diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_api.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_api.h index 05fff4db1b48bd6501aa6436238e96397e2de8f6..6b0f835f7361fb54b9826bdec7e1819333f989df 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_api.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_api.h @@ -5,125 +5,106 @@ #include "device_math.h" -extern "C"{ - - // NOTE: API for tensorGroupConvolution - // API for Running Tensor Convolution with CUTLASS - void* tensorConvCutlass(void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups); - - void* tensorHalfConvCutlass(void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups); - - - // Perforated Tensor Conv with 'perforation_rate' parameter - void* tensorConvPerf(void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, int row, int col); - - void* tensorConvolutionKernelSamp(void* input, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, - int skip_every); - - void* tensorConvPerfCuda(void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, - int row, int col, int start); - - void* tensorConvPerfSim(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, int row, int col); - - - void* tensorConvPerfCudaHalf(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, - int row, int col, int start); - - void sampleFilter(Tensor* filter, int skip_rate, int skip_offset); - - void* tensorConvSampSim(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, - int skip_rate, int skip_offset); - - void* tensorConvSampSim2(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, - int skip_rate, int skip_offset, float interpolation_rate); - - - void *autotuner_tensorFft(void *input, bool inverse); - - - void *autotuner_tensorReduce(void *input, size_t axis, MathOp func); - - - void *autotuner_tensorProjectiveT(void *input, void *transformation); - - - void *autotuner_tensorMap1(MathOp func, void *input); - - void *autotuner_tensorMap2(MathOp func, void *input1, void *input2); - - - void *autotuner_tensorMap3(MathOp func, void *input1, void *input2, void *input3); - - void* tensorConvInputHalf(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int skip_every, int skip_offset); - - void* tensorConvApproxHalf(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, - int row, int col, - int skip_every, int skip_offset); - - void* tensorConvApprox(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, - int row, int col, - int skip_every, int skip_offset); - - void* tensorConvApproxHalf2(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups, - int row, int col, - int skip_every, int skip_offset); - - - void* PROMISE_Conv(void* input, float i_min, float i_max, - void* filter, float w_min, float w_max, - void* bias, float b_min, float b_max, - int conv_pad_h, int conv_pad_w, - int conv_stride_h, int conv_stride_w, - int pool_id, int pool_size, int pool_stride, - int activation_id, // Relu, Tanh, ClipRelu - float out_min, float out_max, int swing); - - - void* PROMISE_FC(void* input, float i_min, float i_max, - void* weights, float w_min, float w_max, - void* bias, float b_min, float b_max, - int activation_id, - float out_min, float out_max, int swing); - +extern "C" { + +// NOTE: API for tensorGroupConvolution +// API for Running Tensor Convolution with CUTLASS +void *tensorConvCutlass(void *input, void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups); + +void *tensorHalfConvCutlass(void *input, void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups); + +// Perforated Tensor Conv with 'perforation_rate' parameter +void *tensorConvPerf(void *input, void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int row, int col); + +void *tensorConvolutionKernelSamp(void *input, void *filter_ptr, + int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, + int conv_mode, int conv_groups, + int skip_every); + +void *tensorConvPerfCuda(void *input, void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int row, int col, int start); + +void *tensorConvPerfSim(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int row, int col); + +void *tensorConvPerfCudaHalf(void *input_ptr, void *filter_ptr, + int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, + int conv_mode, int conv_groups, int row, int col, + int start); + +void sampleFilter(Tensor *filter, int skip_rate, int skip_offset); + +void *tensorConvSampSim(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int skip_rate, int skip_offset); + +void *tensorConvSampSim2(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int skip_rate, int skip_offset, + float interpolation_rate); + +void *autotuner_tensorFft(void *input, bool inverse); + +void *autotuner_tensorReduce(void *input, size_t axis, MathOp func); + +void *autotuner_tensorProjectiveT(void *input, void *transformation); + +void *autotuner_tensorMap1(MathOp func, void *input); + +void *autotuner_tensorMap2(MathOp func, void *input1, void *input2); + +void *autotuner_tensorMap3(MathOp func, void *input1, void *input2, + void *input3); + +void *tensorConvInputHalf(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int skip_every, int skip_offset); + +void *tensorConvApproxHalf(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups, int row, int col, int skip_every, + int skip_offset); + +void *tensorConvApprox(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int row, int col, int skip_every, int skip_offset); + +void *tensorConvApproxHalf2(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups, int row, int col, int skip_every, + int skip_offset); + +void *PROMISE_Conv(void *input, float i_min, float i_max, void *filter, + float w_min, float w_max, void *bias, float b_min, + float b_max, int conv_pad_h, int conv_pad_w, + int conv_stride_h, int conv_stride_w, int pool_id, + int pool_size, int pool_stride, + int activation_id, // Relu, Tanh, ClipRelu + float out_min, float out_max, int swing); + +void *PROMISE_FC(void *input, float i_min, float i_max, void *weights, + float w_min, float w_max, void *bias, float b_min, float b_max, + int activation_id, float out_min, float out_max, int swing); } #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_knob_utils.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_knob_utils.h index eb6516faab23dfbe8b2c0b14e5bf16f52ee9cd4e..4611ae2218f2b838ff6cbae90824b5c8f07349ec 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_knob_utils.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_knob_utils.h @@ -1,96 +1,68 @@ - - #ifndef APPROX_KNOBS_UTILS #define APPROX_KNOBS_UTILS - -#include <sstream> #include <fstream> #include <map> +#include <sstream> #include <vector> +class PerfParams { -class PerfParams{ - - public: +public: int row; int col; int skip_offset; PerfParams(); - + PerfParams(int row1, int col1, int skip_offset1); - }; - - - -class PerfParamSet{ +class PerfParamSet { private: - std::map<int, PerfParams> perf_knob_map; - -public: +public: PerfParamSet(); - - PerfParams getPerfParams(int knob_id); + PerfParams getPerfParams(int knob_id); }; - - - +class SampParams { - -class SampParams{ - - public: +public: int skip_rate; int skip_offset; float interpolation_id; - + SampParams(); - + SampParams(int skip_rate1, int skip_offset1, float interpolation_id1); - }; +class SampParamSet { - -class SampParamSet{ - - private: - +private: std::map<int, SampParams> samp_knob_map; - - public: +public: SampParamSet(); SampParams getSampParams(int knob_id); - }; - - - - class RedSampParams { - public: +public: float skip_ratio; bool is_half; RedSampParams(); RedSampParams(float skip_ratio1, bool is_half1); - }; RedSampParams getRedSampParams(int knob_id); - #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques2.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques2.h index 22a6b5ca951793d26003f0c5ff4dc1e7d4c39f95..98d6d63eadc44b171b54bd09a9096d072c4be10d 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques2.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques2.h @@ -1,213 +1,218 @@ #include "tensor_utils.h" - -//produces N COL MAJOR matrixes with H_out*W_out rows and reduced_filter_elem cols -__global__ void convToGemmApproxHalf(__half * const __restrict__ output, - const __half * const __restrict input, const int N, const int C, - const int H, const int W, const int KH, - const int KW, const int V_pad, - const int H_pad, const int H_out, - const int W_out, const int V_stride, - const int H_stride, const int reduced_filter_elem, - const int skip_every) { - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_out * W_out); //output image number - const int c = tx % (C * H_out * W_out) / (H_out * W_out); //output chan number - const int h = tx % (H_out * W_out) / W_out; //output height index (row number) - const int w = tx % W_out; //output width index (col number) - const int inH = h * V_stride - V_pad; //input height index (row number) - const int inW = w * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? - for(int i = 0; i < KH; i++) { - for(int j = 0; j < KW; j++) { - const int filter_elem_num = (c * KH + i) * KW + j; //index of this filter element - if(filter_elem_num % skip_every != skip_every-1) { //are we including this filter element? - const int output_col = filter_elem_num - (filter_elem_num/skip_every); //calculate output column, taking skipping into account - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((n * reduced_filter_elem + output_col) * H_out + h) * W_out + w] = input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; - else - output[((n * reduced_filter_elem + output_col) * H_out + h) * W_out + w] = 0; - } +// produces N COL MAJOR matrixes with H_out*W_out rows and reduced_filter_elem +// cols +__global__ void convToGemmApproxHalf( + __half *const __restrict__ output, const __half *const __restrict input, + const int N, const int C, const int H, const int W, const int KH, + const int KW, const int V_pad, const int H_pad, const int H_out, + const int W_out, const int V_stride, const int H_stride, + const int reduced_filter_elem, const int skip_every) { + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_out * W_out); // output image number + const int c = tx % (C * H_out * W_out) / (H_out * W_out); // output chan + // number + const int h = tx % (H_out * W_out) / W_out; // output height index (row + // number) + const int w = tx % W_out; // output width index (col number) + const int inH = h * V_stride - V_pad; // input height index (row number) + const int inW = w * H_stride - H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? + for (int i = 0; i < KH; i++) { + for (int j = 0; j < KW; j++) { + const int filter_elem_num = + (c * KH + i) * KW + j; // index of this filter element + if (filter_elem_num % skip_every != + skip_every - 1) { // are we including this filter element? + const int output_col = + filter_elem_num - + (filter_elem_num / skip_every); // calculate output column, taking + // skipping into account + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((n * reduced_filter_elem + output_col) * H_out + h) * + W_out + + w] = input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + else + output[((n * reduced_filter_elem + output_col) * H_out + h) * + W_out + + w] = 0; + } } } } } - -//This skips every xth row -//H_eff is the number of rows calculated exactly -__global__ -void convToGemmPerfRow(float * const __restrict__ output, - const float * const __restrict input, const int N, const int C, - const int H, const int W, const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, const int W_out, const int V_stride, - const int H_stride, const int x, const int start, const int H_eff){ - - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_eff * W_out); //output image number - const int c = tx % (C * H_eff * W_out) / (H_eff * W_out); //output chan number - const int h = tx % (H_eff * W_out) / W_out; //output height index (row number) - const int w = tx % W_out; //output width index (col number) +// This skips every xth row +// H_eff is the number of rows calculated exactly +__global__ void +convToGemmPerfRow(float *const __restrict__ output, + const float *const __restrict input, const int N, const int C, + const int H, const int W, const int KH, const int KW, + const int V_pad, const int H_pad, const int H_out, + const int W_out, const int V_stride, const int H_stride, + const int x, const int start, const int H_eff) { + + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_eff * W_out); // output image number + const int c = tx % (C * H_eff * W_out) / (H_eff * W_out); // output chan + // number + const int h = tx % (H_eff * W_out) / W_out; // output height index (row + // number) + const int w = tx % W_out; // output width index (col number) int past_start = (h % (x - 1) >= (x - 1 - start)); - const int inH = (h / (x - 1) * x + h % (x-1) + - past_start) * V_stride - V_pad; //input height index (row number) - const int inW = w * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? - for(int i = 0; i < KH; i++) { - for(int j = 0; j < KW; j++) { - const int filter_elem_num = (c * KH + i) * KW + j; //index of this filter element - - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((n * C * KH * KW + filter_elem_num) * H_eff + h) * W_out + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; - else - output[((n * C * KH * KW + filter_elem_num) * H_eff + h) * W_out + w] = 0; - + const int inH = (h / (x - 1) * x + h % (x - 1) + past_start) * V_stride - + V_pad; // input height index (row number) + const int inW = w * H_stride - H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? + for (int i = 0; i < KH; i++) { + for (int j = 0; j < KW; j++) { + const int filter_elem_num = + (c * KH + i) * KW + j; // index of this filter element + + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((n * C * KH * KW + filter_elem_num) * H_eff + h) * W_out + + w] = input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + else + output[((n * C * KH * KW + filter_elem_num) * H_eff + h) * W_out + + w] = 0; } } } - } - -//For use in tensorConvPerfCuda -//Interpolates every xth row starting from x - 1 - start -//N is total number of elements in final output array -__global__ -void approxInterpolateRow(int N, int old_h, int n, int c, int h, int w, - float *old_data, float *new_data, int x, int start){ +// For use in tensorConvPerfCuda +// Interpolates every xth row starting from x - 1 - start +// N is total number of elements in final output array +__global__ void approxInterpolateRow(int N, int old_h, int n, int c, int h, + int w, float *old_data, float *new_data, + int x, int start) { int index = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; - for(int i = index; i < N; i += stride){ + for (int i = index; i < N; i += stride) { int col = ((i % (c * h * w)) % (h * w)) % w; int row = ((i % (c * h * w)) % (h * w)) / w; int ch = (i % (c * h * w)) / (h * w); int n = i / (c * h * w); int past_start = ((row % x) >= (x - 1 - start)); - if(row == h-1) + if (row == h - 1) new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[n * (c * old_h * w) + ch * (old_h * w) + (old_h - 1) * (w) + col]; + old_data[n * (c * old_h * w) + ch * (old_h * w) + (old_h - 1) * (w) + + col]; else if (row == 0) new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[n * (c * old_h * w) + ch * (old_h * w) + 0 * (w) + col]; - else if(row % x == x - 1 - start){ + old_data[n * (c * old_h * w) + ch * (old_h * w) + 0 * (w) + col]; + else if (row % x == x - 1 - start) { int past_startO = ((row - 1) % x) > (x - 1 - start); - int oldIdx1 = n * (c * old_h * w) + ch * (old_h * w) + - ((x-1) * ((row - 1) / x) + (row-1) % x - past_startO) * (w) + col; + int oldIdx1 = + n * (c * old_h * w) + ch * (old_h * w) + + ((x - 1) * ((row - 1) / x) + (row - 1) % x - past_startO) * (w) + col; new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - (old_data[oldIdx1] + old_data[oldIdx1 + 1 * w]) / 2; - } - else + (old_data[oldIdx1] + old_data[oldIdx1 + 1 * w]) / 2; + } else new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[n * (c * old_h * w) + ch * (old_h * w) + - ((x-1) * (row / x) + row % x - past_start ) * (w) + col]; - - + old_data[n * (c * old_h * w) + ch * (old_h * w) + + ((x - 1) * (row / x) + row % x - past_start) * (w) + col]; } - } - -//This skips every xth row -//W_eff is the number of cols calculated exactly -__global__ -void convToGemmPerfCol(float * const __restrict__ output, - const float * const __restrict input, const int N, const int C, - const int H, const int W, const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, const int W_out, const int V_stride, - const int H_stride, const int x, const int start, const int W_eff){ - - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_out * W_eff); //output image number - const int c = tx % (C * H_out * W_eff) / (H_out * W_eff); //output chan number - const int h = tx % (H_out * W_eff) / W_eff; //output height index (row number) - const int w = tx % W_eff; //output width index (col number) +// This skips every xth row +// W_eff is the number of cols calculated exactly +__global__ void +convToGemmPerfCol(float *const __restrict__ output, + const float *const __restrict input, const int N, const int C, + const int H, const int W, const int KH, const int KW, + const int V_pad, const int H_pad, const int H_out, + const int W_out, const int V_stride, const int H_stride, + const int x, const int start, const int W_eff) { + + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_out * W_eff); // output image number + const int c = tx % (C * H_out * W_eff) / (H_out * W_eff); // output chan + // number + const int h = tx % (H_out * W_eff) / W_eff; // output height index (row + // number) + const int w = tx % W_eff; // output width index (col number) int past_start = (w % (x - 1)) >= (x - 1 - start); - const int inH = h * V_stride - V_pad; //input height index (row number) - const int inW = (w / (x - 1) * x + w % (x-1) + - past_start) * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? - for(int i = 0; i < KH; i++) { - for(int j = 0; j < KW; j++) { - const int filter_elem_num = (c * KH + i) * KW + j; //index of this filter element - - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((n * C * KH * KW + filter_elem_num) * H_out + h) * W_eff + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; - else - output[((n * C * KH * KW + filter_elem_num) * H_out + h) * W_eff + w] = 0; - + const int inH = h * V_stride - V_pad; // input height index (row number) + const int inW = (w / (x - 1) * x + w % (x - 1) + past_start) * H_stride - + H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? + for (int i = 0; i < KH; i++) { + for (int j = 0; j < KW; j++) { + const int filter_elem_num = + (c * KH + i) * KW + j; // index of this filter element + + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((n * C * KH * KW + filter_elem_num) * H_out + h) * W_eff + + w] = input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + else + output[((n * C * KH * KW + filter_elem_num) * H_out + h) * W_eff + + w] = 0; } } } - } - -//For use in tensorConvPerfCuda -//Interpolates every xth col starting from x - 1 - start -//N is total number of elements in final output array -__global__ -void approxInterpolateCol(int N, int old_w, int n, int c, int h, int w, - float *old_data, float *new_data, int x, int start){ +// For use in tensorConvPerfCuda +// Interpolates every xth col starting from x - 1 - start +// N is total number of elements in final output array +__global__ void approxInterpolateCol(int N, int old_w, int n, int c, int h, + int w, float *old_data, float *new_data, + int x, int start) { int index = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; - for(int i = index; i < N; i += stride){ + for (int i = index; i < N; i += stride) { int col = ((i % (c * h * w)) % (h * w)) % w; int row = ((i % (c * h * w)) % (h * w)) / w; int ch = (i % (c * h * w)) / (h * w); int n = i / (c * h * w); int past_start = ((col % x) >= (x - 1 - start)); - if(col == w-1) + if (col == w - 1) new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[n * (c * h * old_w) + ch * (h * old_w) + row * (old_w) + old_w - 1]; + old_data[n * (c * h * old_w) + ch * (h * old_w) + row * (old_w) + + old_w - 1]; else if (col == 0) new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[n * (c * h * old_w) + ch * (h * old_w) + row * (old_w)]; - else if(col % x == x - 1 - start){ + old_data[n * (c * h * old_w) + ch * (h * old_w) + row * (old_w)]; + else if (col % x == x - 1 - start) { int past_startO = ((col - 1) % x) > (x - 1 - start); int oldIdx1 = n * (c * h * old_w) + ch * (h * old_w) + row * old_w + - ((x-1) * ((col - 1) / x) + (col-1) % x - past_startO); + ((x - 1) * ((col - 1) / x) + (col - 1) % x - past_startO); new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - (old_data[oldIdx1] + old_data[oldIdx1 + 1]) / 2; - } - else + (old_data[oldIdx1] + old_data[oldIdx1 + 1]) / 2; + } else new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[n * (c * h * old_w) + ch * (h * old_w) + row * old_w + - ((x-1) * (col / x) + col % x - past_start)]; - + old_data[n * (c * h * old_w) + ch * (h * old_w) + row * old_w + + ((x - 1) * (col / x) + col % x - past_start)]; } - } - - -//start has to be less than row or less than col -//row and col have to be >= 0 -//row = col = 1 means no perforation -void* tensorConvPerfCuda(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int row, int col, int start){ +// start has to be less than row or less than col +// row and col have to be >= 0 +// row = col = 1 means no perforation +void *tensorConvPerfCuda(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int row, int col, int start) { INFO("*** TensorConvolution (output perforation) \n"); profileEvent("Conv"); - Tensor* input = (Tensor*)input_ptr; - Tensor* filter = (Tensor*)filter_ptr; - //FIXME: Current hack to preserve backward compatibilty + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + // FIXME: Current hack to preserve backward compatibilty if (conv_groups == 0) { conv_groups = 1; } - - Tensor* output; + + Tensor *output; // TODO: Support other cases; hostToDeviceCopy(input); hostToDeviceCopy(filter); @@ -216,389 +221,377 @@ void* tensorConvPerfCuda(void* input_ptr, void* filter_ptr, convertToFP32(input); convertToFP32(filter); profileEvent("H2F_end"); - + int n, c, h, w; // output dimensions n = input->dims.dim_sizes[0]; - c = filter->dims.dim_sizes[0]; //number of filters + c = filter->dims.dim_sizes[0]; // number of filters const int KH = filter->dims.dim_sizes[2]; const int KW = filter->dims.dim_sizes[3]; h = (2 * vertical_pad + input->dims.dim_sizes[2] - KH) / vertical_stride + 1; int h_eff = h - h / row; - if(h % row > row - 1 - start) + if (h % row > row - 1 - start) h_eff = h_eff - 1; - w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + 1; + w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + + 1; int w_eff = w - w / col; - if(w % col > col - 1 - start) + if (w % col > col - 1 - start) w_eff = w_eff - 1; - Tensor *new_output; - if(row > 1){ - output = (Tensor*) create4DTensor((cudnnDataType_t) float_type, // input->data_type, - CUDNN_TENSOR_NCHW, n, c, h_eff, w); + if (row > 1) { + output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h_eff, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - float * convData; + float *convData; int convDataSize = sizeof(float) * n * num_filter_elem * h_eff * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 128; - const int gridSize = (n * input->dims.dim_sizes[1] * h_eff * w + blockSize - 1) / blockSize; - - convToGemmPerfRow<<<gridSize, blockSize>>>(convData, (float *)input->gpu_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, vertical_pad, - horizontal_pad, h, w, - vertical_stride, horizontal_stride, row, start, h_eff); + const int gridSize = + (n * input->dims.dim_sizes[1] * h_eff * w + blockSize - 1) / blockSize; + convToGemmPerfRow<<<gridSize, blockSize>>>( + convData, (float *)input->gpu_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + row, start, h_eff); checkCudaErrors(cudaDeviceSynchronize()); float alpha = 1.0f, beta = 0.0f; - checkCudaErrors(cublasSgemmStridedBatched(cublasHandle, - CUBLAS_OP_N, CUBLAS_OP_N, - h_eff * w, c, num_filter_elem, - &alpha, - convData, h_eff * w, num_filter_elem * h_eff * w, - (float *)filter->gpu_data, num_filter_elem, 0, - &beta, - (float *)output->gpu_data, h_eff * w, c * h_eff * w, - n)); - - new_output = (Tensor*) create4DTensor((cudnnDataType_t) float_type, // input->data_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + checkCudaErrors(cublasSgemmStridedBatched( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, h_eff * w, c, num_filter_elem, + &alpha, convData, h_eff * w, num_filter_elem * h_eff * w, + (float *)filter->gpu_data, num_filter_elem, 0, &beta, + (float *)output->gpu_data, h_eff * w, c * h_eff * w, n)); + + new_output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(new_output, DEVICE); - //interpolate - int numBlocks = (n * c * h * w + 127) / 128; - approxInterpolateRow<<<numBlocks,128>>>(n * c * h * w, h_eff, n, c, h, w, - (float *) output->gpu_data, (float *) new_output->gpu_data, - row, start); + // interpolate + int numBlocks = (n * c * h * w + 127) / 128; + approxInterpolateRow<<<numBlocks, 128>>>( + n * c * h * w, h_eff, n, c, h, w, (float *)output->gpu_data, + (float *)new_output->gpu_data, row, start); cudaDeviceSynchronize(); freeTensor(output); cudaFree(convData); - } - else if(col > 1){ - - output = (Tensor*)create4DTensor((cudnnDataType_t) float_type, //input->data_type, - CUDNN_TENSOR_NCHW, n, c, h, w_eff); + } else if (col > 1) { + + output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w_eff); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - float * convData; + float *convData; int convDataSize = sizeof(float) * n * num_filter_elem * h * w_eff; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 128; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w_eff + blockSize - 1) / blockSize; - - convToGemmPerfCol<<<gridSize, blockSize>>>(convData, (float *)input->gpu_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, - vertical_pad, horizontal_pad, h, w, - vertical_stride, horizontal_stride, col, start, w_eff); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w_eff + blockSize - 1) / blockSize; + convToGemmPerfCol<<<gridSize, blockSize>>>( + convData, (float *)input->gpu_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + col, start, w_eff); checkCudaErrors(cudaDeviceSynchronize()); float alpha = 1.0f, beta = 0.0f; - checkCudaErrors(cublasSgemmStridedBatched(cublasHandle, - CUBLAS_OP_N, CUBLAS_OP_N, - h * w_eff, c, num_filter_elem, - &alpha, - convData, h * w_eff, num_filter_elem * h * w_eff, - (float *)filter->gpu_data, num_filter_elem, 0, - &beta, - (float *)output->gpu_data, h * w_eff, c * h * w_eff, - n)); - - new_output = (Tensor*) create4DTensor((cudnnDataType_t) float_type, // input->data_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + checkCudaErrors(cublasSgemmStridedBatched( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, h * w_eff, c, num_filter_elem, + &alpha, convData, h * w_eff, num_filter_elem * h * w_eff, + (float *)filter->gpu_data, num_filter_elem, 0, &beta, + (float *)output->gpu_data, h * w_eff, c * h * w_eff, n)); + + new_output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(new_output, DEVICE); - //interpolate - int numBlocks = (n * c * h * w + 127) / 128; - approxInterpolateCol<<<numBlocks,128>>>(n * c * h * w, w_eff, n, c, h, w, - (float *)output->gpu_data, (float *)new_output->gpu_data, - col, start); + // interpolate + int numBlocks = (n * c * h * w + 127) / 128; + approxInterpolateCol<<<numBlocks, 128>>>( + n * c * h * w, w_eff, n, c, h, w, (float *)output->gpu_data, + (float *)new_output->gpu_data, col, start); cudaDeviceSynchronize(); freeTensor(output); cudaFree(convData); - } - else{ - output = (Tensor*)create4DTensor((cudnnDataType_t) float_type, // input->data_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + } else { + output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - float * convData; + float *convData; int convDataSize = sizeof(float) * n * num_filter_elem * h * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 128; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; - convToGemmApprox<<<gridSize, blockSize>>>(convData, (float *)input->gpu_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, - vertical_pad, horizontal_pad, h, w, - vertical_stride, horizontal_stride, - num_filter_elem, c * h * w); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; + convToGemmApprox<<<gridSize, blockSize>>>( + convData, (float *)input->gpu_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + num_filter_elem, c * h * w); checkCudaErrors(cudaDeviceSynchronize()); - //Do the matrix multiplication. Want to multiply convData by filter->gpu_data[f * chan * KH * KW] + // Do the matrix multiplication. Want to multiply convData by + // filter->gpu_data[f * chan * KH * KW] float alpha = 1.0f, beta = 0.0f; - checkCudaErrors(cublasSgemmStridedBatched(cublasHandle, - CUBLAS_OP_N, CUBLAS_OP_N, - h * w, c, num_filter_elem, - &alpha, - convData, h * w, num_filter_elem * h * w, - (float *)filter->gpu_data, num_filter_elem, 0, - &beta, - (float *)output->gpu_data, h * w, c * h * w, - n)); + checkCudaErrors(cublasSgemmStridedBatched( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, h * w, c, num_filter_elem, + &alpha, convData, h * w, num_filter_elem * h * w, + (float *)filter->gpu_data, num_filter_elem, 0, &beta, + (float *)output->gpu_data, h * w, c * h * w, n)); new_output = output; cudaFree(convData); } - profileEvent("Conv_end"); //, true); - - + return new_output; } -__global__ -void convToGemmPerfRowHalf(__half * const __restrict__ output, - const __half * const __restrict input, const int N, const int C, - const int H, const int W, const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, const int W_out, const int V_stride, - const int H_stride, const int x, const int start, const int H_eff){ - - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_eff * W_out); //output image number - const int c = tx % (C * H_eff * W_out) / (H_eff * W_out); //output chan number - const int h = tx % (H_eff * W_out) / W_out; //output height index (row number) - const int w = tx % W_out; //output width index (col number) +__global__ void convToGemmPerfRowHalf( + __half *const __restrict__ output, const __half *const __restrict input, + const int N, const int C, const int H, const int W, const int KH, + const int KW, const int V_pad, const int H_pad, const int H_out, + const int W_out, const int V_stride, const int H_stride, const int x, + const int start, const int H_eff) { + + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_eff * W_out); // output image number + const int c = tx % (C * H_eff * W_out) / (H_eff * W_out); // output chan + // number + const int h = tx % (H_eff * W_out) / W_out; // output height index (row + // number) + const int w = tx % W_out; // output width index (col number) int past_start = (h % (x - 1) >= (x - 1 - start)); - const int inH = (h / (x - 1) * x + h % (x-1) + - past_start) * V_stride - V_pad; //input height index (row number) - const int inW = w * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? - for(int i = 0; i < KH; i++) { - for(int j = 0; j < KW; j++) { - const int filter_elem_num = (c * KH + i) * KW + j; //index of this filter element - - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((filter_elem_num * N + n) * H_eff + h) * W_out + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; - else - output[((filter_elem_num * N + n) * H_eff + h) * W_out + w] = 0; - + const int inH = (h / (x - 1) * x + h % (x - 1) + past_start) * V_stride - + V_pad; // input height index (row number) + const int inW = w * H_stride - H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? + for (int i = 0; i < KH; i++) { + for (int j = 0; j < KW; j++) { + const int filter_elem_num = + (c * KH + i) * KW + j; // index of this filter element + + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((filter_elem_num * N + n) * H_eff + h) * W_out + w] = + input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + else + output[((filter_elem_num * N + n) * H_eff + h) * W_out + w] = 0; } } } - } - -//For use in tensorConvPerfCuda -//Interpolates every xth row starting from x - 1 - start -//N is total number of elements in final output array -__global__ -void approxInterpolateRowHalf(int N, int old_h, int b, int c, int h, int w, - __half *old_data, __half *new_data, int x, int start){ +// For use in tensorConvPerfCuda +// Interpolates every xth row starting from x - 1 - start +// N is total number of elements in final output array +__global__ void approxInterpolateRowHalf(int N, int old_h, int b, int c, int h, + int w, __half *old_data, + __half *new_data, int x, int start) { int index = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; - for(int i = index; i < N; i += stride){ + for (int i = index; i < N; i += stride) { int col = ((i % (c * h * w)) % (h * w)) % w; int row = ((i % (c * h * w)) % (h * w)) / w; int ch = (i % (c * h * w)) / (h * w); int n = i / (c * h * w); int past_start = ((row % x) >= (x - 1 - start)); - if(row == h-1) + if (row == h - 1) new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[ch * (b * old_h * w) + n * (old_h * w) + (old_h - 1) * (w) + col]; + old_data[ch * (b * old_h * w) + n * (old_h * w) + (old_h - 1) * (w) + + col]; else if (row == 0) new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[ch * (b * old_h * w) + n * (old_h * w) + 0 * (w) + col]; - else if(row % x == x - 1 - start){ + old_data[ch * (b * old_h * w) + n * (old_h * w) + 0 * (w) + col]; + else if (row % x == x - 1 - start) { int past_startO = ((row - 1) % x) > (x - 1 - start); - int oldIdx1 = ch * (b * old_h * w) + n * (old_h * w) + - ((x-1) * ((row - 1) / x) + (row-1) % x - past_startO) * (w) + col; + int oldIdx1 = + ch * (b * old_h * w) + n * (old_h * w) + + ((x - 1) * ((row - 1) / x) + (row - 1) % x - past_startO) * (w) + col; new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - __hdiv(__hadd(old_data[oldIdx1], old_data[oldIdx1 + 1 * w]), 2); - } - else + __hdiv(__hadd(old_data[oldIdx1], old_data[oldIdx1 + 1 * w]), 2); + } else new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[ch * (b * old_h * w) + n * (old_h * w) + - ((x-1) * (row / x) + row % x - past_start ) * (w) + col]; - - + old_data[ch * (b * old_h * w) + n * (old_h * w) + + ((x - 1) * (row / x) + row % x - past_start) * (w) + col]; } - } - -//This skips every xth row -//W_eff is the number of cols calculated exactly -__global__ -void convToGemmPerfColHalf(__half * const __restrict__ output, - const __half * const __restrict input, const int N, const int C, - const int H, const int W, const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, const int W_out, const int V_stride, - const int H_stride, const int x, const int start, const int W_eff){ - - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_out * W_eff); //output image number - const int c = tx % (C * H_out * W_eff) / (H_out * W_eff); //output chan number - const int h = tx % (H_out * W_eff) / W_eff; //output height index (row number) - const int w = tx % W_eff; //output width index (col number) +// This skips every xth row +// W_eff is the number of cols calculated exactly +__global__ void convToGemmPerfColHalf( + __half *const __restrict__ output, const __half *const __restrict input, + const int N, const int C, const int H, const int W, const int KH, + const int KW, const int V_pad, const int H_pad, const int H_out, + const int W_out, const int V_stride, const int H_stride, const int x, + const int start, const int W_eff) { + + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_out * W_eff); // output image number + const int c = tx % (C * H_out * W_eff) / (H_out * W_eff); // output chan + // number + const int h = tx % (H_out * W_eff) / W_eff; // output height index (row + // number) + const int w = tx % W_eff; // output width index (col number) int past_start = (w % (x - 1)) >= (x - 1 - start); - const int inH = h * V_stride - V_pad; //input height index (row number) - const int inW = (w / (x - 1) * x + w % (x-1) + - past_start) * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? - for(int i = 0; i < KH; i++) { - for(int j = 0; j < KW; j++) { - const int filter_elem_num = (c * KH + i) * KW + j; //index of this filter element - - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((filter_elem_num * N + n) * H_out + h) * W_eff + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; - else - output[((filter_elem_num * N + n) * H_out + h) * W_eff + w] = 0; - + const int inH = h * V_stride - V_pad; // input height index (row number) + const int inW = (w / (x - 1) * x + w % (x - 1) + past_start) * H_stride - + H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? + for (int i = 0; i < KH; i++) { + for (int j = 0; j < KW; j++) { + const int filter_elem_num = + (c * KH + i) * KW + j; // index of this filter element + + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((filter_elem_num * N + n) * H_out + h) * W_eff + w] = + input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + else + output[((filter_elem_num * N + n) * H_out + h) * W_eff + w] = 0; } } } - } - -//For use in tensorConvPerfCuda -//Interpolates every xth col starting from x - 1 - start -//N is total number of elements in final output array -__global__ -void approxInterpolateColHalf(int N, int old_w, int b, int c, int h, int w, - __half *old_data, __half *new_data, int x, int start){ - +// For use in tensorConvPerfCuda +// Interpolates every xth col starting from x - 1 - start +// N is total number of elements in final output array +__global__ void approxInterpolateColHalf(int N, int old_w, int b, int c, int h, + int w, __half *old_data, + __half *new_data, int x, int start) { int index = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; - for(int i = index; i < N; i += stride){ + for (int i = index; i < N; i += stride) { int col = ((i % (c * h * w)) % (h * w)) % w; int row = ((i % (c * h * w)) % (h * w)) / w; int ch = (i % (c * h * w)) / (h * w); int n = i / (c * h * w); int past_start = ((col % x) >= (x - 1 - start)); - if(col == w-1) + if (col == w - 1) new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[ch * (b * h * old_w) + n * (h * old_w) + row * (old_w) + old_w - 1]; + old_data[ch * (b * h * old_w) + n * (h * old_w) + row * (old_w) + + old_w - 1]; else if (col == 0) new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[ch * (b * h * old_w) + n * (h * old_w) + row * (old_w)]; - else if(col % x == x - 1 - start){ + old_data[ch * (b * h * old_w) + n * (h * old_w) + row * (old_w)]; + else if (col % x == x - 1 - start) { int past_startO = ((col - 1) % x) > (x - 1 - start); int oldIdx1 = ch * (b * h * old_w) + n * (h * old_w) + row * old_w + - ((x-1) * ((col - 1) / x) + (col-1) % x - past_startO); + ((x - 1) * ((col - 1) / x) + (col - 1) % x - past_startO); new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - __hdiv(__hadd(old_data[oldIdx1], old_data[oldIdx1 + 1]), 2); - } - else + __hdiv(__hadd(old_data[oldIdx1], old_data[oldIdx1 + 1]), 2); + } else new_data[n * (c * h * w) + ch * (h * w) + row * (w) + col] = - old_data[ch * (b * h * old_w) + n * (h * old_w) + row * old_w + - ((x-1) * (col / x) + col % x - past_start)]; - - } + old_data[ch * (b * h * old_w) + n * (h * old_w) + row * old_w + + ((x - 1) * (col / x) + col % x - past_start)]; + } } -__global__ -void switchMatrix(int N, int n, int c, int h, int w, __half *old_data, __half *new_data){ +__global__ void switchMatrix(int N, int n, int c, int h, int w, + __half *old_data, __half *new_data) { int i = blockIdx.x * blockDim.x + threadIdx.x; - if(i < N){ + if (i < N) { int col = ((i % (c * h * w)) % (h * w)) % w; int row = ((i % (c * h * w)) % (h * w)) / w; int ch = (i % (c * h * w)) / (h * w); int n_new = i / (c * h * w); - new_data[((n_new * c + ch) * h + row ) * w + col] = - old_data[((ch * n + n_new) * h + row ) * w + col]; + new_data[((n_new * c + ch) * h + row) * w + col] = + old_data[((ch * n + n_new) * h + row) * w + col]; } - } - - -//produces N COL MAJOR matrixes with H_out*W_out rows and reduced_filter_elem cols -__global__ void convToGemmApproxHalfN(__half * const __restrict__ output, - const __half * const __restrict input, const int N, const int C, - const int H, const int W, const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, const int W_out, const int V_stride, - const int H_stride, const int reduced_filter_elem, - const int skip_every) { - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_out * W_out); //output image number - const int c = tx % (C * H_out * W_out) / (H_out * W_out); //output chan number - const int h = tx % (H_out * W_out) / W_out; //output height index (row number) - const int w = tx % W_out; //output width index (col number) - const int inH = h * V_stride - V_pad; //input height index (row number) - const int inW = w * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? - for(int i = 0; i < KH; i++) { - for(int j = 0; j < KW; j++) { - const int filter_elem_num = (c * KH + i) * KW + j; //index of this filter element - const int output_col = filter_elem_num; //calculate output column, taking skipping into account - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((output_col * N + n) * H_out + h) * W_out + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; - else - output[((output_col * N + n) * H_out + h) * W_out + w] = 0; +// produces N COL MAJOR matrixes with H_out*W_out rows and reduced_filter_elem +// cols +__global__ void convToGemmApproxHalfN( + __half *const __restrict__ output, const __half *const __restrict input, + const int N, const int C, const int H, const int W, const int KH, + const int KW, const int V_pad, const int H_pad, const int H_out, + const int W_out, const int V_stride, const int H_stride, + const int reduced_filter_elem, const int skip_every) { + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_out * W_out); // output image number + const int c = tx % (C * H_out * W_out) / (H_out * W_out); // output chan + // number + const int h = tx % (H_out * W_out) / W_out; // output height index (row + // number) + const int w = tx % W_out; // output width index (col number) + const int inH = h * V_stride - V_pad; // input height index (row number) + const int inW = w * H_stride - H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? + for (int i = 0; i < KH; i++) { + for (int j = 0; j < KW; j++) { + const int filter_elem_num = + (c * KH + i) * KW + j; // index of this filter element + const int output_col = filter_elem_num; // calculate output column, + // taking skipping into account + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((output_col * N + n) * H_out + h) * W_out + w] = + input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + else + output[((output_col * N + n) * H_out + h) * W_out + w] = 0; } } } } -//start has to be less than row or less than col -//row and col have to be >= 0 -//row = col = 1 means no perforation -void* tensorConvPerfCudaHalf(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int row, int col, int start){ +// start has to be less than row or less than col +// row and col have to be >= 0 +// row = col = 1 means no perforation +void *tensorConvPerfCudaHalf(void *input_ptr, void *filter_ptr, + int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, + int conv_mode, int conv_groups, int row, int col, + int start) { INFO("*** TensorConvolution half perforation \n"); profileEvent("#Conv"); - Tensor* input = (Tensor*)input_ptr; - Tensor* filter = (Tensor*)filter_ptr; - //FIXME: Current hack to preserve backward compatibilty + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + // FIXME: Current hack to preserve backward compatibilty if (conv_groups == 0) { conv_groups = 1; } @@ -611,48 +604,48 @@ void* tensorConvPerfCudaHalf(void* input_ptr, void* filter_ptr, convertToFP16(filter); profileEvent("F2H_end"); - Tensor* output_half; + Tensor *output_half; int n, c, h, w; // output dimensions n = input->dims.dim_sizes[0]; - c = filter->dims.dim_sizes[0]; //number of filters + c = filter->dims.dim_sizes[0]; // number of filters const int KH = filter->dims.dim_sizes[2]; const int KW = filter->dims.dim_sizes[3]; h = (2 * vertical_pad + input->dims.dim_sizes[2] - KH) / vertical_stride + 1; int h_eff = h - h / row; - if(h % row > row - 1 - start) + if (h % row > row - 1 - start) h_eff = h_eff - 1; - w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + 1; + w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + + 1; int w_eff = w - w / col; - if(w % col > col - 1 - start) + if (w % col > col - 1 - start) w_eff = w_eff - 1; - Tensor *new_output; - if(row > 1){ - output_half = (Tensor*)create4DTensor((cudnnDataType_t) half_type, CUDNN_TENSOR_NCHW, - n, c, h_eff, w); + if (row > 1) { + output_half = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h_eff, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output_half, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - __half * convData; + __half *convData; int convDataSize = sizeof(__half) * n * num_filter_elem * h_eff * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 256; - const int gridSize = (n * input->dims.dim_sizes[1] * h_eff * w + blockSize - 1) / blockSize; - - convToGemmPerfRowHalf<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, vertical_pad, - horizontal_pad, h, w, - vertical_stride, horizontal_stride, row, start, h_eff); + const int gridSize = + (n * input->dims.dim_sizes[1] * h_eff * w + blockSize - 1) / blockSize; + convToGemmPerfRowHalf<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + row, start, h_eff); checkCudaErrors(cudaDeviceSynchronize()); @@ -661,56 +654,51 @@ void* tensorConvPerfCudaHalf(void* input_ptr, void* filter_ptr, const __half *alpha_half = &alf; const __half *beta_half = &bet; - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h_eff * w, c, num_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h_eff * w, - (__half*) filter->gpu_half_data, CUDA_R_16F, num_filter_elem, - beta_half, - (__half*) output_half->gpu_half_data, CUDA_R_16F, n * h_eff * w, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h_eff * w, c, + num_filter_elem, alpha_half, convData, CUDA_R_16F, n * h_eff * w, + (__half *)filter->gpu_half_data, CUDA_R_16F, num_filter_elem, beta_half, + (__half *)output_half->gpu_half_data, CUDA_R_16F, n * h_eff * w, + CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); - - new_output = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + new_output = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(new_output, DEVICE); - //interpolate - int numBlocks = (n * c * h * w + 255) / 256; - approxInterpolateRowHalf<<<numBlocks,256>>>(n * c * h * w, h_eff, n, c, h, w, - (__half *)output_half->gpu_half_data, - (__half *)new_output->gpu_half_data, - row, start); + // interpolate + int numBlocks = (n * c * h * w + 255) / 256; + approxInterpolateRowHalf<<<numBlocks, 256>>>( + n * c * h * w, h_eff, n, c, h, w, (__half *)output_half->gpu_half_data, + (__half *)new_output->gpu_half_data, row, start); cudaDeviceSynchronize(); freeTensor(output_half); cudaFree(convData); - } - else if(col > 1){ - output_half = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w_eff); + } else if (col > 1) { + output_half = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h, w_eff); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output_half, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - __half * convData; + __half *convData; int convDataSize = sizeof(__half) * n * num_filter_elem * h * w_eff; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 256; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w_eff + blockSize - 1) / blockSize; - - convToGemmPerfColHalf<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, vertical_pad, - horizontal_pad, h, w, - vertical_stride, horizontal_stride, col, start, w_eff); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w_eff + blockSize - 1) / blockSize; + convToGemmPerfColHalf<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + col, start, w_eff); checkCudaErrors(cudaDeviceSynchronize()); @@ -719,94 +707,84 @@ void* tensorConvPerfCudaHalf(void* input_ptr, void* filter_ptr, const __half *alpha_half = &alf; const __half *beta_half = &bet; - - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w_eff, c, num_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h * w_eff, - (__half*) filter->gpu_half_data, CUDA_R_16F, num_filter_elem, - beta_half, - (__half*) output_half->gpu_half_data, CUDA_R_16F, n * h * w_eff, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w_eff, c, + num_filter_elem, alpha_half, convData, CUDA_R_16F, n * h * w_eff, + (__half *)filter->gpu_half_data, CUDA_R_16F, num_filter_elem, beta_half, + (__half *)output_half->gpu_half_data, CUDA_R_16F, n * h * w_eff, + CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); - - new_output = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + new_output = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(new_output, DEVICE); - //interpolate - int numBlocks = (n * c * h * w + 255) / 256; - approxInterpolateColHalf<<<numBlocks,256>>>(n * c * h * w, w_eff, n, c, h, w, - (__half *)output_half->gpu_half_data, - (__half *)new_output->gpu_half_data, - col, start); - + // interpolate + int numBlocks = (n * c * h * w + 255) / 256; + approxInterpolateColHalf<<<numBlocks, 256>>>( + n * c * h * w, w_eff, n, c, h, w, (__half *)output_half->gpu_half_data, + (__half *)new_output->gpu_half_data, col, start); + cudaDeviceSynchronize(); freeTensor(output_half); cudaFree(convData); - } - else{ - output_half = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, c, n, h, w); + } else { + output_half = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, c, n, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output_half, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - __half * convData; + __half *convData; int convDataSize = sizeof(__half) * n * num_filter_elem * h * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 256; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; - convToGemmApproxHalfN<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, - vertical_pad, horizontal_pad, h, w, - vertical_stride, horizontal_stride, - num_filter_elem, c * h * w); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; + convToGemmApproxHalfN<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + num_filter_elem, c * h * w); checkCudaErrors(cudaDeviceSynchronize()); - //Do the matrix multiplication. Want to multiply convData by filter->gpu_data[f * chan * KH * KW] + // Do the matrix multiplication. Want to multiply convData by + // filter->gpu_data[f * chan * KH * KW] const __half alf = approx_float_to_half(1.0); const __half bet = approx_float_to_half(0.0); const __half *alpha_half = &alf; const __half *beta_half = &bet; - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w, c, num_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h * w, - (__half*) filter->gpu_half_data, CUDA_R_16F, num_filter_elem, - beta_half, - (__half*) output_half->gpu_half_data, CUDA_R_16F, n * h * w, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); - - + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w, c, num_filter_elem, + alpha_half, convData, CUDA_R_16F, n * h * w, + (__half *)filter->gpu_half_data, CUDA_R_16F, num_filter_elem, beta_half, + (__half *)output_half->gpu_half_data, CUDA_R_16F, n * h * w, CUDA_R_16F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); // profileEvent("gemm_end", true); - new_output = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + new_output = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h, w); changeTensorPlacement(new_output, DEVICE); - - int numBlocks = (n * c * h * w + 255) / 256; - switchMatrix<<<numBlocks,256>>>(n * c * h * w, n, c, h, w, - (__half *)output_half->gpu_half_data, - (__half *)new_output->gpu_half_data); + int numBlocks = (n * c * h * w + 255) / 256; + switchMatrix<<<numBlocks, 256>>>(n * c * h * w, n, c, h, w, + (__half *)output_half->gpu_half_data, + (__half *)new_output->gpu_half_data); checkCudaErrors(cudaDeviceSynchronize()); - + cudaFree(convData); freeTensor(output_half); } - //profileEvent("Conv_end", true); + // profileEvent("Conv_end", true); profileEvent("H2F_start"); convertToFP32_offline(new_output); @@ -817,113 +795,117 @@ void* tensorConvPerfCudaHalf(void* input_ptr, void* filter_ptr, return new_output; } - -//produces COL MAJOR matrix with reduced_filter_elem rows and NF cols -__global__ void createReducedFiltersHalf(__half * output, - const __half * const __restrict input, const int NF, - const int num_filter_elem, const int reduced_filter_elem, - const int skip_every, const int skip_offset) { - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int fIdx = tx / num_filter_elem; //filter index - const int offset = tx % num_filter_elem; //offset within filter - if(fIdx < NF) { //is thread id within bounds? - if(offset % skip_every != skip_every-1-skip_offset) { //are we including this filter element? - const int output_row = offset - ((offset + skip_every)/skip_every); //correct for skip_every = 2 - output[fIdx*reduced_filter_elem + output_row] = - __hmul((skip_every / (skip_every - 1)), input[tx]); +// produces COL MAJOR matrix with reduced_filter_elem rows and NF cols +__global__ void +createReducedFiltersHalf(__half *output, const __half *const __restrict input, + const int NF, const int num_filter_elem, + const int reduced_filter_elem, const int skip_every, + const int skip_offset) { + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int fIdx = tx / num_filter_elem; // filter index + const int offset = tx % num_filter_elem; // offset within filter + if (fIdx < NF) { // is thread id within bounds? + if (offset % skip_every != + skip_every - 1 - skip_offset) { // are we including this filter element? + const int output_row = + offset - + ((offset + skip_every) / skip_every); // correct for skip_every = 2 + output[fIdx * reduced_filter_elem + output_row] = + __hmul((skip_every / (skip_every - 1)), input[tx]); } } } - -//COL Major matrix with N*H*W columns and reduced_filter_elem rows -//skip_every = 1 means no perforation -__global__ void convToGemmHalfInput(__half * const __restrict__ output, - const __half * const __restrict input, - const int N, const int C, - const int H, const int W, - const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, - const int W_out, const int V_stride, - const int H_stride, const int reduced_filter_elem, - const int skip_every, const int skip_offset) { - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_out * W_out); //output image number - const int c = tx % (C * H_out * W_out) / (H_out * W_out); //output chan number - const int h = tx % (H_out * W_out) / W_out; //output height index (row number) - const int w = tx % W_out; //output width index (col number) - const int inH = h * V_stride - V_pad; //input height index (row number) - const int inW = w * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? - for(int i = 0; i < KH; i++) { - for(int j = 0; j < KW; j++) { - const int filter_elem_num = (c * KH + i) * KW + j; //index of this filter element - - if(filter_elem_num % skip_every != skip_every-1-skip_offset) { - int output_col = filter_elem_num - - ((filter_elem_num + skip_every)/skip_every); - if(skip_every == 1) - output_col = filter_elem_num; - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((output_col*N + n) * H_out + h) * W_out + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; - else - output[((output_col*N + n) * H_out + h) * W_out + w] = 0; - } +// COL Major matrix with N*H*W columns and reduced_filter_elem rows +// skip_every = 1 means no perforation +__global__ void +convToGemmHalfInput(__half *const __restrict__ output, + const __half *const __restrict input, const int N, + const int C, const int H, const int W, const int KH, + const int KW, const int V_pad, const int H_pad, + const int H_out, const int W_out, const int V_stride, + const int H_stride, const int reduced_filter_elem, + const int skip_every, const int skip_offset) { + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_out * W_out); // output image number + const int c = tx % (C * H_out * W_out) / (H_out * W_out); // output chan + // number + const int h = tx % (H_out * W_out) / W_out; // output height index (row + // number) + const int w = tx % W_out; // output width index (col number) + const int inH = h * V_stride - V_pad; // input height index (row number) + const int inW = w * H_stride - H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? + for (int i = 0; i < KH; i++) { + for (int j = 0; j < KW; j++) { + const int filter_elem_num = + (c * KH + i) * KW + j; // index of this filter element + + if (filter_elem_num % skip_every != skip_every - 1 - skip_offset) { + int output_col = + filter_elem_num - ((filter_elem_num + skip_every) / skip_every); + if (skip_every == 1) + output_col = filter_elem_num; + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((output_col * N + n) * H_out + h) * W_out + w] = + input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + else + output[((output_col * N + n) * H_out + h) * W_out + w] = 0; + } } } } } - -//COL Major matrix with N*H*W columns and reduced_filter_elem rows -//Can only be used when skipping every other element in input sampling -__global__ void convToGemmHalfInput2(__half * const __restrict__ output, - const __half * const __restrict input, - const int N, const int C, - const int H, const int W, - const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, - const int W_out, const int V_stride, - const int H_stride, const int reduced_filter_elem, - const int skip_every, const int skip_offset) { - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_out * W_out); //output image number - const int c = tx % (C * H_out * W_out) / (H_out * W_out); //output chan number - const int h = tx % (H_out * W_out) / W_out; //output height index (row number) - const int w = tx % W_out; //output width index (col number) - const int inH = h * V_stride - V_pad; //input height index (row number) - const int inW = w * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? +// COL Major matrix with N*H*W columns and reduced_filter_elem rows +// Can only be used when skipping every other element in input sampling +__global__ void +convToGemmHalfInput2(__half *const __restrict__ output, + const __half *const __restrict input, const int N, + const int C, const int H, const int W, const int KH, + const int KW, const int V_pad, const int H_pad, + const int H_out, const int W_out, const int V_stride, + const int H_stride, const int reduced_filter_elem, + const int skip_every, const int skip_offset) { + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_out * W_out); // output image number + const int c = tx % (C * H_out * W_out) / (H_out * W_out); // output chan + // number + const int h = tx % (H_out * W_out) / W_out; // output height index (row + // number) + const int w = tx % W_out; // output width index (col number) + const int inH = h * V_stride - V_pad; // input height index (row number) + const int inW = w * H_stride - H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? const int filter_elem_num = c * KH * KW; - for(int l = (filter_elem_num % 2) + skip_offset; l < KH * KW; l+=2) { + for (int l = (filter_elem_num % 2) + skip_offset; l < KH * KW; l += 2) { int i = l / KW; int j = l % KW; const int new_idx = filter_elem_num + i * KW + j; - const int output_col = new_idx - ((new_idx + skip_every)/2); //new output column - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((output_col*N + n) * H_out + h) * W_out + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + const int output_col = + new_idx - ((new_idx + skip_every) / 2); // new output column + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((output_col * N + n) * H_out + h) * W_out + w] = + input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; else - output[((output_col*N + n) * H_out + h) * W_out + w] = 0; - + output[((output_col * N + n) * H_out + h) * W_out + w] = 0; } } } -//Baseline: skip_offset = skip_every = 1 -void* tensorConvInputHalf(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int skip_every, int skip_offset){ +// Baseline: skip_offset = skip_every = 1 +void *tensorConvInputHalf(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int skip_every, int skip_offset) { INFO("*** TensorHConvolution input sampling \n"); profileEvent("#Conv"); - Tensor* input = (Tensor*)input_ptr; - Tensor* filter = (Tensor*)filter_ptr; - //FIXME: Current hack to preserve backward compatibilty + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + // FIXME: Current hack to preserve backward compatibilty if (conv_groups == 0) { conv_groups = 1; } @@ -936,107 +918,97 @@ void* tensorConvInputHalf(void* input_ptr, void* filter_ptr, convertToFP16(filter); profileEvent("F2H_end"); - Tensor* output; - Tensor* new_output; + Tensor *output; + Tensor *new_output; // TODO: Support other cases; int n, c, h, w; // output dimensions n = input->dims.dim_sizes[0]; - c = filter->dims.dim_sizes[0]; //number of filters + c = filter->dims.dim_sizes[0]; // number of filters const int KH = filter->dims.dim_sizes[2]; const int KW = filter->dims.dim_sizes[3]; h = (2 * vertical_pad + input->dims.dim_sizes[2] - KH) / vertical_stride + 1; - w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + 1; - output = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w); - new_output = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + + 1; + output = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h, w); + new_output = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output, DEVICE); changeTensorPlacement(new_output, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - //reduced number after skipping + // reduced number after skipping int reduced_filter_elem; - if(skip_offset != skip_every){ - reduced_filter_elem = num_filter_elem - (num_filter_elem/skip_every); - if(num_filter_elem % skip_every > skip_every - 1 - skip_offset) + if (skip_offset != skip_every) { + reduced_filter_elem = num_filter_elem - (num_filter_elem / skip_every); + if (num_filter_elem % skip_every > skip_every - 1 - skip_offset) reduced_filter_elem = reduced_filter_elem - 1; - } - else + } else reduced_filter_elem = num_filter_elem; - - __half * convData; + + __half *convData; int convDataSize = sizeof(__half) * n * reduced_filter_elem * h * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); - __half * reducedFilter; - checkCudaErrors(cudaMalloc(&reducedFilter, sizeof(__half) * c * reduced_filter_elem)); + __half *reducedFilter; + checkCudaErrors( + cudaMalloc(&reducedFilter, sizeof(__half) * c * reduced_filter_elem)); const int filtBlockSize = 128; - const int filtGridSize = (c * num_filter_elem + filtBlockSize - 1) / filtBlockSize; - if(skip_offset != skip_every) - createReducedFiltersHalf<<<filtGridSize, filtBlockSize>>>(reducedFilter, - (__half *)filter->gpu_half_data, - c, num_filter_elem, reduced_filter_elem, - skip_every, skip_offset); + const int filtGridSize = + (c * num_filter_elem + filtBlockSize - 1) / filtBlockSize; + if (skip_offset != skip_every) + createReducedFiltersHalf<<<filtGridSize, filtBlockSize>>>( + reducedFilter, (__half *)filter->gpu_half_data, c, num_filter_elem, + reduced_filter_elem, skip_every, skip_offset); checkCudaErrors(cudaDeviceSynchronize()); const int blockSize = 256; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; - if(skip_every == 2){ - convToGemmHalfInput2<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], - input->dims.dim_sizes[2], - input->dims.dim_sizes[3], - KH, KW, vertical_pad, horizontal_pad, - h, w, vertical_stride, horizontal_stride, - reduced_filter_elem, skip_every, - skip_offset); - } - else{ - convToGemmHalfInput<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], - input->dims.dim_sizes[2], - input->dims.dim_sizes[3], - KH, KW, vertical_pad, horizontal_pad, - h, w, vertical_stride, horizontal_stride, - reduced_filter_elem, skip_every, - skip_offset); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; + if (skip_every == 2) { + convToGemmHalfInput2<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + reduced_filter_elem, skip_every, skip_offset); + } else { + convToGemmHalfInput<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + reduced_filter_elem, skip_every, skip_offset); } - + checkCudaErrors(cudaDeviceSynchronize()); - //Do the matrix multiplication. Want to multiply convData by filter->gpu_data[f * chan * KH * KW] + // Do the matrix multiplication. Want to multiply convData by + // filter->gpu_data[f * chan * KH * KW] const __half alf = approx_float_to_half(1.0); const __half bet = approx_float_to_half(0.0); const __half *alpha_half = &alf; const __half *beta_half = &bet; - if(skip_offset != skip_every) - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w, c, reduced_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h * w, - reducedFilter, CUDA_R_16F, reduced_filter_elem, - beta_half, - (__half*) output->gpu_half_data, CUDA_R_16F, n * h * w, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); + if (skip_offset != skip_every) + checkCudaErrors( + cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w, c, + reduced_filter_elem, alpha_half, convData, CUDA_R_16F, + n * h * w, reducedFilter, CUDA_R_16F, reduced_filter_elem, + beta_half, (__half *)output->gpu_half_data, CUDA_R_16F, + n * h * w, CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); else - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w, c, reduced_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h * w, - (__half*) filter->gpu_half_data, CUDA_R_16F, - reduced_filter_elem, - beta_half, - (__half*) output->gpu_half_data, CUDA_R_16F, n * h * w, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); - - - int numBlocks = (n * c * h * w + 255) / 256; - switchMatrix<<<numBlocks,256>>>(n * c * h * w, n, c, h, w, - (__half *)output->gpu_half_data, - (__half *)new_output->gpu_half_data); + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w, c, + reduced_filter_elem, alpha_half, convData, CUDA_R_16F, n * h * w, + (__half *)filter->gpu_half_data, CUDA_R_16F, reduced_filter_elem, + beta_half, (__half *)output->gpu_half_data, CUDA_R_16F, n * h * w, + CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + int numBlocks = (n * c * h * w + 255) / 256; + switchMatrix<<<numBlocks, 256>>>(n * c * h * w, n, c, h, w, + (__half *)output->gpu_half_data, + (__half *)new_output->gpu_half_data); checkCudaErrors(cudaDeviceSynchronize()); @@ -1054,131 +1026,133 @@ void* tensorConvInputHalf(void* input_ptr, void* filter_ptr, profileEvent("#Conv_end", true); return new_output; - } -//COL Major matrix with N*H*W columns and reduced_filter_elem rows -//skip_every = 1 means no perforation -__global__ void convToGemmFullInput(float * const __restrict__ output, - const float * const __restrict input, - const int N, const int C, - const int H, const int W, - const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, - const int W_out, const int V_stride, - const int H_stride, const int reduced_filter_elem, - const int skip_every, const int skip_offset) { - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_out * W_out); //output image number - const int c = tx % (C * H_out * W_out) / (H_out * W_out); //output chan number - const int h = tx % (H_out * W_out) / W_out; //output height index (row number) - const int w = tx % W_out; //output width index (col number) - const int inH = h * V_stride - V_pad; //input height index (row number) - const int inW = w * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? - for(int i = 0; i < KH; i++) { - for(int j = 0; j < KW; j++) { - const int filter_elem_num = (c * KH + i) * KW + j; //index of this filter element - - if(filter_elem_num % skip_every != skip_every-1-skip_offset) { - int output_col = filter_elem_num - - ((filter_elem_num + skip_every)/skip_every); - if(skip_every == 1) - output_col = filter_elem_num; - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((output_col*N + n) * H_out + h) * W_out + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; - else - output[((output_col*N + n) * H_out + h) * W_out + w] = 0; - } +// COL Major matrix with N*H*W columns and reduced_filter_elem rows +// skip_every = 1 means no perforation +__global__ void +convToGemmFullInput(float *const __restrict__ output, + const float *const __restrict input, const int N, + const int C, const int H, const int W, const int KH, + const int KW, const int V_pad, const int H_pad, + const int H_out, const int W_out, const int V_stride, + const int H_stride, const int reduced_filter_elem, + const int skip_every, const int skip_offset) { + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_out * W_out); // output image number + const int c = tx % (C * H_out * W_out) / (H_out * W_out); // output chan + // number + const int h = tx % (H_out * W_out) / W_out; // output height index (row + // number) + const int w = tx % W_out; // output width index (col number) + const int inH = h * V_stride - V_pad; // input height index (row number) + const int inW = w * H_stride - H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? + for (int i = 0; i < KH; i++) { + for (int j = 0; j < KW; j++) { + const int filter_elem_num = + (c * KH + i) * KW + j; // index of this filter element + + if (filter_elem_num % skip_every != skip_every - 1 - skip_offset) { + int output_col = + filter_elem_num - ((filter_elem_num + skip_every) / skip_every); + if (skip_every == 1) + output_col = filter_elem_num; + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((output_col * N + n) * H_out + h) * W_out + w] = + input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + else + output[((output_col * N + n) * H_out + h) * W_out + w] = 0; + } } } } } - -//COL Major matrix with N*H*W columns and reduced_filter_elem rows -//Can only be used when skipping every other element in input sampling -__global__ void convToGemmFullInput2(float * const __restrict__ output, - const float * const __restrict input, - const