i]) - matched = true; - } - - if (!matched) - num_errors += 1; - } - - float accuracy = ((batch_dim - num_errors) * 1.0 / batch_dim * 1.0) * 100.0; - printf("****** Accuracy = %f \n\n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); - - return accuracy; -} - -void dumpFinalAccuracy(float accuracy) { - - printf("\n\n **** Final Accuracy = %f \n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); - - run_accuracies.push_back(accuracy); -} - -void dumpAvgPSNR(float avg_psnr) { - - FILE *fp = fopen("avg_psnr", "w+"); - if (fp != NULL) { - std::ostringstream ss; - ss << std::fixed << avg_psnr; - std::string print_str = ss.str(); - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); -} - -void dumpPSNRStd(float psnr_std) { - - FILE *fp = fopen("psnr_std.txt", "w+"); - if (fp != NULL) { - std::ostringstream ss; - ss << std::fixed << psnr_std; - std::string print_str = ss.str(); - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); -} - -void dumpExecutionAccuracies() { - - FILE *fp = fopen("run_accuracies.txt", "w+"); - if (fp != NULL) { - for (int i = 0; i < run_accuracies.size(); i++) { - float accuracy = run_accuracies[i]; - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - fwrite(print_str.c_str(), 1, print_str.length(), fp); - fwrite("\n", 1, 1, fp); - } - } - - fclose(fp); -} - -float readPSNRFromFile(const char *file_name) { - - float psnr; - FILE *pFile = fopen(file_name, "r"); - if (pFile == NULL) { - printf("ERROR: psnr.txt not found! \n"); - abort(); - } - - fscanf(pFile, "%f", &psnr); - printf("**** PSNR read = %f \n\n", psnr); - return psnr; -} - -float computePSNRViolation(void *gold_ptr, void *approx_ptr, - float PSNR_threshold) { - - PSNR_threshold = readPSNRFromFile("psnr.txt"); - std::vector<float> psnr_list; - - struct Tensor *gold_tensor = (struct Tensor *)gold_ptr; - struct Tensor *approx_tensor = (struct Tensor *)approx_ptr; - - size_t *dim_sizes = gold_tensor->dims.dim_sizes; - size_t batch_dim = dim_sizes[0]; - size_t image_size = dim_sizes[1] * dim_sizes[2] * dim_sizes[3]; - - printf("batch_dim = %lu, image_size = %lu \n", batch_dim, image_size); - - float *gold_data = (float *)gold_tensor->host_data; - float *approx_data = (float *)approx_tensor->host_data; - - FILE *fp = fopen("img_psnr.txt", "w+"); - - float sum_psnr = 0.0; - int num_errors = 0; - for (size_t i = 0; i < batch_dim; i++) { - float mse_sum = 0.0; - float max_val = -999999; - size_t offset = i * image_size; - - for (size_t j = 0; j < image_size; j++) { - float diff = gold_data[offset + j] - approx_data[offset + j]; - float diff_square = diff * diff; - mse_sum += diff_square; - - if (max_val < gold_data[offset + j]) { - max_val = gold_data[offset + j]; - } - } - - mse_sum = mse_sum / image_size; - float psnr = 20 * log10(255 / sqrt(mse_sum)); - - sum_psnr += psnr; - if (psnr < PSNR_threshold) - num_errors += 1; - - printf("PSNR value = %f \n", psnr); - psnr_list.push_back(psnr); - - std::ostringstream ss; - ss << std::fixed << psnr; - std::string print_str = ss.str(); - fwrite(print_str.c_str(), 1, print_str.length(), fp); - fwrite("\n", 1, 1, fp); - } - - float violation_rate = (num_errors * 1.0) / batch_dim * 100.0; - printf("*** violation_rate= %f \n\n", violation_rate); - - float avg_psnr = sum_psnr / batch_dim; - printf("*** avg_psnr = %f \n\n", avg_psnr); - dumpAvgPSNR(avg_psnr); - - float success_rate = 100.0 - violation_rate; - dumpFinalAccuracy(success_rate); - - fclose(fp); - - float var = 0.0; - for (size_t i = 0; i < batch_dim; i++) { - var = var + (psnr_list[i] - avg_psnr) * (psnr_list[i] - avg_psnr); - } - - var /= batch_dim; - float std = sqrt(var); - - dumpPSNRStd(std); - - return violation_rate; -} - -void dumpOutput(void *output_ptr, const char *file_name) { - - struct Tensor *out_tensor = (struct Tensor *)output_ptr; - size_t size_in_bytes = out_tensor->size_in_bytes; - printf("** Output size = %lu \n", size_in_bytes); - - float *host_data = (float *)out_tensor->host_data; - FILE *fd = fopen(file_name, "w+"); - fwrite(host_data, 1, size_in_bytes, fd); - fclose(fd); -} - -#endif