diff --git a/hpvm/docs/components/hpvm-profiler.rst b/hpvm/docs/components/hpvm-profiler.rst new file mode 100644 index 0000000000000000000000000000000000000000..8a0e6603d3b7111d2735a86b5db26d7aa834ebb6 --- /dev/null +++ b/hpvm/docs/components/hpvm-profiler.rst @@ -0,0 +1,6 @@ +HPVM Profiler API +====================== + +.. autofunction:: hpvm_profiler.profile_configs + +.. autofunction:: hpvm_profiler.plot_hpvm_configs diff --git a/hpvm/docs/components/index.rst b/hpvm/docs/components/index.rst index 774c1ef1cd405f61013bba1951f2ec3dc0fbd625..e71b13a8bb29ecb5ad44d525d8f5179464d3b70b 100644 --- a/hpvm/docs/components/index.rst +++ b/hpvm/docs/components/index.rst @@ -28,3 +28,5 @@ which explains their role, usage, and other details. keras-frontend keras-benchmarks torch2hpvm + predtuner + hpvm-profiler diff --git a/hpvm/docs/components/predtuner.rst b/hpvm/docs/components/predtuner.rst new file mode 120000 index 0000000000000000000000000000000000000000..cdda0ab7b31c03473ad9d5646b36dd4bade13b2c --- /dev/null +++ b/hpvm/docs/components/predtuner.rst @@ -0,0 +1 @@ +../../projects/predtuner/README.rst \ No newline at end of file diff --git a/hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py b/hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py index 88f74c9194bb105a2a731ed063aed7e2ac875e6a..14d0f491b8dccb41f7136087f4146f64e0470693 100644 --- a/hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py +++ b/hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py @@ -1,7 +1,9 @@ +from dataclasses import dataclass from pathlib import Path -from subprocess import CalledProcessError, PIPE +from subprocess import PIPE, CalledProcessError from typing import Iterable, List, Tuple, Union -from dataclasses import dataclass + +import matplotlib.pyplot as plt from tqdm import trange PathLike = Union[Path, str] @@ -14,25 +16,20 @@ def profile_configs( output_config_path: PathLike, profile_filename: str = "profile_info.txt", qos_filename: str = "final_accuracy", -): +) -> None: """ Profile an HPVM configuration file with an HPVM binary. The configuration file must have the baseline as the first configuration. - binary_path: Union[Path, str] - Path to binary to be executed in profiling. - config_path: Union[Path, str] - Path to config file (HPVM configuration format) + binary_path: Path to binary to be executed in profiling. + config_path: Path to config file (HPVM configuration format) with configs to enumerate for profiling. - output_config_path: Union[Path, str] - Path where the output configs are written. + output_config_path: Path where the output configs are written. The output config file has the same configs as the input `config_path` file, but the performance and energy readings are updated. - profile_filename: str - Name of profile file generated by the binary (in current directory). + profile_filename: Name of profile file generated by the binary (in current directory). This defaults to "profile_info.txt" and should not be changed for HPVM binaries. - qos_filename: str - Name of QoS file generated by the binary (in current directory). + qos_filename: Name of QoS file generated by the binary (in current directory). It contains a single float number as the QoS of this run. This defaults to "final_accuracy" and should not be changed for HPVM binaries. """ @@ -76,26 +73,21 @@ def plot_hpvm_configs( save_to: PathLike = None, show_qos_loss: bool = True, **fig_kwargs, -): +) -> plt.Figure: """ Plot the QoS-speedup information in an HPVM configuration file. It is recommended to profile the config file first (using `profile_configs`) to obtain real speedup numbers. This function creates a `matplotlib.pyplot.Figure`, plots on it, and returns it. - config_path: Union[Path, str] - Path to the config file (HPVM configuration format). - save_to: Union[Path, str] - File to save figure into. Default is None: don't save figure (just return it). - show_qos_loss: bool - Show the loss of QoS on x axis of the figure. Defaults to True. + config_path: Path to the config file (HPVM configuration format). + save_to: File to save figure into. Default is None: don't save figure (just return it). + show_qos_loss: Show the loss of QoS on x axis of the figure. Defaults to True. If False, will use (absolute) QoS instead of QoS loss. - fig_kwargs: - Arguments to pass to `plt.subplots`. + fig_kwargs: Arguments to pass to `plt.subplots`. """ import numpy as np - import matplotlib.pyplot as plt _, configs = read_hpvm_configs(config_path) get_qos = lambda c: c.qos_loss if show_qos_loss else c.qos @@ -109,6 +101,7 @@ def plot_hpvm_configs( fig.savefig(save_to, dpi=300) return fig + @dataclass class Config: conf_name: str diff --git a/hpvm/projects/predtuner b/hpvm/projects/predtuner index 2fbd6f876c34bfdbcbddc71cd73646e71bde5748..aa28a41ca12b15af31e1d15b687367e27cde3878 160000 --- a/hpvm/projects/predtuner +++ b/hpvm/projects/predtuner @@ -1 +1 @@ -Subproject commit 2fbd6f876c34bfdbcbddc71cd73646e71bde5748 +Subproject commit aa28a41ca12b15af31e1d15b687367e27cde3878 diff --git a/hpvm/projects/torch2hpvm/README.rst b/hpvm/projects/torch2hpvm/README.rst index e36e832045d9092d463448ce3e114d02c8f8a1ef..928aa2e19f1d8efdcbb33268925c7c3d6ba0394f 100644 --- a/hpvm/projects/torch2hpvm/README.rst +++ b/hpvm/projects/torch2hpvm/README.rst @@ -1,10 +1,8 @@ - PyTorch Frontend for HPVM ========================= ``torch2hpvm`` is a PyTorch frontend for HPVM. It provides a set of API that - * Generates a PyTorch ``module`` into HPVM-C code; * Exports a PyTorch dataset to ApproxHPVM dataset format; * Compiles the generated code into binary by invoking HPVM automatically.