int N, const int C, - const int H, const int W, - const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, - const int W_out, const int V_stride, - const int H_stride, const int reduced_filter_elem, - const int skip_every, const int skip_offset) { - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int n = tx / (C * H_out * W_out); //output image number - const int c = tx % (C * H_out * W_out) / (H_out * W_out); //output chan number - const int h = tx % (H_out * W_out) / W_out; //output height index (row number) - const int w = tx % W_out; //output width index (col number) - const int inH = h * V_stride - V_pad; //input height index (row number) - const int inW = w * H_stride - H_pad; //input width index (col number) - if(n < N) { //is thread id within bounds? +// COL Major matrix with N*H*W columns and reduced_filter_elem rows +// Can only be used when skipping every other element in input sampling +__global__ void +convToGemmFullInput2(float *const __restrict__ output, + const float *const __restrict input, const int N, + const int C, const int H, const int W, const int KH, + const int KW, const int V_pad, const int H_pad, + const int H_out, const int W_out, const int V_stride, + const int H_stride, const int reduced_filter_elem, + const int skip_every, const int skip_offset) { + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int n = tx / (C * H_out * W_out); // output image number + const int c = tx % (C * H_out * W_out) / (H_out * W_out); // output chan + // number + const int h = tx % (H_out * W_out) / W_out; // output height index (row + // number) + const int w = tx % W_out; // output width index (col number) + const int inH = h * V_stride - V_pad; // input height index (row number) + const int inW = w * H_stride - H_pad; // input width index (col number) + if (n < N) { // is thread id within bounds? const int filter_elem_num = c * KH * KW; - for(int l = (filter_elem_num % 2) + skip_offset; l < KH * KW; l+=2) { + for (int l = (filter_elem_num % 2) + skip_offset; l < KH * KW; l += 2) { int i = l / KW; int j = l % KW; const int new_idx = filter_elem_num + i * KW + j; - const int output_col = new_idx - ((new_idx + skip_every)/2); //new output column - if(inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) - output[((output_col*N + n) * H_out + h) * W_out + w] = - input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; + const int output_col = + new_idx - ((new_idx + skip_every) / 2); // new output column + if (inH + i >= 0 && inH + i < H && inW + j >= 0 && inW + j < W) + output[((output_col * N + n) * H_out + h) * W_out + w] = + input[((n * C + c) * H + (inH + i)) * W + (inW + j)]; else - output[((output_col*N + n) * H_out + h) * W_out + w] = 0; - + output[((output_col * N + n) * H_out + h) * W_out + w] = 0; } } } - -//produces COL MAJOR matrix with reduced_filter_elem rows and NF cols -__global__ void createReducedFiltersFull(float * output, - const float * const __restrict input, const int NF, - const int num_filter_elem, const int reduced_filter_elem, - const int skip_every, const int skip_offset) { - const int tx = blockDim.x * blockIdx.x + threadIdx.x; //thread id - const int fIdx = tx / num_filter_elem; //filter index - const int offset = tx % num_filter_elem; //offset within filter - if(fIdx < NF) { //is thread id within bounds? - if(offset % skip_every != skip_every-1-skip_offset) { //are we including this filter element? - const int output_row = offset - ((offset + skip_every)/skip_every); //correct for skip_every = 2 - output[fIdx*reduced_filter_elem + output_row] = - (skip_every / (skip_every - 1)) * input[tx]; +// produces COL MAJOR matrix with reduced_filter_elem rows and NF cols +__global__ void +createReducedFiltersFull(float *output, const float *const __restrict input, + const int NF, const int num_filter_elem, + const int reduced_filter_elem, const int skip_every, + const int skip_offset) { + const int tx = blockDim.x * blockIdx.x + threadIdx.x; // thread id + const int fIdx = tx / num_filter_elem; // filter index + const int offset = tx % num_filter_elem; // offset within filter + if (fIdx < NF) { // is thread id within bounds? + if (offset % skip_every != + skip_every - 1 - skip_offset) { // are we including this filter element? + const int output_row = + offset - + ((offset + skip_every) / skip_every); // correct for skip_every = 2 + output[fIdx * reduced_filter_elem + output_row] = + (skip_every / (skip_every - 1)) * input[tx]; } } } -__global__ -void switchMatrixFull(int N, int n, int c, int h, int w, - float *old_data, float *new_data){ +__global__ void switchMatrixFull(int N, int n, int c, int h, int w, + float *old_data, float *new_data) { int i = blockIdx.x * blockDim.x + threadIdx.x; - if(i < N){ + if (i < N) { int col = ((i % (c * h * w)) % (h * w)) % w; int row = ((i % (c * h * w)) % (h * w)) / w; int ch = (i % (c * h * w)) / (h * w); int n_new = i / (c * h * w); - new_data[((n_new * c + ch) * h + row ) * w + col] = - old_data[((ch * n + n_new) * h + row ) * w + col]; + new_data[((n_new * c + ch) * h + row) * w + col] = + old_data[((ch * n + n_new) * h + row) * w + col]; } - } -void* tensorConvApprox(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int row, int col, int skip_every, int offset){ +void *tensorConvApprox(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int row, int col, int skip_every, int offset) { INFO("*** TensorConvolution approximation \n"); profileEvent("Conv"); - Tensor* input = (Tensor*)input_ptr; - Tensor* filter = (Tensor*)filter_ptr; - //FIXME: Current hack to preserve backward compatibilty + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + // FIXME: Current hack to preserve backward compatibilty if (conv_groups == 0) { conv_groups = 1; } @@ -1186,248 +1160,229 @@ void* tensorConvApprox(void* input_ptr, void* filter_ptr, hostToDeviceCopy(input); hostToDeviceCopy(filter); - //profileEvent("H2F_start"); + // profileEvent("H2F_start"); convertToFP32(input); convertToFP32(filter); - //profileEvent("H2F_end"); + // profileEvent("H2F_end"); int n, c, h, w; // output dimensions n = input->dims.dim_sizes[0]; - c = filter->dims.dim_sizes[0]; //number of filters + c = filter->dims.dim_sizes[0]; // number of filters const int KH = filter->dims.dim_sizes[2]; const int KW = filter->dims.dim_sizes[3]; h = (2 * vertical_pad + input->dims.dim_sizes[2] - KH) / vertical_stride + 1; int h_eff = h - h / row; - if(h % row > row - 1 - offset) + if (h % row > row - 1 - offset) h_eff = h_eff - 1; - w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + 1; + w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + + 1; int w_eff = w - w / col; - if(w % col > col - 1 - offset) + if (w % col > col - 1 - offset) w_eff = w_eff - 1; - - Tensor *new_output = (Tensor*)create4DTensor((cudnnDataType_t) float_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + Tensor *new_output = (Tensor *)create4DTensor((cudnnDataType_t)float_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(new_output, DEVICE); - if(row > 1){ - Tensor *output = (Tensor*) create4DTensor((cudnnDataType_t) float_type, // input->data_type, - CUDNN_TENSOR_NCHW, n, c, h_eff, w); + if (row > 1) { + Tensor *output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h_eff, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - float * convData; + float *convData; int convDataSize = sizeof(float) * n * num_filter_elem * h_eff * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 128; - const int gridSize = (n * input->dims.dim_sizes[1] * h_eff * w + blockSize - 1) / blockSize; - - convToGemmPerfRow<<<gridSize, blockSize>>>(convData, (float *)input->gpu_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, vertical_pad, - horizontal_pad, h, w, - vertical_stride, horizontal_stride, - row, offset, h_eff); + const int gridSize = + (n * input->dims.dim_sizes[1] * h_eff * w + blockSize - 1) / blockSize; + convToGemmPerfRow<<<gridSize, blockSize>>>( + convData, (float *)input->gpu_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + row, offset, h_eff); checkCudaErrors(cudaDeviceSynchronize()); float alpha = 1.0f, beta = 0.0f; - checkCudaErrors(cublasSgemmStridedBatched(cublasHandle, - CUBLAS_OP_N, CUBLAS_OP_N, - h_eff * w, c, num_filter_elem, - &alpha, - convData, h_eff * w, num_filter_elem * h_eff * w, - (float *)filter->gpu_data, num_filter_elem, 0, - &beta, - (float *)output->gpu_data, h_eff * w, c * h_eff * w, - n)); - - new_output = (Tensor*) create4DTensor((cudnnDataType_t) float_type, // input->data_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + checkCudaErrors(cublasSgemmStridedBatched( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, h_eff * w, c, num_filter_elem, + &alpha, convData, h_eff * w, num_filter_elem * h_eff * w, + (float *)filter->gpu_data, num_filter_elem, 0, &beta, + (float *)output->gpu_data, h_eff * w, c * h_eff * w, n)); + + new_output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(new_output, DEVICE); - //interpolate - int numBlocks = (n * c * h * w + 127) / 128; - approxInterpolateRow<<<numBlocks,128>>>(n * c * h * w, h_eff, n, c, h, w, - (float *) output->gpu_data, (float *) new_output->gpu_data, - row, offset); + // interpolate + int numBlocks = (n * c * h * w + 127) / 128; + approxInterpolateRow<<<numBlocks, 128>>>( + n * c * h * w, h_eff, n, c, h, w, (float *)output->gpu_data, + (float *)new_output->gpu_data, row, offset); cudaDeviceSynchronize(); freeTensor(output); cudaFree(convData); - } - else if(col > 1){ - - Tensor *output = (Tensor*)create4DTensor((cudnnDataType_t) float_type, //input->data_type, - CUDNN_TENSOR_NCHW, n, c, h, w_eff); + } else if (col > 1) { + + Tensor *output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w_eff); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - float * convData; + float *convData; int convDataSize = sizeof(float) * n * num_filter_elem * h * w_eff; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 128; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w_eff + blockSize - 1) / blockSize; - - convToGemmPerfCol<<<gridSize, blockSize>>>(convData, (float *)input->gpu_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, - vertical_pad, horizontal_pad, h, w, - vertical_stride, horizontal_stride, - col, offset, w_eff); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w_eff + blockSize - 1) / blockSize; + convToGemmPerfCol<<<gridSize, blockSize>>>( + convData, (float *)input->gpu_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + col, offset, w_eff); checkCudaErrors(cudaDeviceSynchronize()); float alpha = 1.0f, beta = 0.0f; - checkCudaErrors(cublasSgemmStridedBatched(cublasHandle, - CUBLAS_OP_N, CUBLAS_OP_N, - h * w_eff, c, num_filter_elem, - &alpha, - convData, h * w_eff, num_filter_elem * h * w_eff, - (float *)filter->gpu_data, num_filter_elem, 0, - &beta, - (float *)output->gpu_data, h * w_eff, c * h * w_eff, - n)); - - new_output = (Tensor*) create4DTensor((cudnnDataType_t) float_type, // input->data_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + checkCudaErrors(cublasSgemmStridedBatched( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, h * w_eff, c, num_filter_elem, + &alpha, convData, h * w_eff, num_filter_elem * h * w_eff, + (float *)filter->gpu_data, num_filter_elem, 0, &beta, + (float *)output->gpu_data, h * w_eff, c * h * w_eff, n)); + + new_output = (Tensor *)create4DTensor( + (cudnnDataType_t)float_type, // input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(new_output, DEVICE); - //interpolate - int numBlocks = (n * c * h * w + 127) / 128; - approxInterpolateCol<<<numBlocks,128>>>(n * c * h * w, w_eff, n, c, h, w, - (float *)output->gpu_data, (float *)new_output->gpu_data, - col, offset); + // interpolate + int numBlocks = (n * c * h * w + 127) / 128; + approxInterpolateCol<<<numBlocks, 128>>>( + n * c * h * w, w_eff, n, c, h, w, (float *)output->gpu_data, + (float *)new_output->gpu_data, col, offset); cudaDeviceSynchronize(); freeTensor(output); cudaFree(convData); - } - else{ - Tensor *output = (Tensor*)create4DTensor((cudnnDataType_t) float_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + } else { + Tensor *output = (Tensor *)create4DTensor((cudnnDataType_t)float_type, + CUDNN_TENSOR_NCHW, n, c, h, w); - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - //reduced number after skipping + // reduced number after skipping int reduced_filter_elem; - if(offset != skip_every){ - reduced_filter_elem = num_filter_elem - (num_filter_elem/skip_every); - if(num_filter_elem % skip_every > skip_every - 1 - offset) - reduced_filter_elem = reduced_filter_elem - 1; - } - else + if (offset != skip_every) { + reduced_filter_elem = num_filter_elem - (num_filter_elem / skip_every); + if (num_filter_elem % skip_every > skip_every - 1 - offset) + reduced_filter_elem = reduced_filter_elem - 1; + } else reduced_filter_elem = num_filter_elem; - - float * convData; + float *convData; int convDataSize = sizeof(float) * n * reduced_filter_elem * h * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); - float * reducedFilter; - checkCudaErrors(cudaMalloc(&reducedFilter, sizeof(float) * c * reduced_filter_elem)); + float *reducedFilter; + checkCudaErrors( + cudaMalloc(&reducedFilter, sizeof(float) * c * reduced_filter_elem)); const int filtBlockSize = 128; - const int filtGridSize = (c * num_filter_elem + filtBlockSize - 1) / filtBlockSize; - if(offset != skip_every) - createReducedFiltersFull<<<filtGridSize, filtBlockSize>>>(reducedFilter, - (float *)filter->gpu_data, - c, num_filter_elem, reduced_filter_elem, - skip_every, offset); + const int filtGridSize = + (c * num_filter_elem + filtBlockSize - 1) / filtBlockSize; + if (offset != skip_every) + createReducedFiltersFull<<<filtGridSize, filtBlockSize>>>( + reducedFilter, (float *)filter->gpu_data, c, num_filter_elem, + reduced_filter_elem, skip_every, offset); checkCudaErrors(cudaDeviceSynchronize()); const int blockSize = 128; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; - if(skip_every == 2){ - convToGemmFullInput2<<<gridSize, blockSize>>>(convData, (float *)input->gpu_data, n, - input->dims.dim_sizes[1], - input->dims.dim_sizes[2], - input->dims.dim_sizes[3], - KH, KW, vertical_pad, horizontal_pad, - h, w, vertical_stride, horizontal_stride, - reduced_filter_elem, skip_every, - offset); - } - else{ - convToGemmFullInput<<<gridSize, blockSize>>>(convData, (float *)input->gpu_data, n, - input->dims.dim_sizes[1], - input->dims.dim_sizes[2], - input->dims.dim_sizes[3], - KH, KW, vertical_pad, horizontal_pad, - h, w, vertical_stride, horizontal_stride, - reduced_filter_elem, skip_every, - offset); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; + if (skip_every == 2) { + convToGemmFullInput2<<<gridSize, blockSize>>>( + convData, (float *)input->gpu_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, + horizontal_stride, reduced_filter_elem, skip_every, offset); + } else { + convToGemmFullInput<<<gridSize, blockSize>>>( + convData, (float *)input->gpu_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, + horizontal_stride, reduced_filter_elem, skip_every, offset); } checkCudaErrors(cudaDeviceSynchronize()); - //Do the matrix multiplication. Want to multiply convData by filter->gpu_data[f * chan * KH * KW] + // Do the matrix multiplication. Want to multiply convData by + // filter->gpu_data[f * chan * KH * KW] const float alpha = 1.0; const float beta = 0.0; - if(offset != skip_every) - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w, c, reduced_filter_elem, - &alpha, - convData, CUDA_R_32F, n * h * w, - reducedFilter, CUDA_R_32F, reduced_filter_elem, - &beta, - (float *) output->gpu_data, CUDA_R_32F, n * h * w, - CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); + if (offset != skip_every) + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w, c, + reduced_filter_elem, &alpha, convData, CUDA_R_32F, n * h * w, + reducedFilter, CUDA_R_32F, reduced_filter_elem, &beta, + (float *)output->gpu_data, CUDA_R_32F, n * h * w, CUDA_R_32F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); else - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w, c, reduced_filter_elem, - &alpha, - convData, CUDA_R_32F, n * h * w, - (float *) filter->gpu_data, CUDA_R_32F, - reduced_filter_elem, - &beta, - (float *) output->gpu_data, CUDA_R_32F, n * h * w, - CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); - - int numBlocks = (n * c * h * w + 255) / 256; - switchMatrixFull<<<numBlocks,256>>>(n * c * h * w, n, c, h, w, - (float *)output->gpu_data, - (float *)new_output->gpu_data); + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w, c, + reduced_filter_elem, &alpha, convData, CUDA_R_32F, n * h * w, + (float *)filter->gpu_data, CUDA_R_32F, reduced_filter_elem, &beta, + (float *)output->gpu_data, CUDA_R_32F, n * h * w, CUDA_R_32F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + int numBlocks = (n * c * h * w + 255) / 256; + switchMatrixFull<<<numBlocks, 256>>>(n * c * h * w, n, c, h, w, + (float *)output->gpu_data, + (float *)new_output->gpu_data); checkCudaErrors(cudaDeviceSynchronize()); - + cudaFree(convData); cudaFree(reducedFilter); freeTensor(output); } profileEvent("Conv_end"); - + return new_output; - } -void* tensorConvApproxHalf(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int row, int col, int skip_every, int offset){ +void *tensorConvApproxHalf(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups, int row, int col, int skip_every, + int offset) { INFO("*** TensorConvolution half approximation \n"); profileEvent("#Conv"); - Tensor* input = (Tensor*)input_ptr; - Tensor* filter = (Tensor*)filter_ptr; - //FIXME: Current hack to preserve backward compatibilty + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + // FIXME: Current hack to preserve backward compatibilty if (conv_groups == 0) { conv_groups = 1; } @@ -1442,50 +1397,49 @@ void* tensorConvApproxHalf(void* input_ptr, void* filter_ptr, int n, c, h, w; // output dimensions n = input->dims.dim_sizes[0]; - c = filter->dims.dim_sizes[0]; //number of filters + c = filter->dims.dim_sizes[0]; // number of filters const int KH = filter->dims.dim_sizes[2]; const int KW = filter->dims.dim_sizes[3]; h = (2 * vertical_pad + input->dims.dim_sizes[2] - KH) / vertical_stride + 1; int h_eff = h - h / row; - if(h % row > row - 1 - offset) + if (h % row > row - 1 - offset) h_eff = h_eff - 1; - w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + 1; + w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + + 1; int w_eff = w - w / col; - if(w % col > col - 1 - offset) + if (w % col > col - 1 - offset) w_eff = w_eff - 1; - - Tensor *new_output = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w); + Tensor *new_output = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(new_output, DEVICE); - if(row > 1){ - Tensor *output_half = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, - n, c, h_eff, w); + if (row > 1) { + Tensor *output_half = (Tensor *)create4DTensor( + (cudnnDataType_t)half_type, CUDNN_TENSOR_NCHW, n, c, h_eff, w); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output_half, DEVICE); - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - __half * convData; + __half *convData; int convDataSize = sizeof(__half) * n * num_filter_elem * h_eff * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 256; - const int gridSize = (n * input->dims.dim_sizes[1] * h_eff * w + blockSize - 1) / blockSize; - - convToGemmPerfRowHalf<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, vertical_pad, - horizontal_pad, h, w, vertical_stride, - horizontal_stride, row, offset, h_eff); + const int gridSize = + (n * input->dims.dim_sizes[1] * h_eff * w + blockSize - 1) / blockSize; + convToGemmPerfRowHalf<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + row, offset, h_eff); checkCudaErrors(cudaDeviceSynchronize()); @@ -1494,49 +1448,45 @@ void* tensorConvApproxHalf(void* input_ptr, void* filter_ptr, const __half *alpha_half = &alf; const __half *beta_half = &bet; - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h_eff * w, c, num_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h_eff * w, - (__half*) filter->gpu_half_data, CUDA_R_16F, num_filter_elem, - beta_half, - (__half*) output_half->gpu_half_data, CUDA_R_16F, n * h_eff * w, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); - - //interpolate - int numBlocks = (n * c * h * w + 255) / 256; - approxInterpolateRowHalf<<<numBlocks,256>>>(n * c * h * w, h_eff, n, c, h, w, - (__half *)output_half->gpu_half_data, - (__half *)new_output->gpu_half_data, - row, offset); + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h_eff * w, c, + num_filter_elem, alpha_half, convData, CUDA_R_16F, n * h_eff * w, + (__half *)filter->gpu_half_data, CUDA_R_16F, num_filter_elem, beta_half, + (__half *)output_half->gpu_half_data, CUDA_R_16F, n * h_eff * w, + CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + // interpolate + int numBlocks = (n * c * h * w + 255) / 256; + approxInterpolateRowHalf<<<numBlocks, 256>>>( + n * c * h * w, h_eff, n, c, h, w, (__half *)output_half->gpu_half_data, + (__half *)new_output->gpu_half_data, row, offset); cudaDeviceSynchronize(); freeTensor(output_half); cudaFree(convData); - } - else if(col > 1){ - Tensor *output_half = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w_eff); + } else if (col > 1) { + Tensor *output_half = (Tensor *)create4DTensor( + (cudnnDataType_t)half_type, CUDNN_TENSOR_NCHW, n, c, h, w_eff); // NOTE: Changing output tensor placement from host to device changeTensorPlacement(output_half, DEVICE); // NOTE: Necessary to insert the above call for every output tensor - //total number of filter elem + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - __half * convData; + __half *convData; int convDataSize = sizeof(__half) * n * num_filter_elem * h * w_eff; checkCudaErrors(cudaMalloc(&convData, convDataSize)); const int blockSize = 256; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w_eff + blockSize - 1) / blockSize; - - convToGemmPerfColHalf<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], input->dims.dim_sizes[2], - input->dims.dim_sizes[3], KH, KW, vertical_pad, - horizontal_pad, h, w, vertical_stride, - horizontal_stride, col, offset, w_eff); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w_eff + blockSize - 1) / blockSize; + convToGemmPerfColHalf<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, horizontal_stride, + col, offset, w_eff); checkCudaErrors(cudaDeviceSynchronize()); @@ -1545,121 +1495,104 @@ void* tensorConvApproxHalf(void* input_ptr, void* filter_ptr, const __half *alpha_half = &alf; const __half *beta_half = &bet; - - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w_eff, c, num_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h * w_eff, - (__half*) filter->gpu_half_data, CUDA_R_16F, num_filter_elem, - beta_half, - (__half*) output_half->gpu_half_data, CUDA_R_16F, n * h * w_eff, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); - - //interpolate - int numBlocks = (n * c * h * w + 255) / 256; - approxInterpolateColHalf<<<numBlocks,256>>>(n * c * h * w, w_eff, n, c, h, w, - (__half *)output_half->gpu_half_data, - (__half *)new_output->gpu_half_data, - col, offset); - + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w_eff, c, + num_filter_elem, alpha_half, convData, CUDA_R_16F, n * h * w_eff, + (__half *)filter->gpu_half_data, CUDA_R_16F, num_filter_elem, beta_half, + (__half *)output_half->gpu_half_data, CUDA_R_16F, n * h * w_eff, + CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + // interpolate + int numBlocks = (n * c * h * w + 255) / 256; + approxInterpolateColHalf<<<numBlocks, 256>>>( + n * c * h * w, w_eff, n, c, h, w, (__half *)output_half->gpu_half_data, + (__half *)new_output->gpu_half_data, col, offset); + cudaDeviceSynchronize(); freeTensor(output_half); cudaFree(convData); - } - else{ - Tensor *output = (Tensor*)create4DTensor((cudnnDataType_t) half_type, - CUDNN_TENSOR_NCHW, n, c, h, w); - - //total number of filter elem + } else { + Tensor *output = (Tensor *)create4DTensor((cudnnDataType_t)half_type, + CUDNN_TENSOR_NCHW, n, c, h, w); + + // total number of filter elem const int num_filter_elem = KH * KW * input->dims.dim_sizes[1]; - //reduced number after skipping + // reduced number after skipping int reduced_filter_elem; - if(offset != skip_every){ - reduced_filter_elem = num_filter_elem - (num_filter_elem/skip_every); - if(num_filter_elem % skip_every > skip_every - 1 - offset) - reduced_filter_elem = reduced_filter_elem - 1; - } - else + if (offset != skip_every) { + reduced_filter_elem = num_filter_elem - (num_filter_elem / skip_every); + if (num_filter_elem % skip_every > skip_every - 1 - offset) + reduced_filter_elem = reduced_filter_elem - 1; + } else reduced_filter_elem = num_filter_elem; - - __half * convData; + + __half *convData; int convDataSize = sizeof(__half) * n * reduced_filter_elem * h * w; checkCudaErrors(cudaMalloc(&convData, convDataSize)); - __half * reducedFilter; - checkCudaErrors(cudaMalloc(&reducedFilter, sizeof(__half) * c * reduced_filter_elem)); + __half *reducedFilter; + checkCudaErrors( + cudaMalloc(&reducedFilter, sizeof(__half) * c * reduced_filter_elem)); const int filtBlockSize = 128; - const int filtGridSize = (c * num_filter_elem + filtBlockSize - 1) / filtBlockSize; - if(offset != skip_every) - createReducedFiltersHalf<<<filtGridSize, filtBlockSize>>>(reducedFilter, - (__half *)filter->gpu_half_data, - c, num_filter_elem, reduced_filter_elem, - skip_every, offset); + const int filtGridSize = + (c * num_filter_elem + filtBlockSize - 1) / filtBlockSize; + if (offset != skip_every) + createReducedFiltersHalf<<<filtGridSize, filtBlockSize>>>( + reducedFilter, (__half *)filter->gpu_half_data, c, num_filter_elem, + reduced_filter_elem, skip_every, offset); checkCudaErrors(cudaDeviceSynchronize()); - + const int blockSize = 256; - const int gridSize = (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; - if(skip_every == 2){ - convToGemmHalfInput2<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], - input->dims.dim_sizes[2], - input->dims.dim_sizes[3], - KH, KW, vertical_pad, horizontal_pad, - h, w, vertical_stride, horizontal_stride, - reduced_filter_elem, skip_every, - offset); + const int gridSize = + (n * input->dims.dim_sizes[1] * h * w + blockSize - 1) / blockSize; + if (skip_every == 2) { + convToGemmHalfInput2<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, + horizontal_stride, reduced_filter_elem, skip_every, offset); + } else { + convToGemmHalfInput<<<gridSize, blockSize>>>( + convData, (__half *)input->gpu_half_data, n, input->dims.dim_sizes[1], + input->dims.dim_sizes[2], input->dims.dim_sizes[3], KH, KW, + vertical_pad, horizontal_pad, h, w, vertical_stride, + horizontal_stride, reduced_filter_elem, skip_every, offset); } - else{ - convToGemmHalfInput<<<gridSize, blockSize>>>(convData, (__half *)input->gpu_half_data, n, - input->dims.dim_sizes[1], - input->dims.dim_sizes[2], - input->dims.dim_sizes[3], - KH, KW, vertical_pad, horizontal_pad, - h, w, vertical_stride, horizontal_stride, - reduced_filter_elem, skip_every, - offset); - } - + checkCudaErrors(cudaDeviceSynchronize()); - //Do the matrix multiplication. Want to multiply convData by filter->gpu_data[f * chan * KH * KW] + // Do the matrix multiplication. Want to multiply convData by + // filter->gpu_data[f * chan * KH * KW] const __half alf = approx_float_to_half(1.0); const __half bet = approx_float_to_half(0.0); const __half *alpha_half = &alf; const __half *beta_half = &bet; - - if(offset != skip_every) - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w, c, reduced_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h * w, - reducedFilter, CUDA_R_16F, reduced_filter_elem, - beta_half, - (__half*) output->gpu_half_data, CUDA_R_16F, n * h * w, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); + + if (offset != skip_every) + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w, c, + reduced_filter_elem, alpha_half, convData, CUDA_R_16F, n * h * w, + reducedFilter, CUDA_R_16F, reduced_filter_elem, beta_half, + (__half *)output->gpu_half_data, CUDA_R_16F, n * h * w, CUDA_R_16F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); else - checkCudaErrors(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, - n * h * w, c, reduced_filter_elem, - alpha_half, - convData, CUDA_R_16F, n * h * w, - (__half*) filter->gpu_half_data, CUDA_R_16F, - reduced_filter_elem, - beta_half, - (__half*) output->gpu_half_data, CUDA_R_16F, n * h * w, - CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP) ); - - - int numBlocks = (n * c * h * w + 255) / 256; - switchMatrix<<<numBlocks,256>>>(n * c * h * w, n, c, h, w, - (__half *)output->gpu_half_data, - (__half *)new_output->gpu_half_data); - + checkCudaErrors(cublasGemmEx( + cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, n * h * w, c, + reduced_filter_elem, alpha_half, convData, CUDA_R_16F, n * h * w, + (__half *)filter->gpu_half_data, CUDA_R_16F, reduced_filter_elem, + beta_half, (__half *)output->gpu_half_data, CUDA_R_16F, n * h * w, + CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + int numBlocks = (n * c * h * w + 255) / 256; + switchMatrix<<<numBlocks, 256>>>(n * c * h * w, n, c, h, w, + (__half *)output->gpu_half_data, + (__half *)new_output->gpu_half_data); + checkCudaErrors(cudaDeviceSynchronize()); - + cudaFree(convData); cudaFree(reducedFilter); freeTensor(output); - } profileEvent("H2F_start"); @@ -1667,6 +1600,6 @@ void* tensorConvApproxHalf(void* input_ptr, void* filter_ptr, profileEvent("H2F_end"); profileEvent("#Conv_end"); - + return new_output; } diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_utils.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_utils.h index 984ee7c25679e23b735320a419fc844a35055ea0..7118de5e20c7b565867b4a6282d72349b442584f 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_utils.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_utils.h @@ -1,32 +1,29 @@ -extern "C"{ - - -__global__ void convToGemmApprox(float * const __restrict__ output, - const float * const __restrict input, const int N, const int C, - const int H, const int W, - const int KH, const int KW, const int V_pad, - const int H_pad, const int H_out, - const int W_out, const int V_stride, - const int H_stride, const int reduced_filter_elem, - const int skip_every); - - -void* tensorConvApprox(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int row, int col, int skip_every, int offset); - - -void* tensorConvApproxHalf(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int row, int col, int skip_every, int offset); - -void* tensorConvApproxHalf2(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, int conv_groups, - int row, int col, int skip_every, int offset); - +extern "C" { + +__global__ void +convToGemmApprox(float *const __restrict__ output, + const float *const __restrict input, const int N, const int C, + const int H, const int W, const int KH, const int KW, + const int V_pad, const int H_pad, const int H_out, + const int W_out, const int V_stride, const int H_stride, + const int reduced_filter_elem, const int skip_every); + +void *tensorConvApprox(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups, + int row, int col, int skip_every, int offset); + +void *tensorConvApproxHalf(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups, int row, int col, int skip_every, + int offset); + +void *tensorConvApproxHalf2(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups, int row, int col, int skip_every, + int offset); } diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approxhpvm_img_runtime_utils.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approxhpvm_img_runtime_utils.h index d89fc2f9ac9168ba09cd55ee03b389eca56973be..2545f07b48ddabfa6793f1d9eb01911542f4198e 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approxhpvm_img_runtime_utils.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approxhpvm_img_runtime_utils.h @@ -128,8 +128,8 @@ void *handleTensorReduceApproximationTuples( RC->reset_profiler(); if (is_half) { RC->addToCurrentIterationComputeTime("tensorReduceHalf", pinfo.first); - RC->addToCurrentIterationComputeEnergy( - "tensorReduceHalf", pinfo.second); + RC->addToCurrentIterationComputeEnergy("tensorReduceHalf", + pinfo.second); } else { RC->addToCurrentIterationComputeTime("tensorReduce", pinfo.first); RC->addToCurrentIterationComputeEnergy("tensorReduce", pinfo.second); diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approxhpvm_runtime_utils.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approxhpvm_runtime_utils.h index 0b91030b717d257664ef2cb1bf8e06bd2bcc9508..138ddd0887b57ce583b8f5cfeaba19ad7d20eb4e 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approxhpvm_runtime_utils.