From d58f0fd2fccfd72f1ac7d0bc3e8fd092e1d43795 Mon Sep 17 00:00:00 2001 From: nz11 <nz11@illinois.edu> Date: Sun, 22 Nov 2020 17:39:48 -0600 Subject: [PATCH] Update alexnet_imagenet.py --- llvm/projects/keras/src/alexnet_imagenet.py | 26 +++++++++++++-------- 1 file changed, 16 insertions(+), 10 deletions(-) diff --git a/llvm/projects/keras/src/alexnet_imagenet.py b/llvm/projects/keras/src/alexnet_imagenet.py index 0e8425b825..1423b8c2e9 100644 --- a/llvm/projects/keras/src/alexnet_imagenet.py +++ b/llvm/projects/keras/src/alexnet_imagenet.py @@ -30,10 +30,10 @@ data_format = 'channels_first' IMAGENET_DIR = '/home/nz11/ILSVRC2012/' OUTPUT_DIR = 'data/alexnet_imagenet_tune/' -WEIGHTS_PATH = 'data/weights.h5' +WEIGHTS_PATH = 'data/alexnet_imagenet_tune/weights.h5' NUM_CLASSES = 200 -IMAGES_PER_CLASS = 40 +IMAGES_PER_CLASS = 50 # VAL_SIZE = 100 @@ -183,6 +183,9 @@ y_true = np.array(y_true) X_tune = np.array(X_tune) y_tune = np.array(y_tune) +print ('tune size', len(X_tune)) +print ('test size', len(X_test)) + @@ -233,16 +236,16 @@ model.compile(optimizer=keras.optimizers.Adam(lr=0.00001), loss='categorical_cro if os.path.exists(WEIGHTS_PATH): model.load_weights(WEIGHTS_PATH) else: - model.fit_generator(generate(), steps_per_epoch=1000, validation_data=(X_test, to_categorical(y_true, num_classes=1000)), epochs=2) - K.set_value(model.optimizer.lr, 0.000001) - model.fit_generator(generate(), steps_per_epoch=1000, validation_data=(X_test, to_categorical(y_true, num_classes=1000)), epochs=6) - model.save_weights('data/weights.h5') + pass +# model.fit_generator(generate(), steps_per_epoch=1000, validation_data=(X_test, to_categorical(y_true, num_classes=1000)), epochs=3) +# K.set_value(model.optimizer.lr, 0.000001) +# model.fit_generator(generate(), steps_per_epoch=1000, validation_data=(X_test, to_categorical(y_true, num_classes=1000)), epochs=3) -translate_to_approxhpvm(model, OUTPUT_DIR, X_tune, y_tune, 1000) +translate_to_approxhpvm(model, OUTPUT_DIR, X_tune, y_tune, 1000, dump_weights=False) -# dumpCalibrationData2(OUTPUT_DIR + 'test_input_10K.bin', X_test, OUTPUT_DIR + 'test_labels_10K.bin', y_true) -dumpCalibrationData2(OUTPUT_DIR + 'tune_input.bin', X_tune, OUTPUT_DIR + 'tune_labels.bin', y_tune) -dumpCalibrationData2(OUTPUT_DIR + 'test_input.bin', X_test, OUTPUT_DIR + 'test_labels.bin', y_true) +# # dumpCalibrationData2(OUTPUT_DIR + 'test_input_10K.bin', X_test, OUTPUT_DIR + 'test_labels_10K.bin', y_true) +# dumpCalibrationData2(OUTPUT_DIR + 'tune_input.bin', X_tune, OUTPUT_DIR + 'tune_labels.bin', y_tune) +# dumpCalibrationData2(OUTPUT_DIR + 'test_input.bin', X_test, OUTPUT_DIR + 'test_labels.bin', y_true) pred = np.argmax(model.predict(X_test), axis=1) @@ -250,4 +253,7 @@ print ('val accuracy', np.sum(pred == y_true.ravel()) / len(X_test)) pred = np.argmax(model.predict(X_tune), axis=1) print ('val accuracy', np.sum(pred == y_tune.ravel()) / len(X_tune)) + +model.save_weights(OUTPUT_DIR + '/weights.h5') + \ No newline at end of file -- GitLab