diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h b/llvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h index 3e0b28415b8e2efa9237c945a3454c2d8e997266..7eb2fa8de36930121b3cb2c1f080595abad7873b 100644 --- a/llvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h +++ b/llvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h @@ -327,12 +327,12 @@ struct Tensor* readTrainedWeights(const char* file_name, int data_type, struct Tensor* readInputBatch(const char* file_name, int data_type, - int start, int end, - int dim2_size, int dim3_size, int dim4_size){ + long int start, long int end, + long int dim2_size, long int dim3_size, long int dim4_size){ - int dim1_size = end - start; + long int dim1_size = end - start; // FIXIT: Don't assume floating point types - int type_size = 4; // NOTE: Assuming floating point tensors + long int type_size = 4; // NOTE: Assuming floating point tensors long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; long int size_in_bytes = type_size * dim1_size * dim2_size * dim3_size * dim4_size; float* tensor_data = (float*) malloc(sizeof(float) * num_elems); @@ -364,12 +364,12 @@ struct Tensor* readInputBatch(const char* file_name, int data_type, void* copyInputBatch(const char* file_name, int start, int end, - int dim2_size, int dim3_size, int dim4_size, + long int dim2_size, long int dim3_size, long int dim4_size, void* inputTensor_ptr){ struct Tensor* inputTensor = (struct Tensor*) inputTensor_ptr; - int dim1_size = end - start; + long int dim1_size = end - start; // FIXIT: Don't assume floating point types int type_size = 4; // NOTE: Assuming floating point tensors long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size;