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approxhpvm_runtime_utils.h @@ -3,51 +3,48 @@ #ifndef APPROXHPVM_RUNTIME_UTILS #define APPROXHPVM_RUNTIME_UTILS - -#include "tensor_runtime.h" #include "configuration.h" #include "hpvm-rt-controller.h" +#include "tensor_runtime.h" #include "approx_knob_utils.h" // Utilities header for ApproxHPVM runtime API (wrapper runtime API) -void* handleTensorAddApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input, void* bias) { +void *handleTensorAddApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input, void *bias) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorAdd(input, bias); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorAdd", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorAdd", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorHalfAdd(input, bias); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorHalfAdd", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorHalfAdd", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorAdd(input, bias); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorAdd", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorAdd", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = tensorHalfAdd(input, bias); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorHalfAdd", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorHalfAdd", pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); + abort(); // TODO additional approx methods implemented here } } else if (approxTuples.size() == 2) { @@ -60,44 +57,42 @@ void* handleTensorAddApproximationTuples( return NULL; } -void* handleTensorMulApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* lhs, void* rhs) { +void *handleTensorMulApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *lhs, void *rhs) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorGemmGPU(lhs, rhs); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorGemmGPU", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorGemmGPU", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorHalfGemmGPU(lhs, rhs); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorHalfGemmGPU", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorHalfGemmGPU", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorGemmGPU(lhs, rhs); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorGemmGPU", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorGemmGPU", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = tensorHalfGemmGPU(lhs, rhs); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorHalfGemmGPU", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorHalfGemmGPU", pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); + abort(); // TODO additional approx methods implemented here - } + } } else if (approxTuples.size() == 2) { ERROR("Currently unsupported case"); abort(); @@ -108,102 +103,90 @@ void* handleTensorMulApproximationTuples( return NULL; } -void* handleTensorConvApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input, void* filter, - int conv_pad_h, int conv_pad_w, - int conv_stride_h, int conv_stride_w) { +void *handleTensorConvApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input, void *filter, int conv_pad_h, int conv_pad_w, + int conv_stride_h, int conv_stride_w) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorConvApprox(input, filter, - conv_pad_h, conv_pad_w, - conv_stride_h, conv_stride_w, - 1, 1, - 1, 1, 1, 1); - + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorConvApprox(input, filter, conv_pad_h, conv_pad_w, + conv_stride_h, conv_stride_w, 1, 1, 1, 1, 1, 1); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorConvApprox", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorConvApprox", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorConvApproxHalf2(input, filter, - conv_pad_h, conv_pad_w, - conv_stride_h, conv_stride_w, - 1, 1, - 1, 1, 1, 1); - + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorConvApprox", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorConvApprox", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = + tensorConvApproxHalf2(input, filter, conv_pad_h, conv_pad_w, + conv_stride_h, conv_stride_w, 1, 1, 1, 1, 1, 1); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorConvApproxHalf", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorConvApproxHalf", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::PERFORATION : - case GPUNodeConfiguration::APPROX::PERFORATION_HP : - { - PerfParams params = perfParamSet->getPerfParams(param); - //PerfParams params = PerfParamSet().getPerfParams(param); - INFO("perforation param = %i\n", param); - INFO("params.row = %i, params.col = %i, params.skip_offset = %i\n", - params.row, params.col, params.skip_offset); - void* t_out; - RC->resume_profiler(); - t_out = tensorConvApproxHalf2(input, filter, - conv_pad_h, conv_pad_w, - conv_stride_h, conv_stride_w, - 1, 1, - params.row, params.col, 1, params.skip_offset); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorConvApproxHalf", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorConvApproxHalf", + pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::PERFORATION: + case GPUNodeConfiguration::APPROX::PERFORATION_HP: { + PerfParams params = perfParamSet->getPerfParams(param); + // PerfParams params = PerfParamSet().getPerfParams(param); + INFO("perforation param = %i\n", param); + INFO("params.row = %i, params.col = %i, params.skip_offset = %i\n", + params.row, params.col, params.skip_offset); + void *t_out; + RC->resume_profiler(); + t_out = tensorConvApproxHalf2( + input, filter, conv_pad_h, conv_pad_w, conv_stride_h, conv_stride_w, + 1, 1, params.row, params.col, 1, params.skip_offset); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorConvApproxHalf(_perf)", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorConvApproxHalf(_perf)", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::INPUT_SAMPLING : - case GPUNodeConfiguration::APPROX::INPUT_SAMPLING_HP : - { - SampParams params = sampParamSet->getSampParams(param); - //SampParams params = SampParamSet().getSampParams(param); - INFO("sampling param = %i\n", param); - INFO("params.skip_rate = %i, params.skip_offset = %i\n", - params.skip_rate, params.skip_offset); - void* t_out; - RC->resume_profiler(); - t_out = tensorConvApproxHalf2(input, filter, - conv_pad_h, conv_pad_w, - conv_stride_h, conv_stride_w, - 1, 1, - 1, 1, - params.skip_rate, params.skip_offset); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorConvApproxHalf(_samp)", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorConvApproxHalf(_samp)", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorConvApproxHalf(_perf)", + pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorConvApproxHalf(_perf)", + pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::INPUT_SAMPLING: + case GPUNodeConfiguration::APPROX::INPUT_SAMPLING_HP: { + SampParams params = sampParamSet->getSampParams(param); + // SampParams params = SampParamSet().getSampParams(param); + INFO("sampling param = %i\n", param); + INFO("params.skip_rate = %i, params.skip_offset = %i\n", params.skip_rate, + params.skip_offset); + void *t_out; + RC->resume_profiler(); + t_out = tensorConvApproxHalf2(input, filter, conv_pad_h, conv_pad_w, + conv_stride_h, conv_stride_w, 1, 1, 1, 1, + params.skip_rate, params.skip_offset); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorConvApproxHalf(_samp)", + pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorConvApproxHalf(_samp)", + pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); + abort(); // TODO additional approx methods implemented here } } else if (approxTuples.size() == 2) { @@ -216,103 +199,99 @@ void* handleTensorConvApproximationTuples( return NULL; } -void* handleTensorGroupConvApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups) { +void *handleTensorGroupConvApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input, void *filter, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, int conv_mode, + int conv_groups) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorConvCutlass(input, filter, - vertical_pad, horizontal_pad, - vertical_stride, horizontal_stride, - conv_mode, conv_groups); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorConvCutlass", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorConvCutlass", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorHalfConvCutlass(input, filter, - vertical_pad, horizontal_pad, - vertical_stride, horizontal_stride, - conv_mode, conv_groups); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorHalfConvCutlass", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorHalfConvCutlass", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); - // TODO additional approx methods implemented here - } - } else if (approxTuples.size() == 2) { - ERROR("Currently unsupported case"); - abort(); - } else { - ERROR("Unsupported case"); + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorConvCutlass(input, filter, vertical_pad, horizontal_pad, + vertical_stride, horizontal_stride, conv_mode, + conv_groups); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorConvCutlass", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorConvCutlass", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = tensorHalfConvCutlass(input, filter, vertical_pad, horizontal_pad, + vertical_stride, horizontal_stride, + conv_mode, conv_groups); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorHalfConvCutlass", + pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorHalfConvCutlass", + pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); abort(); + // TODO additional approx methods implemented here } + } else if (approxTuples.size() == 2) { + ERROR("Currently unsupported case"); + abort(); + } else { + ERROR("Unsupported case"); + abort(); + } return NULL; } -void* handleTensorBatchNormApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input_ptr, void* gamma_ptr, void* beta_ptr, - void* mean_ptr, void* variance_ptr, double epsilon) { +void *handleTensorBatchNormApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input_ptr, void *gamma_ptr, void *beta_ptr, void *mean_ptr, + void *variance_ptr, double epsilon) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorBatchNorm(input_ptr, gamma_ptr, beta_ptr, - mean_ptr, variance_ptr, epsilon); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorBatchNorm", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorBatchNorm", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorHalfBatchNorm(input_ptr, gamma_ptr, beta_ptr, - mean_ptr, variance_ptr, epsilon); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorHalfBatchNorm", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorHalfBatchNorm", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); - // TODO additional approx methods implemented here + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorBatchNorm(input_ptr, gamma_ptr, beta_ptr, mean_ptr, + variance_ptr, epsilon); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorBatchNorm", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorBatchNorm", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = tensorHalfBatchNorm(input_ptr, gamma_ptr, beta_ptr, mean_ptr, + variance_ptr, epsilon); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorHalfBatchNorm", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorHalfBatchNorm", + pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); + abort(); + // TODO additional approx methods implemented here } } else if (approxTuples.size() == 2) { ERROR("Currently unsupported case"); @@ -324,215 +303,202 @@ void* handleTensorBatchNormApproximationTuples( return NULL; } -void* handleTensorReluApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input) { +void *handleTensorReluApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorRelu(input); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorRelu", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorRelu", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorHalfRelu(input); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorHalfRelu", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorHalfRelu", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); - // TODO additional approx methods implemented here - } - } else if (approxTuples.size() == 2) { - ERROR("Currently unsupported case"); - abort(); - } else { - ERROR("Unsupported case"); + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorRelu(input); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorRelu", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorRelu", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = tensorHalfRelu(input); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorHalfRelu", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorHalfRelu", pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); abort(); + // TODO additional approx methods implemented here } + } else if (approxTuples.size() == 2) { + ERROR("Currently unsupported case"); + abort(); + } else { + ERROR("Unsupported case"); + abort(); + } return NULL; } -void* handleTensorClippedReluApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input, float min, float max) { +void *handleTensorClippedReluApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input, float min, float max) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorRelu2(input, min, max); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorRelu2", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorRelu2", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorHalfRelu2(input, min, max); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorHalfRelu2", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorHalfRelu2", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); - // TODO additional approx methods implemented here - } - } else if (approxTuples.size() == 2) { - ERROR("Currently unsupported case"); - abort(); - } else { - ERROR("Unsupported case"); + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorRelu2(input, min, max); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorRelu2", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorRelu2", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = tensorHalfRelu2(input, min, max); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorHalfRelu2", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorHalfRelu2", pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); abort(); + // TODO additional approx methods implemented here } + } else if (approxTuples.size() == 2) { + ERROR("Currently unsupported case"); + abort(); + } else { + ERROR("Unsupported case"); + abort(); + } return NULL; } -void* handleTensorTanhApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input) { +void *handleTensorTanhApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorTanh(input); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorTanh", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorTanh", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorHalfTanh(input); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorHalfTanh", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorHalfTanh", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); - // TODO additional approx methods implemented here - } - } else if (approxTuples.size() == 2) { - ERROR("Currently unsupported case"); - abort(); - } else { - ERROR("Unsupported case"); + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorTanh(input); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorTanh", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorTanh", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = tensorHalfTanh(input); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorHalfTanh", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorHalfTanh", pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); abort(); + // TODO additional approx methods implemented here } + } else if (approxTuples.size() == 2) { + ERROR("Currently unsupported case"); + abort(); + } else { + ERROR("Unsupported case"); + abort(); + } return NULL; } -void* handleTensorPoolingApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input_ptr, int poolFunction, - int window_height, int window_width, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride) { +void *handleTensorPoolingApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input_ptr, int poolFunction, int window_height, int window_width, + int vertical_pad, int horizontal_pad, int vertical_stride, + int horizontal_stride) { if (approxTuples.size() == 1) { enum GPUNodeConfiguration::APPROX approx = approxTuples[0].first; int param = approxTuples[0].second; switch (approx) { - case GPUNodeConfiguration::APPROX::FP32 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorPooling(input_ptr, - poolFunction, - window_height, window_width, - vertical_pad, horizontal_pad, - vertical_stride, horizontal_stride); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorPooling", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorPooling", pinfo.second); - return t_out; - } - case GPUNodeConfiguration::APPROX::FP16 : - { - void* t_out; - RC->resume_profiler(); - t_out = tensorHalfPooling(input_ptr, - poolFunction, - window_height, window_width, - vertical_pad, horizontal_pad, - vertical_stride, horizontal_stride); - RC->pause_profiler(); - std::pair<double, double> pinfo = RC->get_time_energy(); - RC->reset_profiler(); - RC->addToCurrentIterationComputeTime("tensorHalfPooling", pinfo.first); - RC->addToCurrentIterationComputeEnergy("tensorHalfPooling", pinfo.second); - return t_out; - } - default : - CUSTOM_ASSERT(false && "Unknown approximation type"); - ERROR("Unknown approximation type"); - abort(); - // TODO additional approx methods implemented here - } - } else if (approxTuples.size() == 2) { - ERROR("Currently unsupported case"); - abort(); - } else { - ERROR("Unsupported case"); + case GPUNodeConfiguration::APPROX::FP32: { + void *t_out; + RC->resume_profiler(); + t_out = tensorPooling(input_ptr, poolFunction, window_height, + window_width, vertical_pad, horizontal_pad, + vertical_stride, horizontal_stride); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorPooling", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorPooling", pinfo.second); + return t_out; + } + case GPUNodeConfiguration::APPROX::FP16: { + void *t_out; + RC->resume_profiler(); + t_out = tensorHalfPooling(input_ptr, poolFunction, window_height, + window_width, vertical_pad, horizontal_pad, + vertical_stride, horizontal_stride); + RC->pause_profiler(); + std::pair<double, double> pinfo = RC->get_time_energy(); + RC->reset_profiler(); + RC->addToCurrentIterationComputeTime("tensorHalfPooling", pinfo.first); + RC->addToCurrentIterationComputeEnergy("tensorHalfPooling", pinfo.second); + return t_out; + } + default: + CUSTOM_ASSERT(false && "Unknown approximation type"); + ERROR("Unknown approximation type"); abort(); + // TODO additional approx methods implemented here } + } else if (approxTuples.size() == 2) { + ERROR("Currently unsupported case"); + abort(); + } else { + ERROR("Unsupported case"); + abort(); + } return NULL; } -void* handleTensorSoftmaxApproximationTuples( - std::vector< std::pair<GPUNodeConfiguration::APPROX, int> > &approxTuples, - void* input_ptr) { - //TODO: if approximation choices are added for softmax operation, +void *handleTensorSoftmaxApproximationTuples( + std::vector<std::pair<GPUNodeConfiguration::APPROX, int>> &approxTuples, + void *input_ptr) { + // TODO: if approximation choices are added for softmax operation, // implement this like the other handle* functions - void* t_out; + void *t_out; RC->resume_profiler(); t_out = tensorSoftmax(input_ptr); RC->pause_profiler(); @@ -543,5 +509,4 @@ void* handleTensorSoftmaxApproximationTuples( return t_out; } - #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/configuration.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/configuration.h index 2624ea43c12426edc3535471df5dafc0360b9a81..2067609c5a476291a27763b80a558da099e62e60 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/configuration.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/configuration.h @@ -140,8 +140,8 @@ struct Configuration { // Comparison operator definition, in increasing accuracy loss // (for std sort, used in pareto optimal computation) struct ConfigurationLessThan { - bool operator()( - const struct Configuration &a, const struct Configuration &b) const; + bool operator()(const struct Configuration &a, + const struct Configuration &b) const; }; // Comparison operator definition, in increasing accuracy loss diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/debug.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/debug.h index 20a85478b18774c5add650bb273251a0722a35a4..7724a49edf2465ee5e3d9ed5568ef2d87f943030 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/debug.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/debug.h @@ -3,48 +3,49 @@ #ifndef RUNTIME_DEBUG #define RUNTIME_DEBUG -#define LOG_DEBUG 1 // Sets the debug logging to true +#define LOG_DEBUG 1 // Sets the debug logging to true #define LOG_INFO 1 // Sets the info logging to true #define ASSERT_FLAG // Sets assertions to true (opposite of NDEBUG macro) #include "tensor.h" -#include <sstream> #include <iostream> - #include <sstream> -#include <iostream> + #include <cstdarg> +#include <iostream> +#include <sstream> -#include <cudnn.h> #include <cublas_v2.h> +#include <cudnn.h> #include <cufft.h> -#define FatalError(s) do { \ - std::stringstream _where, _message; \ - _where << __FILE__ << ':' << __LINE__; \ - _message << std::string(s) + "\n" << __FILE__ << ':' << __LINE__; \ - std::cerr << _message.str() << "\nAborting...\n"; \ - cudaDeviceReset(); \ - exit(1); \ -} while(0) - - -#define checkCUDNN(status) do { \ - std::stringstream _error; \ - if (status != CUDNN_STATUS_SUCCESS) { \ - _error << "CUDNN failure: " << cudnnGetErrorString(status); \ - FatalError(_error.str()); \ - } \ -} while(0) - - -#define checkCudaErrors(status) do { \ - std::stringstream _error; \ - if (status != 0) { \ - _error << "Cuda failure: " << status; \ - FatalError(_error.str()); \ - } \ -} while(0) +#define FatalError(s) \ + do { \ + std::stringstream _where, _message; \ + _where << __FILE__ << ':' << __LINE__; \ + _message << std::string(s) + "\n" << __FILE__ << ':' << __LINE__; \ + std::cerr << _message.str() << "\nAborting...\n"; \ + cudaDeviceReset(); \ + exit(1); \ + } while (0) + +#define checkCUDNN(status) \ + do { \ + std::stringstream _error; \ + if (status != CUDNN_STATUS_SUCCESS) { \ + _error << "CUDNN failure: " << cudnnGetErrorString(status); \ + FatalError(_error.str()); \ + } \ + } while (0) + +#define checkCudaErrors(status) \ + do { \ + std::stringstream _error; \ + if (status != 0) { \ + _error << "Cuda failure: " << status; \ + FatalError(_error.str()); \ + } \ + } while (0) void _checkCUBLAS(cublasStatus_t error, const char *file, int line); @@ -58,33 +59,32 @@ void _checkCUDA(cudaError_t err, const char *file, int line); #define checkCUDA(err) _checkCUDA(err, __FILE__, __LINE__) -void INFO(const char* format, ...); - -void DEBUG(const char* format, ...); - -void ERROR(const char* format, ...); +void INFO(const char *format, ...); +void DEBUG(const char *format, ...); +void ERROR(const char *format, ...); #ifdef ASSERT_FLAG -#define CUSTOM_ASSERT(x) do { \ - if (!(x)) { \ - std::stringstream _message; \ - _message << "Assertion failed at " \ - << __FILE__ << ':' << __LINE__ \ - << " inside function " << __FUNCTION__ << "\n" \ - << "Condition: " << #x << "\n"; \ - std::cerr << _message.str(); \ - abort(); \ - } \ -} while (0) +#define CUSTOM_ASSERT(x) \ + do { \ + if (!(x)) { \ + std::stringstream _message; \ + _message << "Assertion failed at " << __FILE__ << ':' << __LINE__ \ + << " inside function " << __FUNCTION__ << "\n" \ + << "Condition: " << #x << "\n"; \ + std::cerr << _message.str(); \ + abort(); \ + } \ + } while (0) #else -#define CUSTOM_ASSERT(x) do { } while (0) +#define CUSTOM_ASSERT(x) \ + do { \ + } while (0) #endif -void fillOnes(struct Tensor* tensor); - -void printTensorDescInfo(struct Tensor* tensor); +void fillOnes(struct Tensor *tensor); +void printTensorDescInfo(struct Tensor *tensor); #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/error.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/error.h index 6429ed1a6e695ff4ed5ad927b93d2f74ac82ae63..a3d51141acd9e45d3231689a39f43e97fbeb0a9f 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/error.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/error.h @@ -2,91 +2,78 @@ #ifndef ERROR_HEADER #define ERROR_HEADER - #include "debug.h" +extern "C" { -extern "C"{ - -void readSkipTensors(int* skip_tensor_ids, int op_count); +void readSkipTensors(int *skip_tensor_ids, int op_count); -void readOpenTunerFlags(const char* file_name); +void readOpenTunerFlags(const char *file_name); -void readQuantRanges(char* file_name); +void readQuantRanges(char *file_name); -Norm_t* calculateNorms(Tensor* x, Tensor* x_orig); +Norm_t *calculateNorms(Tensor *x, Tensor *x_orig); -Norm_t* calculateNorms2(Tensor* x, Tensor* x_orig); +Norm_t *calculateNorms2(Tensor *x, Tensor *x_orig); -__global__ void normComputeKernel(float* A, float * B, - double* l1_A, double* l2_A, - double* l1_diff, double* l2_diff, - unsigned int n); +__global__ void normComputeKernel(float *A, float *B, double *l1_A, + double *l2_A, double *l1_diff, + double *l2_diff, unsigned int n); __inline__ __device__ double warpReduceSum(double val); __inline__ __device__ double blockReduceSum(double val); +__global__ void deviceReduceBlockAtomicKernel(float *A, float *B, int N, + double *A_l1, double *A_l2, + double *diff_l1, double *diff_l2); -__global__ void deviceReduceBlockAtomicKernel(float* A, float* B, int N, - double* A_l1, double* A_l2, - double* diff_l1, double* diff_l2); - -void deviceReduce(float* A, float* B, int N, - double* A_l1, double* A_l2, - double* diff_l1, double* diff_l2); +void deviceReduce(float *A, float *B, int N, double *A_l1, double *A_l2, + double *diff_l1, double *diff_l2); // Compute Norms on the GPU -Norm_t* calculateNormsTreeReduction(Tensor* x, Tensor* x_orig); +Norm_t *calculateNormsTreeReduction(Tensor *x, Tensor *x_orig); // Compute Norms on the GPU -Norm_t* calculateNormsGPU(Tensor* x, Tensor* x_orig); +Norm_t *calculateNormsGPU(Tensor *x, Tensor *x_orig); -__global__ void vecConstMul(float* A, float mul_factor, int n); +__global__ void vecConstMul(float *A, float mul_factor, int n); -__global__ void vecRound(float* A, int n); +__global__ void vecRound(float *A, int n); -__global__ void vecConstDiv(float* A, float div_factor, int n); +__global__ void vecConstDiv(float *A, float div_factor, int n); -__global__ void vecMul(float* A, float* B, int n); +__global__ void vecMul(float *A, float *B, int n); /**** ERROR injecion routines ******/ -void initRandValues(Tensor* bias, int error_scale); +void initRandValues(Tensor *bias, int error_scale); -void initRandValues2(Tensor* bias, int error_scale); +void initRandValues2(Tensor *bias, int error_scale); -void* addBitError(void* x_ptr, int error_scale); +void *addBitError(void *x_ptr, int error_scale); -void randomCeilAndFloor(float* x, size_t num_elems); +void randomCeilAndFloor(float *x, size_t num_elems); // Routine for Adding RoundOff Errors -void* addRoundError(void* x_ptr, int error_scale); - +void *addRoundError(void *x_ptr, int error_scale); // Routine for Adding Gaussian Error -void* addGaussianError(void* x_ptr, int error_scale); - -void initPromiseRandValues(Tensor* bias, int error_scale); +void *addGaussianError(void *x_ptr, int error_scale); +void initPromiseRandValues(Tensor *bias, int error_scale); // NOTE: Assumption is that x_ptr is FP32 tensor - doesn't work with FP16 // Routine for Adding PROMISE bitline swing error -void* addPromiseError(void* x_ptr, int error_scale); - -__global__ void quantizeAndClip(float* A, int n, - float mul_factor, - float min, float max); +void *addPromiseError(void *x_ptr, int error_scale); -__global__ void quantizeElem(float* A, int n, - float mul_factor, - float min); +__global__ void quantizeAndClip(float *A, int n, float mul_factor, float min, + float max); -void* quantizeTensorPromise(void* input_ptr, - float min, float max); +__global__ void quantizeElem(float *A, int n, float mul_factor, float min); -void* tensorAddError(void* x_ptr, int error_scale); +void *quantizeTensorPromise(void *input_ptr, float min, float max); +void *tensorAddError(void *x_ptr, int error_scale); } - #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_conversion.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_conversion.h index 4c2fbe806d1758118f6d55c079f9c75de42599d8..0b80e043e327e5dec5169dcd0bde092313a1bdc9 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_conversion.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_conversion.h @@ -24,101 +24,90 @@ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// This code modified from the public domain code here: +// This code modified from the public domain code here: // https://gist.github.com/rygorous/2156668 // The URL above includes more robust conversion routines -// that handle Inf and NaN correctly. -// +// that handle Inf and NaN correctly. +// // It is recommended to use the more robust versions in production code. - #ifndef FP16_CONV_HEADER #define FP16_CONV_HEADER - - typedef unsigned uint; -union FP32 -{ - uint u; - float f; - struct - { - uint Mantissa : 23; - uint Exponent : 8; - uint Sign : 1; - }; +union FP32 { + uint u; + float f; + struct { + uint Mantissa : 23; + uint Exponent : 8; + uint Sign : 1; + }; }; -union FP16 -{ - unsigned short u; - struct - { - uint Mantissa : 10; - uint Exponent : 5; - uint Sign : 1; - }; +union FP16 { + unsigned short u; + struct { + uint Mantissa : 10; + uint Exponent : 5; + uint Sign : 1; + }; }; // Approximate solution. This is faster but converts some sNaNs to // infinity and doesn't round correctly. Handle with care. // Approximate solution. This is faster but converts some sNaNs to // infinity and doesn't round correctly. Handle with care. -static half approx_float_to_half(float fl) -{ - FP32 f32infty = { 255 << 23 }; - FP32 f16max = { (127 + 16) << 23 }; - FP32 magic = { 15 << 23 }; - FP32 expinf = { (255 ^ 31) << 23 }; - uint sign_mask = 0x80000000u; - FP16 o = { 0 }; - - FP32 f = *((FP32*)&fl); - - uint sign = f.u & sign_mask; - f.u ^= sign; - - if (!(f.f < f32infty.u)) // Inf or NaN - o.u = f.u ^ expinf.u; - else - { - if (f.f > f16max.f) f.f = f16max.f; - f.f *= magic.f; - } - - o.u = f.u >> 13; // Take the mantissa bits - o.u |= sign >> 16; - return *((half*)&o); +static half approx_float_to_half(float fl) { + FP32 f32infty = {255 << 23}; + FP32 f16max = {(127 + 16) << 23}; + FP32 magic = {15 << 23}; + FP32 expinf = {(255 ^ 31) << 23}; + uint sign_mask = 0x80000000u; + FP16 o = {0}; + + FP32 f = *((FP32 *)&fl); + + uint sign = f.u & sign_mask; + f.u ^= sign; + + if (!(f.f < f32infty.u)) // Inf or NaN + o.u = f.u ^ expinf.u; + else { + if (f.f > f16max.f) + f.f = f16max.f; + f.f *= magic.f; + } + + o.u = f.u >> 13; // Take the mantissa bits + o.u |= sign >> 16; + return *((half *)&o); } // from half->float code - just for verification. -static float half_to_float(half hf) -{ - FP16 h = *((FP16*)&hf); - - static const FP32 magic = { 113 << 23 }; - static const uint shifted_exp = 0x7c00 << 13; // exponent mask after shift - FP32 o; - - o.u = (h.u & 0x7fff) << 13; // exponent/mantissa bits - uint exp = shifted_exp & o.u; // just the exponent - o.u += (127 - 15) << 23; // exponent adjust - - // handle exponent special cases - if (exp == shifted_exp) // Inf/NaN? - o.u += (128 - 16) << 23; // extra exp adjust - else if (exp == 0) // Zero/Denormal? - { - o.u += 1 << 23; // extra exp adjust - o.f -= magic.f; // renormalize - } - - o.u |= (h.u & 0x8000) << 16; // sign bit - return o.f; +static float half_to_float(half hf) { + FP16 h = *((FP16 *)&hf); + + static const FP32 magic = {113 << 23}; + static const uint shifted_exp = 0x7c00 << 13; // exponent mask after shift + FP32 o; + + o.u = (h.u & 0x7fff) << 13; // exponent/mantissa bits + uint exp = shifted_exp & o.u; // just the exponent + o.u += (127 - 15) << 23; // exponent adjust + + // handle exponent special cases + if (exp == shifted_exp) // Inf/NaN? + o.u += (128 - 16) << 23; // extra exp adjust + else if (exp == 0) // Zero/Denormal? + { + o.u += 1 << 23; // extra exp adjust + o.f -= magic.f; // renormalize + } + + o.u |= (h.u & 0x8000) << 16; // sign bit + return o.f; } - - #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_emu.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_emu.h index 64aee8231b54d52710192fc7d598d6ed162f1338..8056b2b9071b8793b3d5e85d520c87dd1631035c 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_emu.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_emu.h @@ -52,16 +52,16 @@ #if !defined(_FP16_EMU_H_) #define _FP16_EMU_H_ -#include <driver_types.h> #include <cuda_fp16.h> +#include <driver_types.h> // Necessary to ensure visibility of CUDART_VERSION macro #include <cuda_runtime_api.h> // Definition of '__half_raw' was not provided before CUDA 9.0. -// '__half_raw' is our type where the unsigned 16-bit integer +// '__half_raw' is our type where the unsigned 16-bit integer // data member 'x' can be accessed in both CUDA 9.0 and 8.0. -#if CUDART_VERSION < 9000 +#if CUDART_VERSION < 9000 typedef __half __half_raw; #endif @@ -69,206 +69,174 @@ typedef __half __half_raw; typedef __half half1; #define HLF_EPSILON 4.887581E-04 -#define HLF_MIN 6.103516E-05 -#define HLF_MAX 6.550400E+04 +#define HLF_MIN 6.103516E-05 +#define HLF_MAX 6.550400E+04 half1 cpu_float2half_rn(float f); float cpu_half2float(half1 h); -static __inline__ __device__ __host__ half1 habs(half1 h) -{ - __half_raw hr = reinterpret_cast<__half_raw&>(h); - hr.x &= 0x7fffU; - return reinterpret_cast<half1&>(hr); +static __inline__ __device__ __host__ half1 habs(half1 h) { + __half_raw hr = reinterpret_cast<__half_raw &>(h); + hr.x &= 0x7fffU; + return reinterpret_cast<half1 &>(hr); } -static __inline__ __device__ __host__ half1 hneg(half1 h) -{ - __half_raw hr = reinterpret_cast<__half_raw&>(h); - hr.x ^= 0x8000U; - return reinterpret_cast<half1&>(hr); +static __inline__ __device__ __host__ half1 hneg(half1 h) { + __half_raw hr = reinterpret_cast<__half_raw &>(h); + hr.x ^= 0x8000U; + return reinterpret_cast<half1 &>(hr); } -static __inline__ __device__ __host__ int ishnan(half1 h) -{ - // When input is NaN, exponent is all ones and mantissa is non-zero. - __half_raw hr = reinterpret_cast<__half_raw&>(h); - return (hr.x & 0x7c00U) == 0x7c00U && (hr.x & 0x03ffU) != 0; +static __inline__ __device__ __host__ int ishnan(half1 h) { + // When input is NaN, exponent is all ones and mantissa is non-zero. + __half_raw hr = reinterpret_cast<__half_raw &>(h); + return (hr.x & 0x7c00U) == 0x7c00U && (hr.x & 0x03ffU) != 0; } -static __inline__ __device__ __host__ int ishinf(half1 h) -{ - // When input is +/- inf, exponent is all ones and mantissa is zero. - __half_raw hr = reinterpret_cast<__half_raw&>(h); - return (hr.x & 0x7c00U) == 0x7c00U && (hr.x & 0x03ffU) == 0; +static __inline__ __device__ __host__ int ishinf(half1 h) { + // When input is +/- inf, exponent is all ones and mantissa is zero. + __half_raw hr = reinterpret_cast<__half_raw &>(h); + return (hr.x & 0x7c00U) == 0x7c00U && (hr.x & 0x03ffU) == 0; } -static __inline__ __device__ __host__ int ishequ(half1 x, half1 y) -{ - __half_raw xr = reinterpret_cast<__half_raw&>(x); - __half_raw yr = reinterpret_cast<__half_raw&>(y); - return ishnan(x) == 0 && ishnan(y) == 0 && xr.x == yr.x; +static __inline__ __device__ __host__ int ishequ(half1 x, half1 y) { + __half_raw xr = reinterpret_cast<__half_raw &>(x); + __half_raw yr = reinterpret_cast<__half_raw &>(y); + return ishnan(x) == 0 && ishnan(y) == 0 && xr.x == yr.x; } // Returns 0.0000 in FP16 binary form -static __inline__ __device__ __host__ half1 hzero() -{ - __half_raw hr; - hr.x = 0x0000U; - return reinterpret_cast<half1&>(hr); +static __inline__ __device__ __host__ half1 hzero() { + __half_raw hr; + hr.x = 0x0000U; + return reinterpret_cast<half1 &>(hr); } // Returns 1.0000 in FP16 binary form -static __inline__ __device__ __host__ half1 hone() -{ - __half_raw hr; - hr.x = 0x3c00U; - return reinterpret_cast<half1&>(hr); +static __inline__ __device__ __host__ half1 hone() { + __half_raw hr; + hr.x = 0x3c00U; + return reinterpret_cast<half1 &>(hr); } // Returns quiet NaN, the most significant fraction bit #9 is set -static __inline__ __device__ __host__ half1 hnan() -{ - __half_raw hr; - hr.x = 0x7e00U; - return reinterpret_cast<half1&>(hr); +static __inline__ __device__ __host__ half1 hnan() { + __half_raw hr; + hr.x = 0x7e00U; + return reinterpret_cast<half1 &>(hr); } // Largest positive FP16 value, corresponds to 6.5504e+04 -static __inline__ __device__ __host__ half1 hmax() -{ - // Exponent all ones except LSB (0x1e), mantissa is all ones (0x3ff) - __half_raw hr; - hr.x = 0x7bffU; - return reinterpret_cast<half1&>(hr); +static __inline__ __device__ __host__ half1 hmax() { + // Exponent all ones except LSB (0x1e), mantissa is all ones (0x3ff) + __half_raw hr; + hr.x = 0x7bffU; + return reinterpret_cast<half1 &>(hr); } // Smallest positive (normalized) FP16 value, corresponds to 6.1035e-05 -static __inline__ __device__ __host__ half1 hmin() -{ - // Exponent is 0x01 (5 bits), mantissa is all zeros (10 bits) - __half_raw hr; - hr.x = 0x0400U; - return reinterpret_cast<half1&>(hr); +static __inline__ __device__ __host__ half1 hmin() { + // Exponent is 0x01 (5 bits), mantissa is all zeros (10 bits) + __half_raw hr; + hr.x = 0x0400U; + return reinterpret_cast<half1 &>(hr); } - - - - - - - - - - -#define STATIC_ASSERT(cond) do { typedef char compile_time_assert[(cond) ? 1 : -1]; } while (0) +#define STATIC_ASSERT(cond) \ + do { \ + typedef char compile_time_assert[(cond) ? 1 : -1]; \ + } while (0) // Host functions for converting between FP32 and FP16 formats // Paulius Micikevicius (pauliusm@nvidia.com) -half1 cpu_float2half_rn(float f) -{ - unsigned x = *((int*)(void*)(&f)); - unsigned u = (x & 0x7fffffff), remainder, shift, lsb, lsb_s1, lsb_m1; - unsigned sign, exponent, mantissa; - - __half_raw hr; - - // Get rid of +NaN/-NaN case first. - if (u > 0x7f800000) { - hr.x = 0x7fffU; - return reinterpret_cast<half1&>(hr); - } - - sign = ((x >> 16) & 0x8000); - - // Get rid of +Inf/-Inf, +0/-0. - if (u > 0x477fefff) { - hr.x = sign | 0x7c00U; - return reinterpret_cast<half1&>(hr); - } - if (u < 0x33000001) { - hr.x = sign | 0x0000U; - return reinterpret_cast<half1&>(hr); +half1 cpu_float2half_rn(float f) { + unsigned x = *((int *)(void *)(&f)); + unsigned u = (x & 0x7fffffff), remainder, shift, lsb, lsb_s1, lsb_m1; + unsigned sign, exponent, mantissa; + + __half_raw hr; + + // Get rid of +NaN/-NaN case first. + if (u > 0x7f800000) { + hr.x = 0x7fffU; + return reinterpret_cast<half1 &>(hr); + } + + sign = ((x >> 16) & 0x8000); + + // Get rid of +Inf/-Inf, +0/-0. + if (u > 0x477fefff) { + hr.x = sign | 0x7c00U; + return reinterpret_cast<half1 &>(hr); + } + if (u < 0x33000001) { + hr.x = sign | 0x0000U; + return reinterpret_cast<half1 &>(hr); + } + + exponent = ((u >> 23) & 0xff); + mantissa = (u & 0x7fffff); + + if (exponent > 0x70) { + shift = 13; + exponent -= 0x70; + } else { + shift = 0x7e - exponent; + exponent = 0; + mantissa |= 0x800000; + } + lsb = (1 << shift); + lsb_s1 = (lsb >> 1); + lsb_m1 = (lsb - 1); + + // Round to nearest even. + remainder = (mantissa & lsb_m1); + mantissa >>= shift; + if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) { + ++mantissa; + if (!(mantissa & 0x3ff)) { + ++exponent; + mantissa = 0; } + } - exponent = ((u >> 23) & 0xff); - mantissa = (u & 0x7fffff); + hr.x = (sign | (exponent << 10) | mantissa); - if (exponent > 0x70) { - shift = 13; - exponent -= 0x70; - } else { - shift = 0x7e - exponent; - exponent = 0; - mantissa |= 0x800000; - } - lsb = (1 << shift); - lsb_s1 = (lsb >> 1); - lsb_m1 = (lsb - 1); - - // Round to nearest even. - remainder = (mantissa & lsb_m1); - mantissa >>= shift; - if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) { - ++mantissa; - if (!(mantissa & 0x3ff)) { - ++exponent; - mantissa = 0; - } - } - - hr.x = (sign | (exponent << 10) | mantissa); - - return reinterpret_cast<half1&>(hr); + return reinterpret_cast<half1 &>(hr); } - -float cpu_half2float(half1 h) -{ - STATIC_ASSERT(sizeof(int) == sizeof(float)); - - __half_raw hr = reinterpret_cast<__half_raw&>(h); - - unsigned sign = ((hr.x >> 15) & 1); - unsigned exponent = ((hr.x >> 10) & 0x1f); - unsigned mantissa = ((hr.x & 0x3ff) << 13); - - if (exponent == 0x1f) { /* NaN or Inf */ - mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0); - exponent = 0xff; - } else if (!exponent) { /* Denorm or Zero */ - if (mantissa) { - unsigned int msb; - exponent = 0x71; - do { - msb = (mantissa & 0x400000); - mantissa <<= 1; /* normalize */ - --exponent; - } while (!msb); - mantissa &= 0x7fffff; /* 1.mantissa is implicit */ - } - } else { - exponent += 0x70; +float cpu_half2float(half1 h) { + STATIC_ASSERT(sizeof(int) == sizeof(float)); + + __half_raw hr = reinterpret_cast<__half_raw &>(h); + + unsigned sign = ((hr.x >> 15) & 1); + unsigned exponent = ((hr.x >> 10) & 0x1f); + unsigned mantissa = ((hr.x & 0x3ff) << 13); + + if (exponent == 0x1f) { /* NaN or Inf */ + mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0); + exponent = 0xff; + } else if (!exponent) { /* Denorm or Zero */ + if (mantissa) { + unsigned int msb; + exponent = 0x71; + do { + msb = (mantissa & 0x400000); + mantissa <<= 1; /* normalize */ + --exponent; + } while (!msb); + mantissa &= 0x7fffff; /* 1.mantissa is implicit */ } + } else { + exponent += 0x70; + } - int temp = ((sign << 31) | (exponent << 23) | mantissa); + int temp = ((sign << 31) | (exponent << 23) | mantissa); - return reinterpret_cast<float&>(temp); + return reinterpret_cast<float &>(temp); } - - - - - - -#endif // _FP16_EMU_H_ - - - - - - +#endif // _FP16_EMU_H_ diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_gemm.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_gemm.h index 7251d9dca2ed60a8030451bb3b6a858840d9b1c4..057b7f8b869f2a40d5f76345302dfb8df5235f1f 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_gemm.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/fp16_gemm.h @@ -6,67 +6,45 @@ #include <cublas_v2.h> #include <cuda_fp16.h> - inline cudaError_t checkCuda(cudaError_t result); inline cublasStatus_t checkCublas(cublasStatus_t result); - template <typename T> -inline void printArray(const T * const __restrict__ array, +inline void printArray(const T *const __restrict__ array, const unsigned elements); // initialization template <typename T> -__global__ void initKernel(T * const __restrict__ array, +__global__ void initKernel(T *const __restrict__ array, const unsigned elements); - template <typename T> -void init(T * const __restrict__ array, - const unsigned elements); - +void init(T *const __restrict__ array, const unsigned elements); // float to half -__global__ void f2hKernel(const float * const __restrict__ input, +__global__ void f2hKernel(const float *const __restrict__ input, const unsigned elements, - half * const __restrict__ output); - - -void f2h(const float * const __restrict__ input, - const unsigned elements, - half * const __restrict__ output); + half *const __restrict__ output); +void f2h(const float *const __restrict__ input, const unsigned elements, + half *const __restrict__ output); // half to float -__global__ void h2fKernel(const half * const __restrict__ input, +__global__ void h2fKernel(const half *const __restrict__ input, const unsigned elements, - float * const __restrict__ output); - - -void h2f(const half * const __restrict__ input, - const unsigned elements, - float * const __restrict__ output); - - - -void sgemm(const float * const __restrict__ a, - const unsigned num_rows_a, - const unsigned num_cols_a, - const float * const __restrict__ b, - const unsigned num_rows_b, - const unsigned num_cols_b, - float * const __restrict__ c); - - + float *const __restrict__ output); -void hgemm(const float * const __restrict__ af, - const unsigned num_rows_a, - const unsigned num_cols_a, - const float * const __restrict__ bf, - const unsigned num_rows_b, - const unsigned num_cols_b, - float * const __restrict__ cf); +void h2f(const half *const __restrict__ input, const unsigned elements, + float *const __restrict__ output); +void sgemm(const float *const __restrict__ a, const unsigned num_rows_a, + const unsigned num_cols_a, const float *const __restrict__ b, + const unsigned num_rows_b, const unsigned num_cols_b, + float *const __restrict__ c); +void hgemm(const float *const __restrict__ af, const unsigned num_rows_a, + const unsigned num_cols_a, const float *const __restrict__ bf, + const unsigned num_rows_b, const unsigned num_cols_b, + float *const __restrict__ cf); #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/functional/map_typing.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/functional/map_typing.h index c6c804fa00f1ae5eb324d6928d8f3c43b1231d14..54d919b3346047285bb0b89c2c8d97f625738183 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/functional/map_typing.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/functional/map_typing.h @@ -50,8 +50,8 @@ template <typename T, size_t N> using RepNTuple = RepNType<T, std::tuple, N>; namespace { template <typename TIterable, typename T, size_t... Is> -constexpr RepNTuple<T, sizeof...(Is)> -as_tuple(TIterable arr, std::index_sequence<Is...>) { +constexpr RepNTuple<T, sizeof...(Is)> as_tuple(TIterable arr, + std::index_sequence<Is...>) { return std::make_tuple(arr[Is]...); } @@ -76,7 +76,7 @@ __device__ auto call_on_tuple(Function f, Tuple t) { return call(f, t, std::make_index_sequence<size>{}); } -// Expands Array of type T and size N into parameters of Function +// Expands Array of type T and size N into parameters of Function template <typename Ret, typename T, size_t N> __device__ Ret call_on_c_array(NAToBF<Ret, T, N> f, const T arr[N]) { return call_on_tuple(f, as_tuple<const T *, T, N>(arr)); diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/global_data.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/global_data.h index e3a9b38af984eb220c0ce8aa14b9ffd65138c788..c91c5b9cc314df9536f2d5efc61c29032cca2c1a 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/global_data.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/global_data.h @@ -2,35 +2,31 @@ #ifndef GLOBAL_DATA_HEADER #define GLOBAL_DATA_HEADER - -#include <stdio.h> -#include <stdarg.h> #include <cstdio> #include <cstdlib> +#include <stdarg.h> +#include <stdio.h> #include <unordered_set> #include <cuda_runtime.h> #include <device_launch_parameters.h> +#include <cublas_api.h> #include <cublas_v2.h> #include <cudnn.h> -#include <cublas_api.h> #include <string> #include <unordered_map> -#include "tensor.h" #include "approx_knob_utils.h" - +#include "tensor.h" #define ERROR_INJECTION_ENABLED 0 #define PROMISE_MODE 1 - #ifdef NO_INJECTION #undef ERROR_INJECTION_ENABLED #endif - //#define ERROR_INJECTION_ENABLED 1 /* Data declarations */ extern cudnnHandle_t cudnnHandle; @@ -40,19 +36,17 @@ extern bool runtime_initialized; // NOTE: Layers Mode is True or Approxhpvm wrappper runtime mode extern bool approxhpvm_runtime_mode; - extern int op_counter; extern int total_ops; - // NOTE: Both vectors asssume a linear CFG // FIXME: Each operation should have an ID passed to the runtime extern std::vector<int> op_accuracies; -extern std::vector<Range*> quant_ranges; +extern std::vector<Range *> quant_ranges; -extern std::unordered_set<void*> tensors_ptr, host_ptr, obj_ptr; +extern std::unordered_set<void *> tensors_ptr, host_ptr, obj_ptr; -extern std::unordered_map<void*, int> tracked_tensors; +extern std::unordered_map<void *, int> tracked_tensors; // Autotuning data extern std::unordered_map<int, int> skip_tensors; @@ -61,8 +55,7 @@ extern std::unordered_map<int, int> skip_tensors; extern std::unordered_map<std::string, int> func_counters; extern std::string profile_data; -extern PerfParamSet* perfParamSet; -extern SampParamSet* sampParamSet; - +extern PerfParamSet *perfParamSet; +extern SampParamSet *sampParamSet; #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/half_precision_api.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/half_precision_api.h index 89e74f3bf8887be12b59bb1e40e3032760cba3de..7b907b16da9eb8eeac9fea5cc1d778da1274fe29 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/half_precision_api.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/half_precision_api.h @@ -3,34 +3,27 @@ #ifndef HALF_API_HEADER #define HALF_API_HEADER +extern "C" { -extern "C"{ +void *tensorHalfGemm(void *lhs_ptr, void *rhs_ptr); +void *tensorHalfGemmGPU(void *lhs_ptr, void *rhs_ptr); -void* tensorHalfGemm(void* lhs_ptr, void* rhs_ptr); -void* tensorHalfGemmGPU(void* lhs_ptr, void* rhs_ptr); +void *tensorHalfConvolution(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups); +void *tensorHalfBatchNorm(void *input_ptr, void *gamma_ptr, void *beta_ptr, + void *mean_ptr, void *variance_ptr, double epsilon); -void* tensorHalfConvolution(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups); - -void* tensorHalfBatchNorm(void* input_ptr, void* gamma_ptr, void* beta_ptr, - void* mean_ptr, void* variance_ptr, double epsilon); - - -void* tensorHalfPooling(void* input_ptr, - int poolFunction, - int window_height, int window_width, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride); - -void* tensorHalfRelu2(void* input_ptr, float min, float max); -void* tensorHalfRelu(void* input_ptr); -void* tensorHalfTanh(void* input_ptr); -void* tensorHalfAdd(void* x_ptr, void* bias_ptr); - +void *tensorHalfPooling(void *input_ptr, int poolFunction, int window_height, + int window_width, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride); +void *tensorHalfRelu2(void *input_ptr, float min, float max); +void *tensorHalfRelu(void *input_ptr); +void *tensorHalfTanh(void *input_ptr); +void *tensorHalfAdd(void *x_ptr, void *bias_ptr); } #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/hpvm-rt-controller.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/hpvm-rt-controller.h index f7d1018c9a2c7f25df642c8593b9612ae92dfa98..0a207edc51c6bf029d6a5100c8617e8d3e811b31 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/hpvm-rt-controller.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/hpvm-rt-controller.h @@ -1,13 +1,13 @@ #ifndef LLVM_HPVM_RT_CONTROLLER_H #define LLVM_HPVM_RT_CONTROLLER_H +#include <cstdlib> +#include <cstring> #include <fstream> #include <iostream> #include <map> -#include <vector> -#include <cstring> -#include <cstdlib> #include <random> +#include <vector> #include "configuration.h" @@ -24,38 +24,38 @@ * Check if a file exists * Return true if the file exists, false else */ -bool fileExists(const std::string& file); +bool fileExists(const std::string &file); class FrequencyIndexList { - private: - std::vector<int> idx_list; - unsigned rep_factor; +private: + std::vector<int> idx_list; + unsigned rep_factor; - unsigned count; - unsigned idx; + unsigned count; + unsigned idx; - public: - FrequencyIndexList(std::vector<int>, unsigned); - unsigned getNextIndex(); +public: + FrequencyIndexList(std::vector<int>, unsigned); + unsigned getNextIndex(); }; class ProfileInfo { - private: +private: // Members - double time_total; // Total execution time of application - double time_compute; // Compute - double time_control; // Control - double time_config; // Apply configuration + double time_total; // Total execution time of application + double time_compute; // Compute + double time_control; // Control + double time_config; // Apply configuration - double energy_total; // Total energy consumed by applcation - double energy_compute; // Compute - double energy_control; // Control - double energy_config; // Apply configuration + double energy_total; // Total energy consumed by applcation + double energy_compute; // Compute + double energy_control; // Control + double energy_config; // Apply configuration // Execution time of one loop iteration - double time_compute_current_iteration; // Compute - double time_control_current_iteration; // Control - double time_config_current_iteration; // Apply configuration + double time_compute_current_iteration; // Compute + double time_control_current_iteration; // Control + double time_config_current_iteration; // Apply configuration // Energy comsumed by one loop iteration double energy_compute_current_iteration; // Compute @@ -70,23 +70,24 @@ class ProfileInfo { // - per operation (inner vector) // (tensor operation for GPU, or whole layer for PROMISE) // is stored - std::vector< std::vector< std::pair< std::string, double > > > tensor_time_info; - std::vector< std::vector< std::pair< std::string, double > > > tensor_energy_info; + std::vector<std::vector<std::pair<std::string, double>>> tensor_time_info; + std::vector<std::vector<std::pair<std::string, double>>> tensor_energy_info; - // Vectors, where total compute time and energy information per iteration are stored - std::vector< double > compute_time_info; - std::vector< double > compute_energy_info; + // Vectors, where total compute time and energy information per iteration are + // stored + std::vector<double> compute_time_info; + std::vector<double> compute_energy_info; // Vectors, where control time and energy information per iteration are stored - std::vector< double > control_time_info; - std::vector< double > control_energy_info; + std::vector<double> control_time_info; + std::vector<double> control_energy_info; // Vectors, where control time and energy information per iteration are stored - std::vector< double > config_time_info; - std::vector< double > config_energy_info; + std::vector<double> config_time_info; + std::vector<double> config_energy_info; // Vector, where frequency information at the end of each iteration is stored - std::vector< unsigned long > frequency_info; + std::vector<unsigned long> frequency_info; bool in_iteration; @@ -100,7 +101,7 @@ class ProfileInfo { void start_iteration(); - public: +public: void end_iteration(); void addToCurrentIterationComputeTime(const char *s, double t); @@ -132,21 +133,19 @@ class ProfileInfo { void printToFile(); ProfileInfo(); - }; class Slowdowns { - private: +private: std::vector<float> slowdowns; unsigned idx; - public: - Slowdowns(); +public: + Slowdowns(); unsigned getSlowdownsNumber(); float getNextSlowdown(); - }; class RuntimeController; @@ -154,10 +153,10 @@ class RuntimeController; extern RuntimeController *RC; class RuntimeController { - private: +private: // Members // Map from node names to quantization ranges - std::map<std::string, std::vector<float> > QuantizationMap; + std::map<std::string, std::vector<float>> QuantizationMap; // Configurations. // Configurations initially read - all generated from autotuner @@ -197,7 +196,7 @@ class RuntimeController { // update the frequency of the Jetson board FrequencyIndexList *FIL; - //Functions + // Functions // Private functions of profiler void start_profiler(); @@ -210,7 +209,7 @@ class RuntimeController { void computeParetoConfigurationPoints(); void compute3DParetoConfigurationPoints(); - public: +public: // For testing purposes only - do not use widely std::vector<struct Configuration *> &getSpeedupConfigurations(); // For testing purposes only - do not use widely @@ -281,25 +280,17 @@ class RuntimeController { std::pair<double, double> get_time_energy() const; // Exposing functionality of promise simulator - std::pair<double, double> fc_profile(const unsigned num_rows_a, - const unsigned num_cols_a, - const unsigned num_rows_b, - const unsigned num_cols_b, - const unsigned voltage_swing, - const unsigned patch_factor); - - std::pair<double, double> conv_profile(const unsigned n, - const unsigned c, - const unsigned h, - const unsigned w, - const unsigned c_out, - const unsigned c_in, - const unsigned k_h, - const unsigned k_w, - const unsigned s_h, - const unsigned s_w, - const unsigned voltage_swing, - const unsigned patch_factor); + std::pair<double, double> + fc_profile(const unsigned num_rows_a, const unsigned num_cols_a, + const unsigned num_rows_b, const unsigned num_cols_b, + const unsigned voltage_swing, const unsigned patch_factor); + + std::pair<double, double> + conv_profile(const unsigned n, const unsigned c, const unsigned h, + const unsigned w, const unsigned c_out, const unsigned c_in, + const unsigned k_h, const unsigned k_w, const unsigned s_h, + const unsigned s_w, const unsigned voltage_swing, + const unsigned patch_factor); // Constructor and descructor RuntimeController(); @@ -310,7 +301,6 @@ class RuntimeController { void printQuantizationMap(); void printConfigurations(std::vector<struct Configuration> &); void printConfigurations(std::vector<struct Configuration *> &); - }; #define NODE_NAME_BUFFER_SIZE 10 #define AL_THRESHOLD 0.01 @@ -318,9 +308,10 @@ class RuntimeController { //*** Methods to compute accuracy of a tensor by the runtime controller ***// -uint32_t* hpvm_rt_readLabelsBatch_cached(const char* labels_file, int start, int end); +uint32_t *hpvm_rt_readLabelsBatch_cached(const char *labels_file, int start, + int end); //*** Copied from dnn_sources/include/utils.h ***// -float hpvm_rt_computeAccuracy3(uint32_t* labels, void* result_ptr); +float hpvm_rt_computeAccuracy3(uint32_t *labels, void *result_ptr); #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/image/stb_image.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/image/stb_image.h index f4b2b17f4b4b9af16cded2838fa0db31287ccbe4..da7337008d8d39d65a45ab906155ed409b35a991 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/image/stb_image.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/image/stb_image.h @@ -3,7 +3,8 @@ Do this: #define STB_IMAGE_IMPLEMENTATION - before you include this file in *one* C or C++ file to create the implementation. + before you include this file in *one* C or C++ file to create the +implementation. // i.e. it should look like this: #include ... @@ -13,15 +14,16 @@ #include "stb_image.h" You can #define STBI_ASSERT(x) before the #include to avoid using assert.h. - And #define STBI_MALLOC, STBI_REALLOC, and STBI_FREE to avoid using malloc,realloc,free + And #define STBI_MALLOC, STBI_REALLOC, and STBI_FREE to avoid using +malloc,realloc,free QUICK NOTES: Primarily of interest to game developers and other people who can avoid problematic images and only need the trivial interface - JPEG baseline & progressive (12 bpc/arithmetic not supported, same as stock IJG lib) - PNG 1/2/4/8/16-bit-per-channel + JPEG baseline & progressive (12 bpc/arithmetic not supported, same as +stock IJG lib) PNG 1/2/4/8/16-bit-per-channel TGA (not sure what subset, if a subset) BMP non-1bpp, non-RLE @@ -51,21 +53,18 @@ RECENT REVISION HISTORY: 2.23 (2019-08-11) fix clang static analysis warning 2.22 (2019-03-04) gif fixes, fix warnings 2.21 (2019-02-25) fix typo in comment - 2.20 (2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs - 2.19 (2018-02-11) fix warning - 2.18 (2018-01-30) fix warnings + 2.20 (2019-02-07) support utf8 filenames in Windows; fix warnings and +platform ifdefs 2.19 (2018-02-11) fix warning 2.18 (2018-01-30) fix warnings 2.17 (2018-01-29) bugfix, 1-bit BMP, 16-bitness query, fix warnings - 2.16 (2017-07-23) all functions have 16-bit variants; optimizations; bugfixes - 2.15 (2017-03-18) fix png-1,2,4; all Imagenet JPGs; no runtime SSE detection on GCC - 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs - 2.13 (2016-12-04) experimental 16-bit API, only for PNG so far; fixes - 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes - 2.11 (2016-04-02) 16-bit PNGS; enable SSE2 in non-gcc x64 - RGB-format JPEG; remove white matting in PSD; - allocate large structures on the stack; - correct channel count for PNG & BMP - 2.10 (2016-01-22) avoid warning introduced in 2.09 - 2.09 (2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED + 2.16 (2017-07-23) all functions have 16-bit variants; optimizations; +bugfixes 2.15 (2017-03-18) fix png-1,2,4; all Imagenet JPGs; no runtime SSE +detection on GCC 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for +Imagenet JPGs 2.13 (2016-12-04) experimental 16-bit API, only for PNG so far; +fixes 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes 2.11 +(2016-04-02) 16-bit PNGS; enable SSE2 in non-gcc x64 RGB-format JPEG; remove +white matting in PSD; allocate large structures on the stack; correct channel +count for PNG & BMP 2.10 (2016-01-22) avoid warning introduced in 2.09 2.09 +(2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED See end of file for full revision history. @@ -83,29 +82,29 @@ RECENT REVISION HISTORY: github:urraka (animated gif) Junggon Kim (PNM comments) Christopher Forseth (animated gif) Daniel Gibson (16-bit TGA) socks-the-fox (16-bit PNG) - Jeremy Sawicki (handle all ImageNet JPGs) - Optimizations & bugfixes Mikhail Morozov (1-bit BMP) + Jeremy Sawicki (handle all ImageNet +JPGs) Optimizations & bugfixes Mikhail Morozov (1-bit BMP) Fabian "ryg" Giesen Anael Seghezzi (is-16-bit query) Arseny Kapoulkine John-Mark Allen Carmelo J Fdez-Aguera Bug & warning fixes - Marc LeBlanc David Woo Guillaume George Martins Mozeiko - Christpher Lloyd Jerry Jansson Joseph Thomson Phil Jordan - Dave Moore Roy Eltham Hayaki Saito Nathan Reed + Marc LeBlanc David Woo Guillaume George Martins +Mozeiko Christpher Lloyd Jerry Jansson Joseph Thomson Phil +Jordan Dave Moore Roy Eltham Hayaki Saito Nathan Reed Won Chun Luke Graham Johan Duparc Nick Verigakis the Horde3D community Thomas Ruf Ronny Chevalier github:rlyeh - Janez Zemva John Bartholomew Michal Cichon github:romigrou + Janez Zemva John Bartholomew Michal Cichon github:romigrou Jonathan Blow Ken Hamada Tero Hanninen github:svdijk Laurent Gomila Cort Stratton Sergio Gonzalez github:snagar Aruelien Pocheville Thibault Reuille Cass Everitt github:Zelex Ryamond Barbiero Paul Du Bois Engin Manap github:grim210 Aldo Culquicondor Philipp Wiesemann Dale Weiler github:sammyhw Oriol Ferrer Mesia Josh Tobin Matthew Gregan github:phprus - Julian Raschke Gregory Mullen Baldur Karlsson github:poppolopoppo - Christian Floisand Kevin Schmidt JR Smith github:darealshinji - Blazej Dariusz Roszkowski github:Michaelangel007 + Julian Raschke Gregory Mullen Baldur Karlsson +github:poppolopoppo Christian Floisand Kevin Schmidt JR Smith +github:darealshinji Blazej Dariusz Roszkowski github:Michaelangel007 */ #ifndef STBI_INCLUDE_STB_IMAGE_H @@ -124,14 +123,15 @@ RECENT REVISION HISTORY: // // ... process data if not NULL ... // // ... x = width, y = height, n = # 8-bit components per pixel ... // // ... replace '0' with '1'..'4' to force that many components per pixel -// // ... but 'n' will always be the number that it would have been if you said 0 -// stbi_image_free(data) +// // ... but 'n' will always be the number that it would have been if you +// said 0 stbi_image_free(data) // // Standard parameters: // int *x -- outputs image width in pixels // int *y -- outputs image height in pixels // int *channels_in_file -- outputs # of image components in image file -// int desired_channels -- if non-zero, # of image components requested in result +// int desired_channels -- if non-zero, # of image components requested in +// result // // The return value from an image loader is an 'unsigned char *' which points // to the pixel data, or NULL on an allocation failure or if the image is @@ -159,8 +159,8 @@ RECENT REVISION HISTORY: // and *x, *y, *channels_in_file will be unchanged. The function // stbi_failure_reason() can be queried for an extremely brief, end-user // unfriendly explanation of why the load failed. Define STBI_NO_FAILURE_STRINGS -// to avoid compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly -// more user-friendly ones. +// to avoid compiling these strings at all, and STBI_FAILURE_USERMSG to get +// slightly more user-friendly ones. // // Paletted PNG, BMP, GIF, and PIC images are automatically depalettized. // @@ -184,11 +184,12 @@ RECENT REVISION HISTORY: // 2. easy to maintain // 3. good performance // -// Sometimes I let "good performance" creep up in priority over "easy to maintain", -// and for best performance I may provide less-easy-to-use APIs that give higher -// performance, in addition to the easy-to-use ones. Nevertheless, it's important -// to keep in mind that from the standpoint of you, a client of this library, -// all you care about is #1 and #3, and stb libraries DO NOT emphasize #3 above all. +// Sometimes I let "good performance" creep up in priority over "easy to +// maintain", and for best performance I may provide less-easy-to-use APIs that +// give higher performance, in addition to the easy-to-use ones. Nevertheless, +// it's important to keep in mind that from the standpoint of you, a client of +// this library, all you care about is #1 and #3, and stb libraries DO NOT +// emphasize #3 above all. // // Some secondary priorities arise directly from the first two, some of which // provide more explicit reasons why performance can't be emphasized. @@ -207,7 +208,8 @@ RECENT REVISION HISTORY: // overhead. // // The three functions you must define are "read" (reads some bytes of data), -// "skip" (skips some bytes of data), "eof" (reports if the stream is at the end). +// "skip" (skips some bytes of data), "eof" (reports if the stream is at the +// end). // // =========================================================================== // @@ -235,10 +237,11 @@ RECENT REVISION HISTORY: // HDR image support (disable by defining STBI_NO_HDR) // // stb_image supports loading HDR images in general, and currently the Radiance -// .HDR file format specifically. You can still load any file through the existing -// interface; if you attempt to load an HDR file, it will be automatically remapped -// to LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; -// both of these constants can be reconfigured through this interface: +// .HDR file format specifically. You can still load any file through the +// existing interface; if you attempt to load an HDR file, it will be +// automatically remapped to LDR, assuming gamma 2.2 and an arbitrary scale +// factor defaulting to 1; both of these constants can be reconfigured through +// this interface: // // stbi_hdr_to_ldr_gamma(2.2f); // stbi_hdr_to_ldr_scale(1.0f); @@ -316,21 +319,19 @@ RECENT REVISION HISTORY: // want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB // - #ifndef STBI_NO_STDIO #include <stdio.h> #endif // STBI_NO_STDIO #define STBI_VERSION 1 -enum -{ - STBI_default = 0, // only used for desired_channels +enum { + STBI_default = 0, // only used for desired_channels - STBI_grey = 1, - STBI_grey_alpha = 2, - STBI_rgb = 3, - STBI_rgb_alpha = 4 + STBI_grey = 1, + STBI_grey_alpha = 2, + STBI_rgb = 3, + STBI_rgb_alpha = 4 }; #include <stdlib.h> @@ -358,11 +359,13 @@ extern "C" { // load image by filename, open file, or memory buffer // -typedef struct -{ - int (*read) (void *user,char *data,int size); // fill 'data' with 'size' bytes. return number of bytes actually read - void (*skip) (void *user,int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative - int (*eof) (void *user); // returns nonzero if we are at end of file/data +typedef struct { + int (*read)(void *user, char *data, + int size); // fill 'data' with 'size' bytes. return number of + // bytes actually read + void (*skip)(void *user, int n); // skip the next 'n' bytes, or 'unget' the + // last -n bytes if negative + int (*eof)(void *user); // returns nonzero if we are at end of file/data } stbi_io_callbacks; //////////////////////////////////// @@ -370,21 +373,33 @@ typedef struct // 8-bits-per-channel interface // -STBIDEF stbi_uc *stbi_load_from_memory (stbi_uc const *buffer, int len , int *x, int *y, int *channels_in_file, int desired_channels); -STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk , void *user, int *x, int *y, int *channels_in_file, int desired_channels); +STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, + int *y, int *channels_in_file, + int desired_channels); +STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, + void *user, int *x, int *y, + int *channels_in_file, + int desired_channels); #ifndef STBI_NO_STDIO -STBIDEF stbi_uc *stbi_load (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); -STBIDEF stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); -// for stbi_load_from_file, file pointer is left pointing immediately after image +STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, + int *channels_in_file, int desired_channels); +STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, + int *channels_in_file, + int desired_channels); +// for stbi_load_from_file, file pointer is left pointing immediately after +// image #endif #ifndef STBI_NO_GIF -STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp); +STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, + int **delays, int *x, int *y, int *z, + int *comp, int req_comp); #endif #ifdef STBI_WINDOWS_UTF8 -STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input); +STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, + const wchar_t *input); #endif //////////////////////////////////// @@ -392,12 +407,20 @@ STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wch // 16-bits-per-channel interface // -STBIDEF stbi_us *stbi_load_16_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); -STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); +STBIDEF stbi_us *stbi_load_16_from_memory(stbi_uc const *buffer, int len, + int *x, int *y, int *channels_in_file, + int desired_channels); +STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, + void *user, int *x, int *y, + int *channels_in_file, + int desired_channels); #ifndef STBI_NO_STDIO -STBIDEF stbi_us *stbi_load_16 (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); -STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); +STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, + int *channels_in_file, int desired_channels); +STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, + int *channels_in_file, + int desired_channels); #endif //////////////////////////////////// @@ -405,78 +428,96 @@ STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, int *channels_i // float-per-channel interface // #ifndef STBI_NO_LINEAR - STBIDEF float *stbi_loadf_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); - STBIDEF float *stbi_loadf_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); +STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, + int *y, int *channels_in_file, + int desired_channels); +STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, + void *user, int *x, int *y, + int *channels_in_file, + int desired_channels); - #ifndef STBI_NO_STDIO - STBIDEF float *stbi_loadf (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); - STBIDEF float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); - #endif +#ifndef STBI_NO_STDIO +STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, + int *channels_in_file, int desired_channels); +STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, + int *channels_in_file, + int desired_channels); +#endif #endif #ifndef STBI_NO_HDR - STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); - STBIDEF void stbi_hdr_to_ldr_scale(float scale); +STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); +STBIDEF void stbi_hdr_to_ldr_scale(float scale); #endif // STBI_NO_HDR #ifndef STBI_NO_LINEAR - STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); - STBIDEF void stbi_ldr_to_hdr_scale(float scale); +STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); +STBIDEF void stbi_ldr_to_hdr_scale(float scale); #endif // STBI_NO_LINEAR // stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR -STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user); -STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); +STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, + void *user); +STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); #ifndef STBI_NO_STDIO -STBIDEF int stbi_is_hdr (char const *filename); -STBIDEF int stbi_is_hdr_from_file(FILE *f); +STBIDEF int stbi_is_hdr(char const *filename); +STBIDEF int stbi_is_hdr_from_file(FILE *f); #endif // STBI_NO_STDIO - // get a VERY brief reason for failure // NOT THREADSAFE -STBIDEF const char *stbi_failure_reason (void); +STBIDEF const char *stbi_failure_reason(void); // free the loaded image -- this is just free() -STBIDEF void stbi_image_free (void *retval_from_stbi_load); +STBIDEF void stbi_image_free(void *retval_from_stbi_load); // get image dimensions & components without fully decoding -STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); -STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp); -STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len); -STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *clbk, void *user); +STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, + int *y, int *comp); +STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, + int *x, int *y, int *comp); +STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len); +STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *clbk, + void *user); #ifndef STBI_NO_STDIO -STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp); -STBIDEF int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); -STBIDEF int stbi_is_16_bit (char const *filename); -STBIDEF int stbi_is_16_bit_from_file(FILE *f); +STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp); +STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp); +STBIDEF int stbi_is_16_bit(char const *filename); +STBIDEF int stbi_is_16_bit_from_file(FILE *f); #endif - - // for image formats that explicitly notate that they have premultiplied alpha, // we just return the colors as stored in the file. set this flag to force // unpremultiplication. results are undefined if the unpremultiply overflow. -STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply); +STBIDEF void +stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply); // indicate whether we should process iphone images back to canonical format, // or just pass them through "as-is" STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert); -// flip the image vertically, so the first pixel in the output array is the bottom left +// flip the image vertically, so the first pixel in the output array is the +// bottom left STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip); // ZLIB client - used by PNG, available for other purposes -STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); -STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header); +STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, + int initial_size, int *outlen); +STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, + int len, + int initial_size, + int *outlen, + int parse_header); STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); -STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); - -STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); -STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); +STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, + const char *ibuffer, int ilen); +STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, + int *outlen); +STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, + const char *ibuffer, int ilen); #ifdef __cplusplus } @@ -489,52 +530,53 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const ch #ifdef STB_IMAGE_IMPLEMENTATION -#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) \ - || defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) \ - || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) \ - || defined(STBI_ONLY_ZLIB) - #ifndef STBI_ONLY_JPEG - #define STBI_NO_JPEG - #endif - #ifndef STBI_ONLY_PNG - #define STBI_NO_PNG - #endif - #ifndef STBI_ONLY_BMP - #define STBI_NO_BMP - #endif - #ifndef STBI_ONLY_PSD - #define STBI_NO_PSD - #endif - #ifndef STBI_ONLY_TGA - #define STBI_NO_TGA - #endif - #ifndef STBI_ONLY_GIF - #define STBI_NO_GIF - #endif - #ifndef STBI_ONLY_HDR - #define STBI_NO_HDR - #endif - #ifndef STBI_ONLY_PIC - #define STBI_NO_PIC - #endif - #ifndef STBI_ONLY_PNM - #define STBI_NO_PNM - #endif +#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || \ + defined(STBI_ONLY_BMP) || defined(STBI_ONLY_TGA) || \ + defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) || \ + defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || \ + defined(STBI_ONLY_PNM) || defined(STBI_ONLY_ZLIB) +#ifndef STBI_ONLY_JPEG +#define STBI_NO_JPEG +#endif +#ifndef STBI_ONLY_PNG +#define STBI_NO_PNG +#endif +#ifndef STBI_ONLY_BMP +#define STBI_NO_BMP +#endif +#ifndef STBI_ONLY_PSD +#define STBI_NO_PSD +#endif +#ifndef STBI_ONLY_TGA +#define STBI_NO_TGA +#endif +#ifndef STBI_ONLY_GIF +#define STBI_NO_GIF +#endif +#ifndef STBI_ONLY_HDR +#define STBI_NO_HDR +#endif +#ifndef STBI_ONLY_PIC +#define STBI_NO_PIC +#endif +#ifndef STBI_ONLY_PNM +#define STBI_NO_PNM +#endif #endif -#if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB) +#if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && \ + !defined(STBI_NO_ZLIB) #define STBI_NO_ZLIB #endif - +#include <limits.h> #include <stdarg.h> #include <stddef.h> // ptrdiff_t on osx #include <stdlib.h> #include <string.h> -#include <limits.h> #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) -#include <math.h> // ldexp, pow +#include <math.h> // ldexp, pow #endif #ifndef STBI_NO_STDIO @@ -552,38 +594,36 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const ch #define STBI_EXTERN extern #endif - #ifndef _MSC_VER - #ifdef __cplusplus - #define stbi_inline inline - #else - #define stbi_inline - #endif +#ifdef __cplusplus +#define stbi_inline inline #else - #define stbi_inline __forceinline +#define stbi_inline +#endif +#else +#define stbi_inline __forceinline #endif - #ifdef _MSC_VER typedef unsigned short stbi__uint16; -typedef signed short stbi__int16; -typedef unsigned int stbi__uint32; -typedef signed int stbi__int32; +typedef signed short stbi__int16; +typedef unsigned int stbi__uint32; +typedef signed int stbi__int32; #else #include <stdint.h> typedef uint16_t stbi__uint16; -typedef int16_t stbi__int16; +typedef int16_t stbi__int16; typedef uint32_t stbi__uint32; -typedef int32_t stbi__int32; +typedef int32_t stbi__int32; #endif // should produce compiler error if size is wrong -typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; +typedef unsigned char validate_uint32[sizeof(stbi__uint32) == 4 ? 1 : -1]; #ifdef _MSC_VER -#define STBI_NOTUSED(v) (void)(v) +#define STBI_NOTUSED(v) (void)(v) #else -#define STBI_NOTUSED(v) (void)sizeof(v) +#define STBI_NOTUSED(v) (void)sizeof(v) #endif #ifdef _MSC_VER @@ -591,27 +631,30 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; #endif #ifdef STBI_HAS_LROTL - #define stbi_lrot(x,y) _lrotl(x,y) +#define stbi_lrot(x, y) _lrotl(x, y) #else - #define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y)))) +#define stbi_lrot(x, y) (((x) << (y)) | ((x) >> (32 - (y)))) #endif -#if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) +#if defined(STBI_MALLOC) && defined(STBI_FREE) && \ + (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) // ok -#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED) +#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && \ + !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED) // ok #else -#error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)." +#error \ + "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)." #endif #ifndef STBI_MALLOC -#define STBI_MALLOC(sz) malloc(sz) -#define STBI_REALLOC(p,newsz) realloc(p,newsz) -#define STBI_FREE(p) free(p) +#define STBI_MALLOC(sz) malloc(sz) +#define STBI_REALLOC(p, newsz) realloc(p, newsz) +#define STBI_FREE(p) free(p) #endif #ifndef STBI_REALLOC_SIZED -#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz) +#define STBI_REALLOC_SIZED(p, oldsz, newsz) STBI_REALLOC(p, newsz) #endif // x86/x64 detection @@ -621,7 +664,8 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; #define STBI__X86_TARGET #endif -#if defined(__GNUC__) && defined(STBI__X86_TARGET) && !defined(__SSE2__) && !defined(STBI_NO_SIMD) +#if defined(__GNUC__) && defined(STBI__X86_TARGET) && !defined(__SSE2__) && \ + !defined(STBI_NO_SIMD) // gcc doesn't support sse2 intrinsics unless you compile with -msse2, // which in turn means it gets to use SSE2 everywhere. This is unfortunate, // but previous attempts to provide the SSE2 functions with runtime @@ -632,8 +676,10 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; #define STBI_NO_SIMD #endif -#if defined(__MINGW32__) && defined(STBI__X86_TARGET) && !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD) -// Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid STBI__X64_TARGET +#if defined(__MINGW32__) && defined(STBI__X86_TARGET) && \ + !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD) +// Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid +// STBI__X64_TARGET // // 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the // Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant. @@ -643,44 +689,43 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; // See https://github.com/nothings/stb/issues/81 for more information. // // So default to no SSE2 on 32-bit MinGW. If you've read this far and added -// -mstackrealign to your build settings, feel free to #define STBI_MINGW_ENABLE_SSE2. +// -mstackrealign to your build settings, feel free to #define +// STBI_MINGW_ENABLE_SSE2. #define STBI_NO_SIMD #endif -#if !defined(STBI_NO_SIMD) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) +#if !defined(STBI_NO_SIMD) && \ + (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) #define STBI_SSE2 #include <emmintrin.h> #ifdef _MSC_VER -#if _MSC_VER >= 1400 // not VC6 -#include <intrin.h> // __cpuid -static int stbi__cpuid3(void) -{ - int info[4]; - __cpuid(info,1); - return info[3]; +#if _MSC_VER >= 1400 // not VC6 +#include <intrin.h> // __cpuid +static int stbi__cpuid3(void) { + int info[4]; + __cpuid(info, 1); + return info[3]; } #else -static int stbi__cpuid3(void) -{ - int res; - __asm { +static int stbi__cpuid3(void) { + int res; + __asm { mov eax,1 cpuid mov res,edx - } - return res; + } + return res; } #endif #define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name #if !defined(STBI_NO_JPEG) && defined(STBI_SSE2) -static int stbi__sse2_available(void) -{ - int info3 = stbi__cpuid3(); - return ((info3 >> 26) & 1) != 0; +static int stbi__sse2_available(void) { + int info3 = stbi__cpuid3(); + return ((info3 >> 26) & 1) != 0; } #endif @@ -688,12 +733,11 @@ static int stbi__sse2_available(void) #define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) #if !defined(STBI_NO_JPEG) && defined(STBI_SSE2) -static int stbi__sse2_available(void) -{ - // If we're even attempting to compile this on GCC/Clang, that means - // -msse2 is on, which means the compiler is allowed to use SSE2 - // instructions at will, and so are we. - return 1; +static int stbi__sse2_available(void) { + // If we're even attempting to compile this on GCC/Clang, that means + // -msse2 is on, which means the compiler is allowed to use SSE2 + // instructions at will, and so are we. + return 1; } #endif @@ -721,176 +765,164 @@ static int stbi__sse2_available(void) // stbi__context structure is our basic context used by all images, so it // contains all the IO context, plus some basic image information -typedef struct -{ - stbi__uint32 img_x, img_y; - int img_n, img_out_n; +typedef struct { + stbi__uint32 img_x, img_y; + int img_n, img_out_n; - stbi_io_callbacks io; - void *io_user_data; + stbi_io_callbacks io; + void *io_user_data; - int read_from_callbacks; - int buflen; - stbi_uc buffer_start[128]; + int read_from_callbacks; + int buflen; + stbi_uc buffer_start[128]; - stbi_uc *img_buffer, *img_buffer_end; - stbi_uc *img_buffer_original, *img_buffer_original_end; + stbi_uc *img_buffer, *img_buffer_end; + stbi_uc *img_buffer_original, *img_buffer_original_end; } stbi__context; - static void stbi__refill_buffer(stbi__context *s); // initialize a memory-decode context -static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len) -{ - s->io.read = NULL; - s->read_from_callbacks = 0; - s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer; - s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *) buffer+len; +static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len) { + s->io.read = NULL; + s->read_from_callbacks = 0; + s->img_buffer = s->img_buffer_original = (stbi_uc *)buffer; + s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *)buffer + len; } // initialize a callback-based context -static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user) -{ - s->io = *c; - s->io_user_data = user; - s->buflen = sizeof(s->buffer_start); - s->read_from_callbacks = 1; - s->img_buffer_original = s->buffer_start; - stbi__refill_buffer(s); - s->img_buffer_original_end = s->img_buffer_end; +static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, + void *user) { + s->io = *c; + s->io_user_data = user; + s->buflen = sizeof(s->buffer_start); + s->read_from_callbacks = 1; + s->img_buffer_original = s->buffer_start; + stbi__refill_buffer(s); + s->img_buffer_original_end = s->img_buffer_end; } #ifndef STBI_NO_STDIO -static int stbi__stdio_read(void *user, char *data, int size) -{ - return (int) fread(data,1,size,(FILE*) user); +static int stbi__stdio_read(void *user, char *data, int size) { + return (int)fread(data, 1, size, (FILE *)user); } -static void stbi__stdio_skip(void *user, int n) -{ - fseek((FILE*) user, n, SEEK_CUR); +static void stbi__stdio_skip(void *user, int n) { + fseek((FILE *)user, n, SEEK_CUR); } -static int stbi__stdio_eof(void *user) -{ - return feof((FILE*) user); -} +static int stbi__stdio_eof(void *user) { return feof((FILE *)user); } -static stbi_io_callbacks stbi__stdio_callbacks = -{ - stbi__stdio_read, - stbi__stdio_skip, - stbi__stdio_eof, +static stbi_io_callbacks stbi__stdio_callbacks = { + stbi__stdio_read, + stbi__stdio_skip, + stbi__stdio_eof, }; -static void stbi__start_file(stbi__context *s, FILE *f) -{ - stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f); +static void stbi__start_file(stbi__context *s, FILE *f) { + stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *)f); } -//static void stop_file(stbi__context *s) { } +// static void stop_file(stbi__context *s) { } #endif // !STBI_NO_STDIO -static void stbi__rewind(stbi__context *s) -{ - // conceptually rewind SHOULD rewind to the beginning of the stream, - // but we just rewind to the beginning of the initial buffer, because - // we only use it after doing 'test', which only ever looks at at most 92 bytes - s->img_buffer = s->img_buffer_original; - s->img_buffer_end = s->img_buffer_original_end; +static void stbi__rewind(stbi__context *s) { + // conceptually rewind SHOULD rewind to the beginning of the stream, + // but we just rewind to the beginning of the initial buffer, because + // we only use it after doing 'test', which only ever looks at at most 92 + // bytes + s->img_buffer = s->img_buffer_original; + s->img_buffer_end = s->img_buffer_original_end; } -enum -{ - STBI_ORDER_RGB, - STBI_ORDER_BGR -}; +enum { STBI_ORDER_RGB, STBI_ORDER_BGR }; -typedef struct -{ - int bits_per_channel; - int num_channels; - int channel_order; +typedef struct { + int bits_per_channel; + int num_channels; + int channel_order; } stbi__result_info; #ifndef STBI_NO_JPEG -static int stbi__jpeg_test(stbi__context *s); -static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__jpeg_test(stbi__context *s); +static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri); +static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PNG -static int stbi__png_test(stbi__context *s); -static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp); -static int stbi__png_is16(stbi__context *s); +static int stbi__png_test(stbi__context *s); +static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri); +static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__png_is16(stbi__context *s); #endif #ifndef STBI_NO_BMP -static int stbi__bmp_test(stbi__context *s); -static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__bmp_test(stbi__context *s); +static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri); +static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_TGA -static int stbi__tga_test(stbi__context *s); -static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__tga_test(stbi__context *s); +static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri); +static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PSD -static int stbi__psd_test(stbi__context *s); -static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc); -static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp); -static int stbi__psd_is16(stbi__context *s); +static int stbi__psd_test(stbi__context *s); +static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri, int bpc); +static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__psd_is16(stbi__context *s); #endif #ifndef STBI_NO_HDR -static int stbi__hdr_test(stbi__context *s); -static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__hdr_test(stbi__context *s); +static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri); +static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PIC -static int stbi__pic_test(stbi__context *s); -static void *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__pic_test(stbi__context *s); +static void *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri); +static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_GIF -static int stbi__gif_test(stbi__context *s); -static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp); -static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__gif_test(stbi__context *s); +static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri); +static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, + int *z, int *comp, int req_comp); +static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PNM -static int stbi__pnm_test(stbi__context *s); -static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__pnm_test(stbi__context *s); +static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri); +static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp); #endif // this is not threadsafe static const char *stbi__g_failure_reason; -STBIDEF const char *stbi_failure_reason(void) -{ - return stbi__g_failure_reason; -} +STBIDEF const char *stbi_failure_reason(void) { return stbi__g_failure_reason; } -static int stbi__err(const char *str) -{ - stbi__g_failure_reason = str; - return 0; +static int stbi__err(const char *str) { + stbi__g_failure_reason = str; + return 0; } -static void *stbi__malloc(size_t size) -{ - return STBI_MALLOC(size); -} +static void *stbi__malloc(size_t size) { return STBI_MALLOC(size); } // stb_image uses ints pervasively, including for offset calculations. // therefore the largest decoded image size we can support with the @@ -904,66 +936,66 @@ static void *stbi__malloc(size_t size) // return 1 if the sum is valid, 0 on overflow. // negative terms are considered invalid. -static int stbi__addsizes_valid(int a, int b) -{ - if (b < 0) return 0; - // now 0 <= b <= INT_MAX, hence also - // 0 <= INT_MAX - b <= INTMAX. - // And "a + b <= INT_MAX" (which might overflow) is the - // same as a <= INT_MAX - b (no overflow) - return a <= INT_MAX - b; +static int stbi__addsizes_valid(int a, int b) { + if (b < 0) + return 0; + // now 0 <= b <= INT_MAX, hence also + // 0 <= INT_MAX - b <= INTMAX. + // And "a + b <= INT_MAX" (which might overflow) is the + // same as a <= INT_MAX - b (no overflow) + return a <= INT_MAX - b; } // returns 1 if the product is valid, 0 on overflow. // negative factors are considered invalid. -static int stbi__mul2sizes_valid(int a, int b) -{ - if (a < 0 || b < 0) return 0; - if (b == 0) return 1; // mul-by-0 is always safe - // portable way to check for no overflows in a*b - return a <= INT_MAX/b; +static int stbi__mul2sizes_valid(int a, int b) { + if (a < 0 || b < 0) + return 0; + if (b == 0) + return 1; // mul-by-0 is always safe + // portable way to check for no overflows in a*b + return a <= INT_MAX / b; } // returns 1 if "a*b + add" has no negative terms/factors and doesn't overflow -static int stbi__mad2sizes_valid(int a, int b, int add) -{ - return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a*b, add); +static int stbi__mad2sizes_valid(int a, int b, int add) { + return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a * b, add); } // returns 1 if "a*b*c + add" has no negative terms/factors and doesn't overflow -static int stbi__mad3sizes_valid(int a, int b, int c, int add) -{ - return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && - stbi__addsizes_valid(a*b*c, add); +static int stbi__mad3sizes_valid(int a, int b, int c, int add) { + return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a * b, c) && + stbi__addsizes_valid(a * b * c, add); } -// returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't overflow +// returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't +// overflow #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) -static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add) -{ - return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && - stbi__mul2sizes_valid(a*b*c, d) && stbi__addsizes_valid(a*b*c*d, add); +static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add) { + return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a * b, c) && + stbi__mul2sizes_valid(a * b * c, d) && + stbi__addsizes_valid(a * b * c * d, add); } #endif // mallocs with size overflow checking -static void *stbi__malloc_mad2(int a, int b, int add) -{ - if (!stbi__mad2sizes_valid(a, b, add)) return NULL; - return stbi__malloc(a*b + add); +static void *stbi__malloc_mad2(int a, int b, int add) { + if (!stbi__mad2sizes_valid(a, b, add)) + return NULL; + return stbi__malloc(a * b + add); } -static void *stbi__malloc_mad3(int a, int b, int c, int add) -{ - if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL; - return stbi__malloc(a*b*c + add); +static void *stbi__malloc_mad3(int a, int b, int c, int add) { + if (!stbi__mad3sizes_valid(a, b, c, add)) + return NULL; + return stbi__malloc(a * b * c + add); } #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) -static void *stbi__malloc_mad4(int a, int b, int c, int d, int add) -{ - if (!stbi__mad4sizes_valid(a, b, c, d, add)) return NULL; - return stbi__malloc(a*b*c*d + add); +static void *stbi__malloc_mad4(int a, int b, int c, int d, int add) { + if (!stbi__mad4sizes_valid(a, b, c, d, add)) + return NULL; + return stbi__malloc(a * b * c * d + add); } #endif @@ -972,395 +1004,434 @@ static void *stbi__malloc_mad4(int a, int b, int c, int d, int add) // stbi__errpuc - error returning pointer to unsigned char #ifdef STBI_NO_FAILURE_STRINGS - #define stbi__err(x,y) 0 +#define stbi__err(x, y) 0 #elif defined(STBI_FAILURE_USERMSG) - #define stbi__err(x,y) stbi__err(y) +#define stbi__err(x, y) stbi__err(y) #else - #define stbi__err(x,y) stbi__err(x) +#define stbi__err(x, y) stbi__err(x) #endif -#define stbi__errpf(x,y) ((float *)(size_t) (stbi__err(x,y)?NULL:NULL)) -#define stbi__errpuc(x,y) ((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL)) +#define stbi__errpf(x, y) ((float *)(size_t)(stbi__err(x, y) ? NULL : NULL)) +#define stbi__errpuc(x, y) \ + ((unsigned char *)(size_t)(stbi__err(x, y) ? NULL : NULL)) -STBIDEF void stbi_image_free(void *retval_from_stbi_load) -{ - STBI_FREE(retval_from_stbi_load); +STBIDEF void stbi_image_free(void *retval_from_stbi_load) { + STBI_FREE(retval_from_stbi_load); } #ifndef STBI_NO_LINEAR -static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp); +static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp); #endif #ifndef STBI_NO_HDR -static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp); +static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp); #endif static int stbi__vertically_flip_on_load = 0; -STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) -{ - stbi__vertically_flip_on_load = flag_true_if_should_flip; -} - -static void *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) -{ - memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields - ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed - ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order - ri->num_channels = 0; - - #ifndef STBI_NO_JPEG - if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_PNG - if (stbi__png_test(s)) return stbi__png_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_BMP - if (stbi__bmp_test(s)) return stbi__bmp_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_GIF - if (stbi__gif_test(s)) return stbi__gif_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_PSD - if (stbi__psd_test(s)) return stbi__psd_load(s,x,y,comp,req_comp, ri, bpc); - #endif - #ifndef STBI_NO_PIC - if (stbi__pic_test(s)) return stbi__pic_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_PNM - if (stbi__pnm_test(s)) return stbi__pnm_load(s,x,y,comp,req_comp, ri); - #endif - - #ifndef STBI_NO_HDR - if (stbi__hdr_test(s)) { - float *hdr = stbi__hdr_load(s, x,y,comp,req_comp, ri); - return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); - } - #endif - - #ifndef STBI_NO_TGA - // test tga last because it's a crappy test! - if (stbi__tga_test(s)) - return stbi__tga_load(s,x,y,comp,req_comp, ri); - #endif - - return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt"); -} - -static stbi_uc *stbi__convert_16_to_8(stbi__uint16 *orig, int w, int h, int channels) -{ - int i; - int img_len = w * h * channels; - stbi_uc *reduced; - - reduced = (stbi_uc *) stbi__malloc(img_len); - if (reduced == NULL) return stbi__errpuc("outofmem", "Out of memory"); - - for (i = 0; i < img_len; ++i) - reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling - - STBI_FREE(orig); - return reduced; +STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) { + stbi__vertically_flip_on_load = flag_true_if_should_flip; } -static stbi__uint16 *stbi__convert_8_to_16(stbi_uc *orig, int w, int h, int channels) -{ - int i; - int img_len = w * h * channels; - stbi__uint16 *enlarged; +static void *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri, int bpc) { + memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields + ri->bits_per_channel = + 8; // default is 8 so most paths don't have to be changed + ri->channel_order = + STBI_ORDER_RGB; // all current input & output are this, but this is here + // so we can add BGR order + ri->num_channels = 0; - enlarged = (stbi__uint16 *) stbi__malloc(img_len*2); - if (enlarged == NULL) return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory"); +#ifndef STBI_NO_JPEG + if (stbi__jpeg_test(s)) + return stbi__jpeg_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_PNG + if (stbi__png_test(s)) + return stbi__png_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_BMP + if (stbi__bmp_test(s)) + return stbi__bmp_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_GIF + if (stbi__gif_test(s)) + return stbi__gif_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_PSD + if (stbi__psd_test(s)) + return stbi__psd_load(s, x, y, comp, req_comp, ri, bpc); +#endif +#ifndef STBI_NO_PIC + if (stbi__pic_test(s)) + return stbi__pic_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_PNM + if (stbi__pnm_test(s)) + return stbi__pnm_load(s, x, y, comp, req_comp, ri); +#endif - for (i = 0; i < img_len; ++i) - enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff +#ifndef STBI_NO_HDR + if (stbi__hdr_test(s)) { + float *hdr = stbi__hdr_load(s, x, y, comp, req_comp, ri); + return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); + } +#endif - STBI_FREE(orig); - return enlarged; -} +#ifndef STBI_NO_TGA + // test tga last because it's a crappy test! + if (stbi__tga_test(s)) + return stbi__tga_load(s, x, y, comp, req_comp, ri); +#endif -static void stbi__vertical_flip(void *image, int w, int h, int bytes_per_pixel) -{ - int row; - size_t bytes_per_row = (size_t)w * bytes_per_pixel; - stbi_uc temp[2048]; - stbi_uc *bytes = (stbi_uc *)image; - - for (row = 0; row < (h>>1); row++) { - stbi_uc *row0 = bytes + row*bytes_per_row; - stbi_uc *row1 = bytes + (h - row - 1)*bytes_per_row; - // swap row0 with row1 - size_t bytes_left = bytes_per_row; - while (bytes_left) { - size_t bytes_copy = (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp); - memcpy(temp, row0, bytes_copy); - memcpy(row0, row1, bytes_copy); - memcpy(row1, temp, bytes_copy); - row0 += bytes_copy; - row1 += bytes_copy; - bytes_left -= bytes_copy; - } - } + return stbi__errpuc("unknown image type", + "Image not of any known type, or corrupt"); +} + +static stbi_uc *stbi__convert_16_to_8(stbi__uint16 *orig, int w, int h, + int channels) { + int i; + int img_len = w * h * channels; + stbi_uc *reduced; + + reduced = (stbi_uc *)stbi__malloc(img_len); + if (reduced == NULL) + return stbi__errpuc("outofmem", "Out of memory"); + + for (i = 0; i < img_len; ++i) + reduced[i] = + (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient + // approx of 16->8 bit scaling + + STBI_FREE(orig); + return reduced; +} + +static stbi__uint16 *stbi__convert_8_to_16(stbi_uc *orig, int w, int h, + int channels) { + int i; + int img_len = w * h * channels; + stbi__uint16 *enlarged; + + enlarged = (stbi__uint16 *)stbi__malloc(img_len * 2); + if (enlarged == NULL) + return (stbi__uint16 *)stbi__errpuc("outofmem", "Out of memory"); + + for (i = 0; i < img_len; ++i) + enlarged[i] = (stbi__uint16)( + (orig[i] << 8) + + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff + + STBI_FREE(orig); + return enlarged; +} + +static void stbi__vertical_flip(void *image, int w, int h, + int bytes_per_pixel) { + int row; + size_t bytes_per_row = (size_t)w * bytes_per_pixel; + stbi_uc temp[2048]; + stbi_uc *bytes = (stbi_uc *)image; + + for (row = 0; row < (h >> 1); row++) { + stbi_uc *row0 = bytes + row * bytes_per_row; + stbi_uc *row1 = bytes + (h - row - 1) * bytes_per_row; + // swap row0 with row1 + size_t bytes_left = bytes_per_row; + while (bytes_left) { + size_t bytes_copy = + (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp); + memcpy(temp, row0, bytes_copy); + memcpy(row0, row1, bytes_copy); + memcpy(row1, temp, bytes_copy); + row0 += bytes_copy; + row1 += bytes_copy; + bytes_left -= bytes_copy; + } + } } #ifndef STBI_NO_GIF -static void stbi__vertical_flip_slices(void *image, int w, int h, int z, int bytes_per_pixel) -{ - int slice; - int slice_size = w * h * bytes_per_pixel; +static void stbi__vertical_flip_slices(void *image, int w, int h, int z, + int bytes_per_pixel) { + int slice; + int slice_size = w * h * bytes_per_pixel; - stbi_uc *bytes = (stbi_uc *)image; - for (slice = 0; slice < z; ++slice) { - stbi__vertical_flip(bytes, w, h, bytes_per_pixel); - bytes += slice_size; - } + stbi_uc *bytes = (stbi_uc *)image; + for (slice = 0; slice < z; ++slice) { + stbi__vertical_flip(bytes, w, h, bytes_per_pixel); + bytes += slice_size; + } } #endif -static unsigned char *stbi__load_and_postprocess_8bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) -{ - stbi__result_info ri; - void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8); +static unsigned char *stbi__load_and_postprocess_8bit(stbi__context *s, int *x, + int *y, int *comp, + int req_comp) { + stbi__result_info ri; + void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8); - if (result == NULL) - return NULL; + if (result == NULL) + return NULL; - if (ri.bits_per_channel != 8) { - STBI_ASSERT(ri.bits_per_channel == 16); - result = stbi__convert_16_to_8((stbi__uint16 *) result, *x, *y, req_comp == 0 ? *comp : req_comp); - ri.bits_per_channel = 8; - } + if (ri.bits_per_channel != 8) { + STBI_ASSERT(ri.bits_per_channel == 16); + result = stbi__convert_16_to_8((stbi__uint16 *)result, *x, *y, + req_comp == 0 ? *comp : req_comp); + ri.bits_per_channel = 8; + } - // @TODO: move stbi__convert_format to here + // @TODO: move stbi__convert_format to here - if (stbi__vertically_flip_on_load) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc)); - } + if (stbi__vertically_flip_on_load) { + int channels = req_comp ? req_comp : *comp; + stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc)); + } - return (unsigned char *) result; + return (unsigned char *)result; } -static stbi__uint16 *stbi__load_and_postprocess_16bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) -{ - stbi__result_info ri; - void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16); +static stbi__uint16 *stbi__load_and_postprocess_16bit(stbi__context *s, int *x, + int *y, int *comp, + int req_comp) { + stbi__result_info ri; + void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16); - if (result == NULL) - return NULL; + if (result == NULL) + return NULL; - if (ri.bits_per_channel != 16) { - STBI_ASSERT(ri.bits_per_channel == 8); - result = stbi__convert_8_to_16((stbi_uc *) result, *x, *y, req_comp == 0 ? *comp : req_comp); - ri.bits_per_channel = 16; - } + if (ri.bits_per_channel != 16) { + STBI_ASSERT(ri.bits_per_channel == 8); + result = stbi__convert_8_to_16((stbi_uc *)result, *x, *y, + req_comp == 0 ? *comp : req_comp); + ri.bits_per_channel = 16; + } - // @TODO: move stbi__convert_format16 to here - // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision + // @TODO: move stbi__convert_format16 to here + // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to + // keep more precision - if (stbi__vertically_flip_on_load) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16)); - } + if (stbi__vertically_flip_on_load) { + int channels = req_comp ? req_comp : *comp; + stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16)); + } - return (stbi__uint16 *) result; + return (stbi__uint16 *)result; } #if !defined(STBI_NO_HDR) && !defined(STBI_NO_LINEAR) -static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp) -{ - if (stbi__vertically_flip_on_load && result != NULL) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(float)); - } +static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, + int req_comp) { + if (stbi__vertically_flip_on_load && result != NULL) { + int channels = req_comp ? req_comp : *comp; + stbi__vertical_flip(result, *x, *y, channels * sizeof(float)); + } } #endif #ifndef STBI_NO_STDIO #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) -STBI_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide); -STBI_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default); +STBI_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar( + unsigned int cp, unsigned long flags, const char *str, int cbmb, + wchar_t *widestr, int cchwide); +STBI_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte( + unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, + char *str, int cbmb, const char *defchar, int *used_default); #endif #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) -STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input) -{ - return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL); +STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, + const wchar_t *input) { + return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, + (int)bufferlen, NULL, NULL); } #endif -static FILE *stbi__fopen(char const *filename, char const *mode) -{ - FILE *f; +static FILE *stbi__fopen(char const *filename, char const *mode) { + FILE *f; #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) - wchar_t wMode[64]; - wchar_t wFilename[1024]; - if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename))) - return 0; - - if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode))) - return 0; + wchar_t wMode[64]; + wchar_t wFilename[1024]; + if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, + sizeof(wFilename))) + return 0; + + if (0 == + MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode))) + return 0; #if _MSC_VER >= 1400 - if (0 != _wfopen_s(&f, wFilename, wMode)) - f = 0; + if (0 != _wfopen_s(&f, wFilename, wMode)) + f = 0; #else - f = _wfopen(wFilename, wMode); + f = _wfopen(wFilename, wMode); #endif #elif defined(_MSC_VER) && _MSC_VER >= 1400 - if (0 != fopen_s(&f, filename, mode)) - f=0; + if (0 != fopen_s(&f, filename, mode)) + f = 0; #else - f = fopen(filename, mode); + f = fopen(filename, mode); #endif - return f; -} - - -STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) -{ - FILE *f = stbi__fopen(filename, "rb"); - unsigned char *result; - if (!f) return stbi__errpuc("can't fopen", "Unable to open file"); - result = stbi_load_from_file(f,x,y,comp,req_comp); - fclose(f); - return result; -} - -STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) -{ - unsigned char *result; - stbi__context s; - stbi__start_file(&s,f); - result = stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); - if (result) { - // need to 'unget' all the characters in the IO buffer - fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); - } - return result; -} - -STBIDEF stbi__uint16 *stbi_load_from_file_16(FILE *f, int *x, int *y, int *comp, int req_comp) -{ - stbi__uint16 *result; - stbi__context s; - stbi__start_file(&s,f); - result = stbi__load_and_postprocess_16bit(&s,x,y,comp,req_comp); - if (result) { - // need to 'unget' all the characters in the IO buffer - fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); - } - return result; -} - -STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *comp, int req_comp) -{ - FILE *f = stbi__fopen(filename, "rb"); - stbi__uint16 *result; - if (!f) return (stbi_us *) stbi__errpuc("can't fopen", "Unable to open file"); - result = stbi_load_from_file_16(f,x,y,comp,req_comp); - fclose(f); - return result; -} - - -#endif //!STBI_NO_STDIO - -STBIDEF stbi_us *stbi_load_16_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels); -} - -STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); - return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels); -} - -STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); -} - -STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); - return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); + return f; +} + +STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, + int req_comp) { + FILE *f = stbi__fopen(filename, "rb"); + unsigned char *result; + if (!f) + return stbi__errpuc("can't fopen", "Unable to open file"); + result = stbi_load_from_file(f, x, y, comp, req_comp); + fclose(f); + return result; +} + +STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, + int req_comp) { + unsigned char *result; + stbi__context s; + stbi__start_file(&s, f); + result = stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); + if (result) { + // need to 'unget' all the characters in the IO buffer + fseek(f, -(int)(s.img_buffer_end - s.img_buffer), SEEK_CUR); + } + return result; +} + +STBIDEF stbi__uint16 *stbi_load_from_file_16(FILE *f, int *x, int *y, int *comp, + int req_comp) { + stbi__uint16 *result; + stbi__context s; + stbi__start_file(&s, f); + result = stbi__load_and_postprocess_16bit(&s, x, y, comp, req_comp); + if (result) { + // need to 'unget' all the characters in the IO buffer + fseek(f, -(int)(s.img_buffer_end - s.img_buffer), SEEK_CUR); + } + return result; +} + +STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *comp, + int req_comp) { + FILE *f = stbi__fopen(filename, "rb"); + stbi__uint16 *result; + if (!f) + return (stbi_us *)stbi__errpuc("can't fopen", "Unable to open file"); + result = stbi_load_from_file_16(f, x, y, comp, req_comp); + fclose(f); + return result; +} + +#endif //! STBI_NO_STDIO + +STBIDEF stbi_us *stbi_load_16_from_memory(stbi_uc const *buffer, int len, + int *x, int *y, int *channels_in_file, + int desired_channels) { + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__load_and_postprocess_16bit(&s, x, y, channels_in_file, + desired_channels); +} + +STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, + void *user, int *x, int *y, + int *channels_in_file, + int desired_channels) { + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); + return stbi__load_and_postprocess_16bit(&s, x, y, channels_in_file, + desired_channels); +} + +STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, + int *y, int *comp, int req_comp) { + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); +} + +STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, + void *user, int *x, int *y, int *comp, + int req_comp) { + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); + return stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); } #ifndef STBI_NO_GIF -STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp) -{ - unsigned char *result; - stbi__context s; - stbi__start_mem(&s,buffer,len); - - result = (unsigned char*) stbi__load_gif_main(&s, delays, x, y, z, comp, req_comp); - if (stbi__vertically_flip_on_load) { - stbi__vertical_flip_slices( result, *x, *y, *z, *comp ); - } +STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, + int **delays, int *x, int *y, int *z, + int *comp, int req_comp) { + unsigned char *result; + stbi__context s; + stbi__start_mem(&s, buffer, len); + + result = + (unsigned char *)stbi__load_gif_main(&s, delays, x, y, z, comp, req_comp); + if (stbi__vertically_flip_on_load) { + stbi__vertical_flip_slices(result, *x, *y, *z, *comp); + } - return result; + return result; } #endif #ifndef STBI_NO_LINEAR -static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) -{ - unsigned char *data; - #ifndef STBI_NO_HDR - if (stbi__hdr_test(s)) { - stbi__result_info ri; - float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp, &ri); - if (hdr_data) - stbi__float_postprocess(hdr_data,x,y,comp,req_comp); - return hdr_data; - } - #endif - data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp); - if (data) - return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); - return stbi__errpf("unknown image type", "Image not of any known type, or corrupt"); -} - -STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__loadf_main(&s,x,y,comp,req_comp); +static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, + int req_comp) { + unsigned char *data; +#ifndef STBI_NO_HDR + if (stbi__hdr_test(s)) { + stbi__result_info ri; + float *hdr_data = stbi__hdr_load(s, x, y, comp, req_comp, &ri); + if (hdr_data) + stbi__float_postprocess(hdr_data, x, y, comp, req_comp); + return hdr_data; + } +#endif + data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp); + if (data) + return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); + return stbi__errpf("unknown image type", + "Image not of any known type, or corrupt"); } -STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); - return stbi__loadf_main(&s,x,y,comp,req_comp); +STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, + int *y, int *comp, int req_comp) { + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__loadf_main(&s, x, y, comp, req_comp); } -#ifndef STBI_NO_STDIO -STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) -{ - float *result; - FILE *f = stbi__fopen(filename, "rb"); - if (!f) return stbi__errpf("can't fopen", "Unable to open file"); - result = stbi_loadf_from_file(f,x,y,comp,req_comp); - fclose(f); - return result; +STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, + void *user, int *x, int *y, int *comp, + int req_comp) { + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); + return stbi__loadf_main(&s, x, y, comp, req_comp); } -STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_file(&s,f); - return stbi__loadf_main(&s,x,y,comp,req_comp); +#ifndef STBI_NO_STDIO +STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, + int req_comp) { + float *result; + FILE *f = stbi__fopen(filename, "rb"); + if (!f) + return stbi__errpf("can't fopen", "Unable to open file"); + result = stbi_loadf_from_file(f, x, y, comp, req_comp); + fclose(f); + return result; +} + +STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, + int req_comp) { + stbi__context s; + stbi__start_file(&s, f); + return stbi__loadf_main(&s, x, y, comp, req_comp); } #endif // !STBI_NO_STDIO @@ -1370,198 +1441,186 @@ STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_ // defined, for API simplicity; if STBI_NO_LINEAR is defined, it always // reports false! -STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) -{ - #ifndef STBI_NO_HDR - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__hdr_test(&s); - #else - STBI_NOTUSED(buffer); - STBI_NOTUSED(len); - return 0; - #endif +STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) { +#ifndef STBI_NO_HDR + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__hdr_test(&s); +#else + STBI_NOTUSED(buffer); + STBI_NOTUSED(len); + return 0; +#endif } #ifndef STBI_NO_STDIO -STBIDEF int stbi_is_hdr (char const *filename) -{ - FILE *f = stbi__fopen(filename, "rb"); - int result=0; - if (f) { - result = stbi_is_hdr_from_file(f); - fclose(f); - } - return result; +STBIDEF int stbi_is_hdr(char const *filename) { + FILE *f = stbi__fopen(filename, "rb"); + int result = 0; + if (f) { + result = stbi_is_hdr_from_file(f); + fclose(f); + } + return result; } -STBIDEF int stbi_is_hdr_from_file(FILE *f) -{ - #ifndef STBI_NO_HDR - long pos = ftell(f); - int res; - stbi__context s; - stbi__start_file(&s,f); - res = stbi__hdr_test(&s); - fseek(f, pos, SEEK_SET); - return res; - #else - STBI_NOTUSED(f); - return 0; - #endif +STBIDEF int stbi_is_hdr_from_file(FILE *f) { +#ifndef STBI_NO_HDR + long pos = ftell(f); + int res; + stbi__context s; + stbi__start_file(&s, f); + res = stbi__hdr_test(&s); + fseek(f, pos, SEEK_SET); + return res; +#else + STBI_NOTUSED(f); + return 0; +#endif } #endif // !STBI_NO_STDIO -STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user) -{ - #ifndef STBI_NO_HDR - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); - return stbi__hdr_test(&s); - #else - STBI_NOTUSED(clbk); - STBI_NOTUSED(user); - return 0; - #endif +STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, + void *user) { +#ifndef STBI_NO_HDR + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); + return stbi__hdr_test(&s); +#else + STBI_NOTUSED(clbk); + STBI_NOTUSED(user); + return 0; +#endif } #ifndef STBI_NO_LINEAR -static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f; +static float stbi__l2h_gamma = 2.2f, stbi__l2h_scale = 1.0f; -STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } -STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } +STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } +STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } #endif -static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f; - -STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; } -STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; } +static float stbi__h2l_gamma_i = 1.0f / 2.2f, stbi__h2l_scale_i = 1.0f; +STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { + stbi__h2l_gamma_i = 1 / gamma; +} +STBIDEF void stbi_hdr_to_ldr_scale(float scale) { + stbi__h2l_scale_i = 1 / scale; +} ////////////////////////////////////////////////////////////////////////////// // // Common code used by all image loaders // -enum -{ - STBI__SCAN_load=0, - STBI__SCAN_type, - STBI__SCAN_header -}; - -static void stbi__refill_buffer(stbi__context *s) -{ - int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen); - if (n == 0) { - // at end of file, treat same as if from memory, but need to handle case - // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file - s->read_from_callbacks = 0; - s->img_buffer = s->buffer_start; - s->img_buffer_end = s->buffer_start+1; - *s->img_buffer = 0; - } else { - s->img_buffer = s->buffer_start; - s->img_buffer_end = s->buffer_start + n; - } -} - -stbi_inline static stbi_uc stbi__get8(stbi__context *s) -{ - if (s->img_buffer < s->img_buffer_end) - return *s->img_buffer++; - if (s->read_from_callbacks) { - stbi__refill_buffer(s); - return *s->img_buffer++; - } - return 0; -} - -stbi_inline static int stbi__at_eof(stbi__context *s) -{ - if (s->io.read) { - if (!(s->io.eof)(s->io_user_data)) return 0; - // if feof() is true, check if buffer = end - // special case: we've only got the special 0 character at the end - if (s->read_from_callbacks == 0) return 1; - } +enum { STBI__SCAN_load = 0, STBI__SCAN_type, STBI__SCAN_header }; + +static void stbi__refill_buffer(stbi__context *s) { + int n = (s->io.read)(s->io_user_data, (char *)s->buffer_start, s->buflen); + if (n == 0) { + // at end of file, treat same as if from memory, but need to handle case + // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file + s->read_from_callbacks = 0; + s->img_buffer = s->buffer_start; + s->img_buffer_end = s->buffer_start + 1; + *s->img_buffer = 0; + } else { + s->img_buffer = s->buffer_start; + s->img_buffer_end = s->buffer_start + n; + } +} + +stbi_inline static stbi_uc stbi__get8(stbi__context *s) { + if (s->img_buffer < s->img_buffer_end) + return *s->img_buffer++; + if (s->read_from_callbacks) { + stbi__refill_buffer(s); + return *s->img_buffer++; + } + return 0; +} + +stbi_inline static int stbi__at_eof(stbi__context *s) { + if (s->io.read) { + if (!(s->io.eof)(s->io_user_data)) + return 0; + // if feof() is true, check if buffer = end + // special case: we've only got the special 0 character at the end + if (s->read_from_callbacks == 0) + return 1; + } - return s->img_buffer >= s->img_buffer_end; + return s->img_buffer >= s->img_buffer_end; } -static void stbi__skip(stbi__context *s, int n) -{ - if (n < 0) { +static void stbi__skip(stbi__context *s, int n) { + if (n < 0) { + s->img_buffer = s->img_buffer_end; + return; + } + if (s->io.read) { + int blen = (int)(s->img_buffer_end - s->img_buffer); + if (blen < n) { s->img_buffer = s->img_buffer_end; + (s->io.skip)(s->io_user_data, n - blen); return; - } - if (s->io.read) { - int blen = (int) (s->img_buffer_end - s->img_buffer); - if (blen < n) { - s->img_buffer = s->img_buffer_end; - (s->io.skip)(s->io_user_data, n - blen); - return; - } - } - s->img_buffer += n; + } + } + s->img_buffer += n; } -static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) -{ - if (s->io.read) { - int blen = (int) (s->img_buffer_end - s->img_buffer); - if (blen < n) { - int res, count; +static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) { + if (s->io.read) { + int blen = (int)(s->img_buffer_end - s->img_buffer); + if (blen < n) { + int res, count; - memcpy(buffer, s->img_buffer, blen); + memcpy(buffer, s->img_buffer, blen); - count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen); - res = (count == (n-blen)); - s->img_buffer = s->img_buffer_end; - return res; - } - } + count = (s->io.read)(s->io_user_data, (char *)buffer + blen, n - blen); + res = (count == (n - blen)); + s->img_buffer = s->img_buffer_end; + return res; + } + } - if (s->img_buffer+n <= s->img_buffer_end) { - memcpy(buffer, s->img_buffer, n); - s->img_buffer += n; - return 1; - } else - return 0; + if (s->img_buffer + n <= s->img_buffer_end) { + memcpy(buffer, s->img_buffer, n); + s->img_buffer += n; + return 1; + } else + return 0; } -static int stbi__get16be(stbi__context *s) -{ - int z = stbi__get8(s); - return (z << 8) + stbi__get8(s); +static int stbi__get16be(stbi__context *s) { + int z = stbi__get8(s); + return (z << 8) + stbi__get8(s); } -static stbi__uint32 stbi__get32be(stbi__context *s) -{ - stbi__uint32 z = stbi__get16be(s); - return (z << 16) + stbi__get16be(s); +static stbi__uint32 stbi__get32be(stbi__context *s) { + stbi__uint32 z = stbi__get16be(s); + return (z << 16) + stbi__get16be(s); } #if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) // nothing #else -static int stbi__get16le(stbi__context *s) -{ - int z = stbi__get8(s); - return z + (stbi__get8(s) << 8); +static int stbi__get16le(stbi__context *s) { + int z = stbi__get8(s); + return z + (stbi__get8(s) << 8); } #endif #ifndef STBI_NO_BMP -static stbi__uint32 stbi__get32le(stbi__context *s) -{ - stbi__uint32 z = stbi__get16le(s); - return z + (stbi__get16le(s) << 16); +static stbi__uint32 stbi__get32le(stbi__context *s) { + stbi__uint32 z = stbi__get16le(s); + return z + (stbi__get16le(s) << 16); } #endif -#define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings - +#define STBI__BYTECAST(x) \ + ((stbi_uc)((x)&255)) // truncate int to byte without warnings ////////////////////////////////////////////////////////////////////////////// // @@ -1574,156 +1633,259 @@ static stbi__uint32 stbi__get32le(stbi__context *s) // assume data buffer is malloced, so malloc a new one and free that one // only failure mode is malloc failing -static stbi_uc stbi__compute_y(int r, int g, int b) -{ - return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8); -} - -static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y) -{ - int i,j; - unsigned char *good; - - if (req_comp == img_n) return data; - STBI_ASSERT(req_comp >= 1 && req_comp <= 4); - - good = (unsigned char *) stbi__malloc_mad3(req_comp, x, y, 0); - if (good == NULL) { - STBI_FREE(data); - return stbi__errpuc("outofmem", "Out of memory"); - } - - for (j=0; j < (int) y; ++j) { - unsigned char *src = data + j * x * img_n ; - unsigned char *dest = good + j * x * req_comp; - - #define STBI__COMBO(a,b) ((a)*8+(b)) - #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) - // convert source image with img_n components to one with req_comp components; - // avoid switch per pixel, so use switch per scanline and massive macros - switch (STBI__COMBO(img_n, req_comp)) { - STBI__CASE(1,2) { dest[0]=src[0]; dest[1]=255; } break; - STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; - STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=255; } break; - STBI__CASE(2,1) { dest[0]=src[0]; } break; - STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; - STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=src[1]; } break; - STBI__CASE(3,4) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];dest[3]=255; } break; - STBI__CASE(3,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; - STBI__CASE(3,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); dest[1] = 255; } break; - STBI__CASE(4,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; - STBI__CASE(4,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); dest[1] = src[3]; } break; - STBI__CASE(4,3) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2]; } break; - default: STBI_ASSERT(0); +static stbi_uc stbi__compute_y(int r, int g, int b) { + return (stbi_uc)(((r * 77) + (g * 150) + (29 * b)) >> 8); +} + +static unsigned char *stbi__convert_format(unsigned char *data, int img_n, + int req_comp, unsigned int x, + unsigned int y) { + int i, j; + unsigned char *good; + + if (req_comp == img_n) + return data; + STBI_ASSERT(req_comp >= 1 && req_comp <= 4); + + good = (unsigned char *)stbi__malloc_mad3(req_comp, x, y, 0); + if (good == NULL) { + STBI_FREE(data); + return stbi__errpuc("outofmem", "Out of memory"); + } + + for (j = 0; j < (int)y; ++j) { + unsigned char *src = data + j * x * img_n; + unsigned char *dest = good + j * x * req_comp; + +#define STBI__COMBO(a, b) ((a)*8 + (b)) +#define STBI__CASE(a, b) \ + case STBI__COMBO(a, b): \ + for (i = x - 1; i >= 0; --i, src += a, dest += b) + // convert source image with img_n components to one with req_comp + // components; avoid switch per pixel, so use switch per scanline and + // massive macros + switch (STBI__COMBO(img_n, req_comp)) { + STBI__CASE(1, 2) { + dest[0] = src[0]; + dest[1] = 255; } - #undef STBI__CASE - } - - STBI_FREE(data); - return good; -} - -static stbi__uint16 stbi__compute_y_16(int r, int g, int b) -{ - return (stbi__uint16) (((r*77) + (g*150) + (29*b)) >> 8); -} - -static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y) -{ - int i,j; - stbi__uint16 *good; - - if (req_comp == img_n) return data; - STBI_ASSERT(req_comp >= 1 && req_comp <= 4); - - good = (stbi__uint16 *) stbi__malloc(req_comp * x * y * 2); - if (good == NULL) { - STBI_FREE(data); - return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory"); - } - - for (j=0; j < (int) y; ++j) { - stbi__uint16 *src = data + j * x * img_n ; - stbi__uint16 *dest = good + j * x * req_comp; - - #define STBI__COMBO(a,b) ((a)*8+(b)) - #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) - // convert source image with img_n components to one with req_comp components; - // avoid switch per pixel, so use switch per scanline and massive macros - switch (STBI__COMBO(img_n, req_comp)) { - STBI__CASE(1,2) { dest[0]=src[0]; dest[1]=0xffff; } break; - STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; - STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=0xffff; } break; - STBI__CASE(2,1) { dest[0]=src[0]; } break; - STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; - STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=src[1]; } break; - STBI__CASE(3,4) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];dest[3]=0xffff; } break; - STBI__CASE(3,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; - STBI__CASE(3,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); dest[1] = 0xffff; } break; - STBI__CASE(4,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; - STBI__CASE(4,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); dest[1] = src[3]; } break; - STBI__CASE(4,3) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2]; } break; - default: STBI_ASSERT(0); + break; + STBI__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } + break; + STBI__CASE(1, 4) { + dest[0] = dest[1] = dest[2] = src[0]; + dest[3] = 255; + } + break; + STBI__CASE(2, 1) { dest[0] = src[0]; } + break; + STBI__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } + break; + STBI__CASE(2, 4) { + dest[0] = dest[1] = dest[2] = src[0]; + dest[3] = src[1]; + } + break; + STBI__CASE(3, 4) { + dest[0] = src[0]; + dest[1] = src[1]; + dest[2] = src[2]; + dest[3] = 255; + } + break; + STBI__CASE(3, 1) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); } + break; + STBI__CASE(3, 2) { + dest[0] = stbi__compute_y(src[0], src[1], src[2]); + dest[1] = 255; + } + break; + STBI__CASE(4, 1) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); } + break; + STBI__CASE(4, 2) { + dest[0] = stbi__compute_y(src[0], src[1], src[2]); + dest[1] = src[3]; } - #undef STBI__CASE - } + break; + STBI__CASE(4, 3) { + dest[0] = src[0]; + dest[1] = src[1]; + dest[2] = src[2]; + } + break; + default: + STBI_ASSERT(0); + } +#undef STBI__CASE + } + + STBI_FREE(data); + return good; +} + +static stbi__uint16 stbi__compute_y_16(int r, int g, int b) { + return (stbi__uint16)(((r * 77) + (g * 150) + (29 * b)) >> 8); +} + +static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, + int req_comp, unsigned int x, + unsigned int y) { + int i, j; + stbi__uint16 *good; + + if (req_comp == img_n) + return data; + STBI_ASSERT(req_comp >= 1 && req_comp <= 4); + + good = (stbi__uint16 *)stbi__malloc(req_comp * x * y * 2); + if (good == NULL) { + STBI_FREE(data); + return (stbi__uint16 *)stbi__errpuc("outofmem", "Out of memory"); + } + + for (j = 0; j < (int)y; ++j) { + stbi__uint16 *src = data + j * x * img_n; + stbi__uint16 *dest = good + j * x * req_comp; + +#define STBI__COMBO(a, b) ((a)*8 + (b)) +#define STBI__CASE(a, b) \ + case STBI__COMBO(a, b): \ + for (i = x - 1; i >= 0; --i, src += a, dest += b) + // convert source image with img_n components to one with req_comp + // components; avoid switch per pixel, so use switch per scanline and + // massive macros + switch (STBI__COMBO(img_n, req_comp)) { + STBI__CASE(1, 2) { + dest[0] = src[0]; + dest[1] = 0xffff; + } + break; + STBI__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } + break; + STBI__CASE(1, 4) { + dest[0] = dest[1] = dest[2] = src[0]; + dest[3] = 0xffff; + } + break; + STBI__CASE(2, 1) { dest[0] = src[0]; } + break; + STBI__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } + break; + STBI__CASE(2, 4) { + dest[0] = dest[1] = dest[2] = src[0]; + dest[3] = src[1]; + } + break; + STBI__CASE(3, 4) { + dest[0] = src[0]; + dest[1] = src[1]; + dest[2] = src[2]; + dest[3] = 0xffff; + } + break; + STBI__CASE(3, 1) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); } + break; + STBI__CASE(3, 2) { + dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); + dest[1] = 0xffff; + } + break; + STBI__CASE(4, 1) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); } + break; + STBI__CASE(4, 2) { + dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); + dest[1] = src[3]; + } + break; + STBI__CASE(4, 3) { + dest[0] = src[0]; + dest[1] = src[1]; + dest[2] = src[2]; + } + break; + default: + STBI_ASSERT(0); + } +#undef STBI__CASE + } - STBI_FREE(data); - return good; + STBI_FREE(data); + return good; } #ifndef STBI_NO_LINEAR -static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp) -{ - int i,k,n; - float *output; - if (!data) return NULL; - output = (float *) stbi__malloc_mad4(x, y, comp, sizeof(float), 0); - if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); } - // compute number of non-alpha components - if (comp & 1) n = comp; else n = comp-1; - for (i=0; i < x*y; ++i) { - for (k=0; k < n; ++k) { - output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale); - } - } - if (n < comp) { - for (i=0; i < x*y; ++i) { - output[i*comp + n] = data[i*comp + n]/255.0f; - } - } - STBI_FREE(data); - return output; +static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp) { + int i, k, n; + float *output; + if (!data) + return NULL; + output = (float *)stbi__malloc_mad4(x, y, comp, sizeof(float), 0); + if (output == NULL) { + STBI_FREE(data); + return stbi__errpf("outofmem", "Out of memory"); + } + // compute number of non-alpha components + if (comp & 1) + n = comp; + else + n = comp - 1; + for (i = 0; i < x * y; ++i) { + for (k = 0; k < n; ++k) { + output[i * comp + k] = + (float)(pow(data[i * comp + k] / 255.0f, stbi__l2h_gamma) * + stbi__l2h_scale); + } + } + if (n < comp) { + for (i = 0; i < x * y; ++i) { + output[i * comp + n] = data[i * comp + n] / 255.0f; + } + } + STBI_FREE(data); + return output; } #endif #ifndef STBI_NO_HDR -#define stbi__float2int(x) ((int) (x)) -static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) -{ - int i,k,n; - stbi_uc *output; - if (!data) return NULL; - output = (stbi_uc *) stbi__malloc_mad3(x, y, comp, 0); - if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); } - // compute number of non-alpha components - if (comp & 1) n = comp; else n = comp-1; - for (i=0; i < x*y; ++i) { - for (k=0; k < n; ++k) { - float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; - if (z < 0) z = 0; - if (z > 255) z = 255; - output[i*comp + k] = (stbi_uc) stbi__float2int(z); - } - if (k < comp) { - float z = data[i*comp+k] * 255 + 0.5f; - if (z < 0) z = 0; - if (z > 255) z = 255; - output[i*comp + k] = (stbi_uc) stbi__float2int(z); - } - } - STBI_FREE(data); - return output; +#define stbi__float2int(x) ((int)(x)) +static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) { + int i, k, n; + stbi_uc *output; + if (!data) + return NULL; + output = (stbi_uc *)stbi__malloc_mad3(x, y, comp, 0); + if (output == NULL) { + STBI_FREE(data); + return stbi__errpuc("outofmem", "Out of memory"); + } + // compute number of non-alpha components + if (comp & 1) + n = comp; + else + n = comp - 1; + for (i = 0; i < x * y; ++i) { + for (k = 0; k < n; ++k) { + float z = (float)pow(data[i * comp + k] * stbi__h2l_scale_i, + stbi__h2l_gamma_i) * + 255 + + 0.5f; + if (z < 0) + z = 0; + if (z > 255) + z = 255; + output[i * comp + k] = (stbi_uc)stbi__float2int(z); + } + if (k < comp) { + float z = data[i * comp + k] * 255 + 0.5f; + if (z < 0) + z = 0; + if (z > 255) + z = 255; + output[i * comp + k] = (stbi_uc)stbi__float2int(z); + } + } + STBI_FREE(data); + return output; } #endif @@ -1751,749 +1913,788 @@ static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) #ifndef STBI_NO_JPEG // huffman decoding acceleration -#define FAST_BITS 9 // larger handles more cases; smaller stomps less cache - -typedef struct -{ - stbi_uc fast[1 << FAST_BITS]; - // weirdly, repacking this into AoS is a 10% speed loss, instead of a win - stbi__uint16 code[256]; - stbi_uc values[256]; - stbi_uc size[257]; - unsigned int maxcode[18]; - int delta[17]; // old 'firstsymbol' - old 'firstcode' +#define FAST_BITS 9 // larger handles more cases; smaller stomps less cache + +typedef struct { + stbi_uc fast[1 << FAST_BITS]; + // weirdly, repacking this into AoS is a 10% speed loss, instead of a win + stbi__uint16 code[256]; + stbi_uc values[256]; + stbi_uc size[257]; + unsigned int maxcode[18]; + int delta[17]; // old 'firstsymbol' - old 'firstcode' } stbi__huffman; -typedef struct -{ - stbi__context *s; - stbi__huffman huff_dc[4]; - stbi__huffman huff_ac[4]; - stbi__uint16 dequant[4][64]; - stbi__int16 fast_ac[4][1 << FAST_BITS]; - -// sizes for components, interleaved MCUs - int img_h_max, img_v_max; - int img_mcu_x, img_mcu_y; - int img_mcu_w, img_mcu_h; - -// definition of jpeg image component - struct - { - int id; - int h,v; - int tq; - int hd,ha; - int dc_pred; - - int x,y,w2,h2; - stbi_uc *data; - void *raw_data, *raw_coeff; - stbi_uc *linebuf; - short *coeff; // progressive only - int coeff_w, coeff_h; // number of 8x8 coefficient blocks - } img_comp[4]; - - stbi__uint32 code_buffer; // jpeg entropy-coded buffer - int code_bits; // number of valid bits - unsigned char marker; // marker seen while filling entropy buffer - int nomore; // flag if we saw a marker so must stop - - int progressive; - int spec_start; - int spec_end; - int succ_high; - int succ_low; - int eob_run; - int jfif; - int app14_color_transform; // Adobe APP14 tag - int rgb; - - int scan_n, order[4]; - int restart_interval, todo; - -// kernels - void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); - void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step); - stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs); +typedef struct { + stbi__context *s; + stbi__huffman huff_dc[4]; + stbi__huffman huff_ac[4]; + stbi__uint16 dequant[4][64]; + stbi__int16 fast_ac[4][1 << FAST_BITS]; + + // sizes for components, interleaved MCUs + int img_h_max, img_v_max; + int img_mcu_x, img_mcu_y; + int img_mcu_w, img_mcu_h; + + // definition of jpeg image component + struct { + int id; + int h, v; + int tq; + int hd, ha; + int dc_pred; + + int x, y, w2, h2; + stbi_uc *data; + void *raw_data, *raw_coeff; + stbi_uc *linebuf; + short *coeff; // progressive only + int coeff_w, coeff_h; // number of 8x8 coefficient blocks + } img_comp[4]; + + stbi__uint32 code_buffer; // jpeg entropy-coded buffer + int code_bits; // number of valid bits + unsigned char marker; // marker seen while filling entropy buffer + int nomore; // flag if we saw a marker so must stop + + int progressive; + int spec_start; + int spec_end; + int succ_high; + int succ_low; + int eob_run; + int jfif; + int app14_color_transform; // Adobe APP14 tag + int rgb; + + int scan_n, order[4]; + int restart_interval, todo; + + // kernels + void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); + void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, + const stbi_uc *pcb, const stbi_uc *pcr, int count, + int step); + stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, + stbi_uc *in_far, int w, int hs); } stbi__jpeg; -static int stbi__build_huffman(stbi__huffman *h, int *count) -{ - int i,j,k=0; - unsigned int code; - // build size list for each symbol (from JPEG spec) - for (i=0; i < 16; ++i) - for (j=0; j < count[i]; ++j) - h->size[k++] = (stbi_uc) (i+1); - h->size[k] = 0; - - // compute actual symbols (from jpeg spec) - code = 0; - k = 0; - for(j=1; j <= 16; ++j) { - // compute delta to add to code to compute symbol id - h->delta[j] = k - code; - if (h->size[k] == j) { - while (h->size[k] == j) - h->code[k++] = (stbi__uint16) (code++); - if (code-1 >= (1u << j)) return stbi__err("bad code lengths","Corrupt JPEG"); - } - // compute largest code + 1 for this size, preshifted as needed later - h->maxcode[j] = code << (16-j); - code <<= 1; - } - h->maxcode[j] = 0xffffffff; - - // build non-spec acceleration table; 255 is flag for not-accelerated - memset(h->fast, 255, 1 << FAST_BITS); - for (i=0; i < k; ++i) { - int s = h->size[i]; - if (s <= FAST_BITS) { - int c = h->code[i] << (FAST_BITS-s); - int m = 1 << (FAST_BITS-s); - for (j=0; j < m; ++j) { - h->fast[c+j] = (stbi_uc) i; - } +static int stbi__build_huffman(stbi__huffman *h, int *count) { + int i, j, k = 0; + unsigned int code; + // build size list for each symbol (from JPEG spec) + for (i = 0; i < 16; ++i) + for (j = 0; j < count[i]; ++j) + h->size[k++] = (stbi_uc)(i + 1); + h->size[k] = 0; + + // compute actual symbols (from jpeg spec) + code = 0; + k = 0; + for (j = 1; j <= 16; ++j) { + // compute delta to add to code to compute symbol id + h->delta[j] = k - code; + if (h->size[k] == j) { + while (h->size[k] == j) + h->code[k++] = (stbi__uint16)(code++); + if (code - 1 >= (1u << j)) + return stbi__err("bad code lengths", "Corrupt JPEG"); + } + // compute largest code + 1 for this size, preshifted as needed later + h->maxcode[j] = code << (16 - j); + code <<= 1; + } + h->maxcode[j] = 0xffffffff; + + // build non-spec acceleration table; 255 is flag for not-accelerated + memset(h->fast, 255, 1 << FAST_BITS); + for (i = 0; i < k; ++i) { + int s = h->size[i]; + if (s <= FAST_BITS) { + int c = h->code[i] << (FAST_BITS - s); + int m = 1 << (FAST_BITS - s); + for (j = 0; j < m; ++j) { + h->fast[c + j] = (stbi_uc)i; } - } - return 1; + } + } + return 1; } // build a table that decodes both magnitude and value of small ACs in // one go. -static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h) -{ - int i; - for (i=0; i < (1 << FAST_BITS); ++i) { - stbi_uc fast = h->fast[i]; - fast_ac[i] = 0; - if (fast < 255) { - int rs = h->values[fast]; - int run = (rs >> 4) & 15; - int magbits = rs & 15; - int len = h->size[fast]; - - if (magbits && len + magbits <= FAST_BITS) { - // magnitude code followed by receive_extend code - int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); - int m = 1 << (magbits - 1); - if (k < m) k += (~0U << magbits) + 1; - // if the result is small enough, we can fit it in fast_ac table - if (k >= -128 && k <= 127) - fast_ac[i] = (stbi__int16) ((k * 256) + (run * 16) + (len + magbits)); - } +static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h) { + int i; + for (i = 0; i < (1 << FAST_BITS); ++i) { + stbi_uc fast = h->fast[i]; + fast_ac[i] = 0; + if (fast < 255) { + int rs = h->values[fast]; + int run = (rs >> 4) & 15; + int magbits = rs & 15; + int len = h->size[fast]; + + if (magbits && len + magbits <= FAST_BITS) { + // magnitude code followed by receive_extend code + int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); + int m = 1 << (magbits - 1); + if (k < m) + k += (~0U << magbits) + 1; + // if the result is small enough, we can fit it in fast_ac table + if (k >= -128 && k <= 127) + fast_ac[i] = (stbi__int16)((k * 256) + (run * 16) + (len + magbits)); } - } -} - -static void stbi__grow_buffer_unsafe(stbi__jpeg *j) -{ - do { - unsigned int b = j->nomore ? 0 : stbi__get8(j->s); - if (b == 0xff) { - int c = stbi__get8(j->s); - while (c == 0xff) c = stbi__get8(j->s); // consume fill bytes - if (c != 0) { - j->marker = (unsigned char) c; - j->nomore = 1; - return; - } + } + } +} + +static void stbi__grow_buffer_unsafe(stbi__jpeg *j) { + do { + unsigned int b = j->nomore ? 0 : stbi__get8(j->s); + if (b == 0xff) { + int c = stbi__get8(j->s); + while (c == 0xff) + c = stbi__get8(j->s); // consume fill bytes + if (c != 0) { + j->marker = (unsigned char)c; + j->nomore = 1; + return; } - j->code_buffer |= b << (24 - j->code_bits); - j->code_bits += 8; - } while (j->code_bits <= 24); + } + j->code_buffer |= b << (24 - j->code_bits); + j->code_bits += 8; + } while (j->code_bits <= 24); } // (1 << n) - 1 -static const stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; +static const stbi__uint32 stbi__bmask[17] = { + 0, 1, 3, 7, 15, 31, 63, 127, 255, + 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535}; // decode a jpeg huffman value from the bitstream -stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h) -{ - unsigned int temp; - int c,k; - - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - - // look at the top FAST_BITS and determine what symbol ID it is, - // if the code is <= FAST_BITS - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); - k = h->fast[c]; - if (k < 255) { - int s = h->size[k]; - if (s > j->code_bits) - return -1; - j->code_buffer <<= s; - j->code_bits -= s; - return h->values[k]; - } - - // naive test is to shift the code_buffer down so k bits are - // valid, then test against maxcode. To speed this up, we've - // preshifted maxcode left so that it has (16-k) 0s at the - // end; in other words, regardless of the number of bits, it - // wants to be compared against something shifted to have 16; - // that way we don't need to shift inside the loop. - temp = j->code_buffer >> 16; - for (k=FAST_BITS+1 ; ; ++k) - if (temp < h->maxcode[k]) - break; - if (k == 17) { - // error! code not found - j->code_bits -= 16; +stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h) { + unsigned int temp; + int c, k; + + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + + // look at the top FAST_BITS and determine what symbol ID it is, + // if the code is <= FAST_BITS + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); + k = h->fast[c]; + if (k < 255) { + int s = h->size[k]; + if (s > j->code_bits) return -1; - } - - if (k > j->code_bits) - return -1; - - // convert the huffman code to the symbol id - c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; - STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]); - - // convert the id to a symbol - j->code_bits -= k; - j->code_buffer <<= k; - return h->values[c]; + j->code_buffer <<= s; + j->code_bits -= s; + return h->values[k]; + } + + // naive test is to shift the code_buffer down so k bits are + // valid, then test against maxcode. To speed this up, we've + // preshifted maxcode left so that it has (16-k) 0s at the + // end; in other words, regardless of the number of bits, it + // wants to be compared against something shifted to have 16; + // that way we don't need to shift inside the loop. + temp = j->code_buffer >> 16; + for (k = FAST_BITS + 1;; ++k) + if (temp < h->maxcode[k]) + break; + if (k == 17) { + // error! code not found + j->code_bits -= 16; + return -1; + } + + if (k > j->code_bits) + return -1; + + // convert the huffman code to the symbol id + c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; + STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & + stbi__bmask[h->size[c]]) == h->code[c]); + + // convert the id to a symbol + j->code_bits -= k; + j->code_buffer <<= k; + return h->values[c]; } // bias[n] = (-1<<n) + 1 -static const int stbi__jbias[16] = {0,-1,-3,-7,-15,-31,-63,-127,-255,-511,-1023,-2047,-4095,-8191,-16383,-32767}; +static const int stbi__jbias[16] = {0, -1, -3, -7, -15, -31, + -63, -127, -255, -511, -1023, -2047, + -4095, -8191, -16383, -32767}; // combined JPEG 'receive' and JPEG 'extend', since baseline // always extends everything it receives. -stbi_inline static int stbi__extend_receive(stbi__jpeg *j, int n) -{ - unsigned int k; - int sgn; - if (j->code_bits < n) stbi__grow_buffer_unsafe(j); +stbi_inline static int stbi__extend_receive(stbi__jpeg *j, int n) { + unsigned int k; + int sgn; + if (j->code_bits < n) + stbi__grow_buffer_unsafe(j); - sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB - k = stbi_lrot(j->code_buffer, n); - STBI_ASSERT(n >= 0 && n < (int) (sizeof(stbi__bmask)/sizeof(*stbi__bmask))); - j->code_buffer = k & ~stbi__bmask[n]; - k &= stbi__bmask[n]; - j->code_bits -= n; - return k + (stbi__jbias[n] & ~sgn); + sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB + k = stbi_lrot(j->code_buffer, n); + STBI_ASSERT(n >= 0 && n < (int)(sizeof(stbi__bmask) / sizeof(*stbi__bmask))); + j->code_buffer = k & ~stbi__bmask[n]; + k &= stbi__bmask[n]; + j->code_bits -= n; + return k + (stbi__jbias[n] & ~sgn); } // get some unsigned bits -stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n) -{ - unsigned int k; - if (j->code_bits < n) stbi__grow_buffer_unsafe(j); - k = stbi_lrot(j->code_buffer, n); - j->code_buffer = k & ~stbi__bmask[n]; - k &= stbi__bmask[n]; - j->code_bits -= n; - return k; -} - -stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) -{ - unsigned int k; - if (j->code_bits < 1) stbi__grow_buffer_unsafe(j); - k = j->code_buffer; - j->code_buffer <<= 1; - --j->code_bits; - return k & 0x80000000; +stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n) { + unsigned int k; + if (j->code_bits < n) + stbi__grow_buffer_unsafe(j); + k = stbi_lrot(j->code_buffer, n); + j->code_buffer = k & ~stbi__bmask[n]; + k &= stbi__bmask[n]; + j->code_bits -= n; + return k; +} + +stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) { + unsigned int k; + if (j->code_bits < 1) + stbi__grow_buffer_unsafe(j); + k = j->code_buffer; + j->code_buffer <<= 1; + --j->code_bits; + return k & 0x80000000; } // given a value that's at position X in the zigzag stream, // where does it appear in the 8x8 matrix coded as row-major? -static const stbi_uc stbi__jpeg_dezigzag[64+15] = -{ - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 32, 25, 18, 11, 4, 5, - 12, 19, 26, 33, 40, 48, 41, 34, - 27, 20, 13, 6, 7, 14, 21, 28, - 35, 42, 49, 56, 57, 50, 43, 36, - 29, 22, 15, 23, 30, 37, 44, 51, - 58, 59, 52, 45, 38, 31, 39, 46, - 53, 60, 61, 54, 47, 55, 62, 63, - // let corrupt input sample past end - 63, 63, 63, 63, 63, 63, 63, 63, - 63, 63, 63, 63, 63, 63, 63 -}; +static const stbi_uc stbi__jpeg_dezigzag[64 + 15] = { + 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, + 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, + 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, + 54, 47, 55, 62, 63, + // let corrupt input sample past end + 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63}; // decode one 64-entry block-- -static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi__uint16 *dequant) -{ - int diff,dc,k; - int t; - - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - t = stbi__jpeg_huff_decode(j, hdc); - if (t < 0) return stbi__err("bad huffman code","Corrupt JPEG"); - - // 0 all the ac values now so we can do it 32-bits at a time - memset(data,0,64*sizeof(data[0])); - - diff = t ? stbi__extend_receive(j, t) : 0; - dc = j->img_comp[b].dc_pred + diff; - j->img_comp[b].dc_pred = dc; - data[0] = (short) (dc * dequant[0]); - - // decode AC components, see JPEG spec - k = 1; - do { - unsigned int zig; - int c,r,s; - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); - r = fac[c]; - if (r) { // fast-AC path - k += (r >> 4) & 15; // run - s = r & 15; // combined length - j->code_buffer <<= s; - j->code_bits -= s; - // decode into unzigzag'd location - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short) ((r >> 8) * dequant[zig]); +static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], + stbi__huffman *hdc, stbi__huffman *hac, + stbi__int16 *fac, int b, + stbi__uint16 *dequant) { + int diff, dc, k; + int t; + + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + t = stbi__jpeg_huff_decode(j, hdc); + if (t < 0) + return stbi__err("bad huffman code", "Corrupt JPEG"); + + // 0 all the ac values now so we can do it 32-bits at a time + memset(data, 0, 64 * sizeof(data[0])); + + diff = t ? stbi__extend_receive(j, t) : 0; + dc = j->img_comp[b].dc_pred + diff; + j->img_comp[b].dc_pred = dc; + data[0] = (short)(dc * dequant[0]); + + // decode AC components, see JPEG spec + k = 1; + do { + unsigned int zig; + int c, r, s; + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); + r = fac[c]; + if (r) { // fast-AC path + k += (r >> 4) & 15; // run + s = r & 15; // combined length + j->code_buffer <<= s; + j->code_bits -= s; + // decode into unzigzag'd location + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short)((r >> 8) * dequant[zig]); + } else { + int rs = stbi__jpeg_huff_decode(j, hac); + if (rs < 0) + return stbi__err("bad huffman code", "Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) { + if (rs != 0xf0) + break; // end block + k += 16; } else { - int rs = stbi__jpeg_huff_decode(j, hac); - if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); - s = rs & 15; - r = rs >> 4; - if (s == 0) { - if (rs != 0xf0) break; // end block - k += 16; - } else { - k += r; - // decode into unzigzag'd location - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]); - } + k += r; + // decode into unzigzag'd location + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short)(stbi__extend_receive(j, s) * dequant[zig]); } - } while (k < 64); - return 1; + } + } while (k < 64); + return 1; } -static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b) -{ - int diff,dc; - int t; - if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); +static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], + stbi__huffman *hdc, int b) { + int diff, dc; + int t; + if (j->spec_end != 0) + return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); - if (j->succ_high == 0) { - // first scan for DC coefficient, must be first - memset(data,0,64*sizeof(data[0])); // 0 all the ac values now - t = stbi__jpeg_huff_decode(j, hdc); - diff = t ? stbi__extend_receive(j, t) : 0; + if (j->succ_high == 0) { + // first scan for DC coefficient, must be first + memset(data, 0, 64 * sizeof(data[0])); // 0 all the ac values now + t = stbi__jpeg_huff_decode(j, hdc); + diff = t ? stbi__extend_receive(j, t) : 0; - dc = j->img_comp[b].dc_pred + diff; - j->img_comp[b].dc_pred = dc; - data[0] = (short) (dc << j->succ_low); - } else { - // refinement scan for DC coefficient - if (stbi__jpeg_get_bit(j)) - data[0] += (short) (1 << j->succ_low); - } - return 1; + dc = j->img_comp[b].dc_pred + diff; + j->img_comp[b].dc_pred = dc; + data[0] = (short)(dc << j->succ_low); + } else { + // refinement scan for DC coefficient + if (stbi__jpeg_get_bit(j)) + data[0] += (short)(1 << j->succ_low); + } + return 1; } // @OPTIMIZE: store non-zigzagged during the decode passes, // and only de-zigzag when dequantizing -static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac) -{ - int k; - if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - - if (j->succ_high == 0) { - int shift = j->succ_low; +static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], + stbi__huffman *hac, + stbi__int16 *fac) { + int k; + if (j->spec_start == 0) + return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + + if (j->succ_high == 0) { + int shift = j->succ_low; + + if (j->eob_run) { + --j->eob_run; + return 1; + } - if (j->eob_run) { - --j->eob_run; - return 1; - } - - k = j->spec_start; - do { - unsigned int zig; - int c,r,s; - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); - r = fac[c]; - if (r) { // fast-AC path - k += (r >> 4) & 15; // run - s = r & 15; // combined length - j->code_buffer <<= s; - j->code_bits -= s; - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short) ((r >> 8) << shift); - } else { - int rs = stbi__jpeg_huff_decode(j, hac); - if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); - s = rs & 15; - r = rs >> 4; - if (s == 0) { - if (r < 15) { - j->eob_run = (1 << r); - if (r) - j->eob_run += stbi__jpeg_get_bits(j, r); - --j->eob_run; - break; - } - k += 16; - } else { - k += r; - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short) (stbi__extend_receive(j,s) << shift); - } - } - } while (k <= j->spec_end); - } else { - // refinement scan for these AC coefficients - - short bit = (short) (1 << j->succ_low); - - if (j->eob_run) { - --j->eob_run; - for (k = j->spec_start; k <= j->spec_end; ++k) { - short *p = &data[stbi__jpeg_dezigzag[k]]; - if (*p != 0) - if (stbi__jpeg_get_bit(j)) - if ((*p & bit)==0) { - if (*p > 0) - *p += bit; - else - *p -= bit; - } - } + k = j->spec_start; + do { + unsigned int zig; + int c, r, s; + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); + r = fac[c]; + if (r) { // fast-AC path + k += (r >> 4) & 15; // run + s = r & 15; // combined length + j->code_buffer <<= s; + j->code_bits -= s; + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short)((r >> 8) << shift); } else { - k = j->spec_start; - do { - int r,s; - int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh - if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); - s = rs & 15; - r = rs >> 4; - if (s == 0) { - if (r < 15) { - j->eob_run = (1 << r) - 1; - if (r) - j->eob_run += stbi__jpeg_get_bits(j, r); - r = 64; // force end of block - } else { - // r=15 s=0 should write 16 0s, so we just do - // a run of 15 0s and then write s (which is 0), - // so we don't have to do anything special here - } - } else { - if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG"); - // sign bit - if (stbi__jpeg_get_bit(j)) - s = bit; - else - s = -bit; + int rs = stbi__jpeg_huff_decode(j, hac); + if (rs < 0) + return stbi__err("bad huffman code", "Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) { + if (r < 15) { + j->eob_run = (1 << r); + if (r) + j->eob_run += stbi__jpeg_get_bits(j, r); + --j->eob_run; + break; + } + k += 16; + } else { + k += r; + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short)(stbi__extend_receive(j, s) << shift); + } + } + } while (k <= j->spec_end); + } else { + // refinement scan for these AC coefficients + + short bit = (short)(1 << j->succ_low); + + if (j->eob_run) { + --j->eob_run; + for (k = j->spec_start; k <= j->spec_end; ++k) { + short *p = &data[stbi__jpeg_dezigzag[k]]; + if (*p != 0) + if (stbi__jpeg_get_bit(j)) + if ((*p & bit) == 0) { + if (*p > 0) + *p += bit; + else + *p -= bit; } + } + } else { + k = j->spec_start; + do { + int r, s; + int rs = stbi__jpeg_huff_decode( + j, hac); // @OPTIMIZE see if we can use the fast path here, + // advance-by-r is so slow, eh + if (rs < 0) + return stbi__err("bad huffman code", "Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) { + if (r < 15) { + j->eob_run = (1 << r) - 1; + if (r) + j->eob_run += stbi__jpeg_get_bits(j, r); + r = 64; // force end of block + } else { + // r=15 s=0 should write 16 0s, so we just do + // a run of 15 0s and then write s (which is 0), + // so we don't have to do anything special here + } + } else { + if (s != 1) + return stbi__err("bad huffman code", "Corrupt JPEG"); + // sign bit + if (stbi__jpeg_get_bit(j)) + s = bit; + else + s = -bit; + } - // advance by r - while (k <= j->spec_end) { - short *p = &data[stbi__jpeg_dezigzag[k++]]; - if (*p != 0) { - if (stbi__jpeg_get_bit(j)) - if ((*p & bit)==0) { - if (*p > 0) - *p += bit; - else - *p -= bit; - } - } else { - if (r == 0) { - *p = (short) s; - break; - } - --r; - } + // advance by r + while (k <= j->spec_end) { + short *p = &data[stbi__jpeg_dezigzag[k++]]; + if (*p != 0) { + if (stbi__jpeg_get_bit(j)) + if ((*p & bit) == 0) { + if (*p > 0) + *p += bit; + else + *p -= bit; + } + } else { + if (r == 0) { + *p = (short)s; + break; } - } while (k <= j->spec_end); - } - } - return 1; + --r; + } + } + } while (k <= j->spec_end); + } + } + return 1; } // take a -128..127 value and stbi__clamp it and convert to 0..255 -stbi_inline static stbi_uc stbi__clamp(int x) -{ - // trick to use a single test to catch both cases - if ((unsigned int) x > 255) { - if (x < 0) return 0; - if (x > 255) return 255; - } - return (stbi_uc) x; +stbi_inline static stbi_uc stbi__clamp(int x) { + // trick to use a single test to catch both cases + if ((unsigned int)x > 255) { + if (x < 0) + return 0; + if (x > 255) + return 255; + } + return (stbi_uc)x; } -#define stbi__f2f(x) ((int) (((x) * 4096 + 0.5))) -#define stbi__fsh(x) ((x) * 4096) +#define stbi__f2f(x) ((int)(((x)*4096 + 0.5))) +#define stbi__fsh(x) ((x)*4096) // derived from jidctint -- DCT_ISLOW -#define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ - int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ - p2 = s2; \ - p3 = s6; \ - p1 = (p2+p3) * stbi__f2f(0.5411961f); \ - t2 = p1 + p3*stbi__f2f(-1.847759065f); \ - t3 = p1 + p2*stbi__f2f( 0.765366865f); \ - p2 = s0; \ - p3 = s4; \ - t0 = stbi__fsh(p2+p3); \ - t1 = stbi__fsh(p2-p3); \ - x0 = t0+t3; \ - x3 = t0-t3; \ - x1 = t1+t2; \ - x2 = t1-t2; \ - t0 = s7; \ - t1 = s5; \ - t2 = s3; \ - t3 = s1; \ - p3 = t0+t2; \ - p4 = t1+t3; \ - p1 = t0+t3; \ - p2 = t1+t2; \ - p5 = (p3+p4)*stbi__f2f( 1.175875602f); \ - t0 = t0*stbi__f2f( 0.298631336f); \ - t1 = t1*stbi__f2f( 2.053119869f); \ - t2 = t2*stbi__f2f( 3.072711026f); \ - t3 = t3*stbi__f2f( 1.501321110f); \ - p1 = p5 + p1*stbi__f2f(-0.899976223f); \ - p2 = p5 + p2*stbi__f2f(-2.562915447f); \ - p3 = p3*stbi__f2f(-1.961570560f); \ - p4 = p4*stbi__f2f(-0.390180644f); \ - t3 += p1+p4; \ - t2 += p2+p3; \ - t1 += p2+p4; \ - t0 += p1+p3; - -static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) -{ - int i,val[64],*v=val; - stbi_uc *o; - short *d = data; - - // columns - for (i=0; i < 8; ++i,++d, ++v) { - // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing - if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 - && d[40]==0 && d[48]==0 && d[56]==0) { - // no shortcut 0 seconds - // (1|2|3|4|5|6|7)==0 0 seconds - // all separate -0.047 seconds - // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds - int dcterm = d[0]*4; - v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; - } else { - STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56]) - // constants scaled things up by 1<<12; let's bring them back - // down, but keep 2 extra bits of precision - x0 += 512; x1 += 512; x2 += 512; x3 += 512; - v[ 0] = (x0+t3) >> 10; - v[56] = (x0-t3) >> 10; - v[ 8] = (x1+t2) >> 10; - v[48] = (x1-t2) >> 10; - v[16] = (x2+t1) >> 10; - v[40] = (x2-t1) >> 10; - v[24] = (x3+t0) >> 10; - v[32] = (x3-t0) >> 10; - } - } - - for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { - // no fast case since the first 1D IDCT spread components out - STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) - // constants scaled things up by 1<<12, plus we had 1<<2 from first - // loop, plus horizontal and vertical each scale by sqrt(8) so together - // we've got an extra 1<<3, so 1<<17 total we need to remove. - // so we want to round that, which means adding 0.5 * 1<<17, - // aka 65536. Also, we'll end up with -128 to 127 that we want - // to encode as 0..255 by adding 128, so we'll add that before the shift - x0 += 65536 + (128<<17); - x1 += 65536 + (128<<17); - x2 += 65536 + (128<<17); - x3 += 65536 + (128<<17); - // tried computing the shifts into temps, or'ing the temps to see - // if any were out of range, but that was slower - o[0] = stbi__clamp((x0+t3) >> 17); - o[7] = stbi__clamp((x0-t3) >> 17); - o[1] = stbi__clamp((x1+t2) >> 17); - o[6] = stbi__clamp((x1-t2) >> 17); - o[2] = stbi__clamp((x2+t1) >> 17); - o[5] = stbi__clamp((x2-t1) >> 17); - o[3] = stbi__clamp((x3+t0) >> 17); - o[4] = stbi__clamp((x3-t0) >> 17); - } +#define STBI__IDCT_1D(s0, s1, s2, s3, s4, s5, s6, s7) \ + int t0, t1, t2, t3, p1, p2, p3, p4, p5, x0, x1, x2, x3; \ + p2 = s2; \ + p3 = s6; \ + p1 = (p2 + p3) * stbi__f2f(0.5411961f); \ + t2 = p1 + p3 * stbi__f2f(-1.847759065f); \ + t3 = p1 + p2 * stbi__f2f(0.765366865f); \ + p2 = s0; \ + p3 = s4; \ + t0 = stbi__fsh(p2 + p3); \ + t1 = stbi__fsh(p2 - p3); \ + x0 = t0 + t3; \ + x3 = t0 - t3; \ + x1 = t1 + t2; \ + x2 = t1 - t2; \ + t0 = s7; \ + t1 = s5; \ + t2 = s3; \ + t3 = s1; \ + p3 = t0 + t2; \ + p4 = t1 + t3; \ + p1 = t0 + t3; \ + p2 = t1 + t2; \ + p5 = (p3 + p4) * stbi__f2f(1.175875602f); \ + t0 = t0 * stbi__f2f(0.298631336f); \ + t1 = t1 * stbi__f2f(2.053119869f); \ + t2 = t2 * stbi__f2f(3.072711026f); \ + t3 = t3 * stbi__f2f(1.501321110f); \ + p1 = p5 + p1 * stbi__f2f(-0.899976223f); \ + p2 = p5 + p2 * stbi__f2f(-2.562915447f); \ + p3 = p3 * stbi__f2f(-1.961570560f); \ + p4 = p4 * stbi__f2f(-0.390180644f); \ + t3 += p1 + p4; \ + t2 += p2 + p3; \ + t1 += p2 + p4; \ + t0 += p1 + p3; + +static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) { + int i, val[64], *v = val; + stbi_uc *o; + short *d = data; + + // columns + for (i = 0; i < 8; ++i, ++d, ++v) { + // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing + if (d[8] == 0 && d[16] == 0 && d[24] == 0 && d[32] == 0 && d[40] == 0 && + d[48] == 0 && d[56] == 0) { + // no shortcut 0 seconds + // (1|2|3|4|5|6|7)==0 0 seconds + // all separate -0.047 seconds + // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds + int dcterm = d[0] * 4; + v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; + } else { + STBI__IDCT_1D(d[0], d[8], d[16], d[24], d[32], d[40], d[48], d[56]) + // constants scaled things up by 1<<12; let's bring them back + // down, but keep 2 extra bits of precision + x0 += 512; + x1 += 512; + x2 += 512; + x3 += 512; + v[0] = (x0 + t3) >> 10; + v[56] = (x0 - t3) >> 10; + v[8] = (x1 + t2) >> 10; + v[48] = (x1 - t2) >> 10; + v[16] = (x2 + t1) >> 10; + v[40] = (x2 - t1) >> 10; + v[24] = (x3 + t0) >> 10; + v[32] = (x3 - t0) >> 10; + } + } + + for (i = 0, v = val, o = out; i < 8; ++i, v += 8, o += out_stride) { + // no fast case since the first 1D IDCT spread components out + STBI__IDCT_1D(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]) + // constants scaled things up by 1<<12, plus we had 1<<2 from first + // loop, plus horizontal and vertical each scale by sqrt(8) so together + // we've got an extra 1<<3, so 1<<17 total we need to remove. + // so we want to round that, which means adding 0.5 * 1<<17, + // aka 65536. Also, we'll end up with -128 to 127 that we want + // to encode as 0..255 by adding 128, so we'll add that before the shift + x0 += 65536 + (128 << 17); + x1 += 65536 + (128 << 17); + x2 += 65536 + (128 << 17); + x3 += 65536 + (128 << 17); + // tried computing the shifts into temps, or'ing the temps to see + // if any were out of range, but that was slower + o[0] = stbi__clamp((x0 + t3) >> 17); + o[7] = stbi__clamp((x0 - t3) >> 17); + o[1] = stbi__clamp((x1 + t2) >> 17); + o[6] = stbi__clamp((x1 - t2) >> 17); + o[2] = stbi__clamp((x2 + t1) >> 17); + o[5] = stbi__clamp((x2 - t1) >> 17); + o[3] = stbi__clamp((x3 + t0) >> 17); + o[4] = stbi__clamp((x3 - t0) >> 17); + } } #ifdef STBI_SSE2 // sse2 integer IDCT. not the fastest possible implementation but it // produces bit-identical results to the generic C version so it's // fully "transparent". -static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) -{ - // This is constructed to match our regular (generic) integer IDCT exactly. - __m128i row0, row1, row2, row3, row4, row5, row6, row7; - __m128i tmp; - - // dot product constant: even elems=x, odd elems=y - #define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y)) - - // out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) - // out(1) = c1[even]*x + c1[odd]*y - #define dct_rot(out0,out1, x,y,c0,c1) \ - __m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \ - __m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \ - __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ - __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ - __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ - __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) - - // out = in << 12 (in 16-bit, out 32-bit) - #define dct_widen(out, in) \ - __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ - __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) - - // wide add - #define dct_wadd(out, a, b) \ - __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ - __m128i out##_h = _mm_add_epi32(a##_h, b##_h) - - // wide sub - #define dct_wsub(out, a, b) \ - __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ - __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) - - // butterfly a/b, add bias, then shift by "s" and pack - #define dct_bfly32o(out0, out1, a,b,bias,s) \ - { \ - __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ - __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ - dct_wadd(sum, abiased, b); \ - dct_wsub(dif, abiased, b); \ - out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ - out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ - } +static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) { + // This is constructed to match our regular (generic) integer IDCT exactly. + __m128i row0, row1, row2, row3, row4, row5, row6, row7; + __m128i tmp; + +// dot product constant: even elems=x, odd elems=y +#define dct_const(x, y) _mm_setr_epi16((x), (y), (x), (y), (x), (y), (x), (y)) + +// out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) +// out(1) = c1[even]*x + c1[odd]*y +#define dct_rot(out0, out1, x, y, c0, c1) \ + __m128i c0##lo = _mm_unpacklo_epi16((x), (y)); \ + __m128i c0##hi = _mm_unpackhi_epi16((x), (y)); \ + __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ + __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ + __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ + __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) + +// out = in << 12 (in 16-bit, out 32-bit) +#define dct_widen(out, in) \ + __m128i out##_l = \ + _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ + __m128i out##_h = \ + _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) - // 8-bit interleave step (for transposes) - #define dct_interleave8(a, b) \ - tmp = a; \ - a = _mm_unpacklo_epi8(a, b); \ - b = _mm_unpackhi_epi8(tmp, b) - - // 16-bit interleave step (for transposes) - #define dct_interleave16(a, b) \ - tmp = a; \ - a = _mm_unpacklo_epi16(a, b); \ - b = _mm_unpackhi_epi16(tmp, b) - - #define dct_pass(bias,shift) \ - { \ - /* even part */ \ - dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \ - __m128i sum04 = _mm_add_epi16(row0, row4); \ - __m128i dif04 = _mm_sub_epi16(row0, row4); \ - dct_widen(t0e, sum04); \ - dct_widen(t1e, dif04); \ - dct_wadd(x0, t0e, t3e); \ - dct_wsub(x3, t0e, t3e); \ - dct_wadd(x1, t1e, t2e); \ - dct_wsub(x2, t1e, t2e); \ - /* odd part */ \ - dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \ - dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \ - __m128i sum17 = _mm_add_epi16(row1, row7); \ - __m128i sum35 = _mm_add_epi16(row3, row5); \ - dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \ - dct_wadd(x4, y0o, y4o); \ - dct_wadd(x5, y1o, y5o); \ - dct_wadd(x6, y2o, y5o); \ - dct_wadd(x7, y3o, y4o); \ - dct_bfly32o(row0,row7, x0,x7,bias,shift); \ - dct_bfly32o(row1,row6, x1,x6,bias,shift); \ - dct_bfly32o(row2,row5, x2,x5,bias,shift); \ - dct_bfly32o(row3,row4, x3,x4,bias,shift); \ - } - - __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); - __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f)); - __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); - __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); - __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f)); - __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f)); - __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f)); - __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f)); - - // rounding biases in column/row passes, see stbi__idct_block for explanation. - __m128i bias_0 = _mm_set1_epi32(512); - __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17)); - - // load - row0 = _mm_load_si128((const __m128i *) (data + 0*8)); - row1 = _mm_load_si128((const __m128i *) (data + 1*8)); - row2 = _mm_load_si128((const __m128i *) (data + 2*8)); - row3 = _mm_load_si128((const __m128i *) (data + 3*8)); - row4 = _mm_load_si128((const __m128i *) (data + 4*8)); - row5 = _mm_load_si128((const __m128i *) (data + 5*8)); - row6 = _mm_load_si128((const __m128i *) (data + 6*8)); - row7 = _mm_load_si128((const __m128i *) (data + 7*8)); - - // column pass - dct_pass(bias_0, 10); - - { - // 16bit 8x8 transpose pass 1 - dct_interleave16(row0, row4); - dct_interleave16(row1, row5); - dct_interleave16(row2, row6); - dct_interleave16(row3, row7); - - // transpose pass 2 - dct_interleave16(row0, row2); - dct_interleave16(row1, row3); - dct_interleave16(row4, row6); - dct_interleave16(row5, row7); - - // transpose pass 3 - dct_interleave16(row0, row1); - dct_interleave16(row2, row3); - dct_interleave16(row4, row5); - dct_interleave16(row6, row7); - } - - // row pass - dct_pass(bias_1, 17); - - { - // pack - __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 - __m128i p1 = _mm_packus_epi16(row2, row3); - __m128i p2 = _mm_packus_epi16(row4, row5); - __m128i p3 = _mm_packus_epi16(row6, row7); - - // 8bit 8x8 transpose pass 1 - dct_interleave8(p0, p2); // a0e0a1e1... - dct_interleave8(p1, p3); // c0g0c1g1... - - // transpose pass 2 - dct_interleave8(p0, p1); // a0c0e0g0... - dct_interleave8(p2, p3); // b0d0f0h0... - - // transpose pass 3 - dct_interleave8(p0, p2); // a0b0c0d0... - dct_interleave8(p1, p3); // a4b4c4d4... +// wide add +#define dct_wadd(out, a, b) \ + __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ + __m128i out##_h = _mm_add_epi32(a##_h, b##_h) - // store - _mm_storel_epi64((__m128i *) out, p0); out += out_stride; - _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride; - _mm_storel_epi64((__m128i *) out, p2); out += out_stride; - _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride; - _mm_storel_epi64((__m128i *) out, p1); out += out_stride; - _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride; - _mm_storel_epi64((__m128i *) out, p3); out += out_stride; - _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e)); - } +// wide sub +#define dct_wsub(out, a, b) \ + __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ + __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) + +// butterfly a/b, add bias, then shift by "s" and pack +#define dct_bfly32o(out0, out1, a, b, bias, s) \ + { \ + __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ + __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ + dct_wadd(sum, abiased, b); \ + dct_wsub(dif, abiased, b); \ + out0 = \ + _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ + out1 = \ + _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ + } + +// 8-bit interleave step (for transposes) +#define dct_interleave8(a, b) \ + tmp = a; \ + a = _mm_unpacklo_epi8(a, b); \ + b = _mm_unpackhi_epi8(tmp, b) + +// 16-bit interleave step (for transposes) +#define dct_interleave16(a, b) \ + tmp = a; \ + a = _mm_unpacklo_epi16(a, b); \ + b = _mm_unpackhi_epi16(tmp, b) + +#define dct_pass(bias, shift) \ + { \ + /* even part */ \ + dct_rot(t2e, t3e, row2, row6, rot0_0, rot0_1); \ + __m128i sum04 = _mm_add_epi16(row0, row4); \ + __m128i dif04 = _mm_sub_epi16(row0, row4); \ + dct_widen(t0e, sum04); \ + dct_widen(t1e, dif04); \ + dct_wadd(x0, t0e, t3e); \ + dct_wsub(x3, t0e, t3e); \ + dct_wadd(x1, t1e, t2e); \ + dct_wsub(x2, t1e, t2e); \ + /* odd part */ \ + dct_rot(y0o, y2o, row7, row3, rot2_0, rot2_1); \ + dct_rot(y1o, y3o, row5, row1, rot3_0, rot3_1); \ + __m128i sum17 = _mm_add_epi16(row1, row7); \ + __m128i sum35 = _mm_add_epi16(row3, row5); \ + dct_rot(y4o, y5o, sum17, sum35, rot1_0, rot1_1); \ + dct_wadd(x4, y0o, y4o); \ + dct_wadd(x5, y1o, y5o); \ + dct_wadd(x6, y2o, y5o); \ + dct_wadd(x7, y3o, y4o); \ + dct_bfly32o(row0, row7, x0, x7, bias, shift); \ + dct_bfly32o(row1, row6, x1, x6, bias, shift); \ + dct_bfly32o(row2, row5, x2, x5, bias, shift); \ + dct_bfly32o(row3, row4, x3, x4, bias, shift); \ + } + + __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), + stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); + __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f(0.765366865f), + stbi__f2f(0.5411961f)); + __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), + stbi__f2f(1.175875602f)); + __m128i rot1_1 = + dct_const(stbi__f2f(1.175875602f), + stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); + __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f(0.298631336f), + stbi__f2f(-1.961570560f)); + __m128i rot2_1 = + dct_const(stbi__f2f(-1.961570560f), + stbi__f2f(-1.961570560f) + stbi__f2f(3.072711026f)); + __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f(2.053119869f), + stbi__f2f(-0.390180644f)); + __m128i rot3_1 = + dct_const(stbi__f2f(-0.390180644f), + stbi__f2f(-0.390180644f) + stbi__f2f(1.501321110f)); + + // rounding biases in column/row passes, see stbi__idct_block for explanation. + __m128i bias_0 = _mm_set1_epi32(512); + __m128i bias_1 = _mm_set1_epi32(65536 + (128 << 17)); + + // load + row0 = _mm_load_si128((const __m128i *)(data + 0 * 8)); + row1 = _mm_load_si128((const __m128i *)(data + 1 * 8)); + row2 = _mm_load_si128((const __m128i *)(data + 2 * 8)); + row3 = _mm_load_si128((const __m128i *)(data + 3 * 8)); + row4 = _mm_load_si128((const __m128i *)(data + 4 * 8)); + row5 = _mm_load_si128((const __m128i *)(data + 5 * 8)); + row6 = _mm_load_si128((const __m128i *)(data + 6 * 8)); + row7 = _mm_load_si128((const __m128i *)(data + 7 * 8)); + + // column pass + dct_pass(bias_0, 10); + + { + // 16bit 8x8 transpose pass 1 + dct_interleave16(row0, row4); + dct_interleave16(row1, row5); + dct_interleave16(row2, row6); + dct_interleave16(row3, row7); + + // transpose pass 2 + dct_interleave16(row0, row2); + dct_interleave16(row1, row3); + dct_interleave16(row4, row6); + dct_interleave16(row5, row7); + + // transpose pass 3 + dct_interleave16(row0, row1); + dct_interleave16(row2, row3); + dct_interleave16(row4, row5); + dct_interleave16(row6, row7); + } + + // row pass + dct_pass(bias_1, 17); + + { + // pack + __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 + __m128i p1 = _mm_packus_epi16(row2, row3); + __m128i p2 = _mm_packus_epi16(row4, row5); + __m128i p3 = _mm_packus_epi16(row6, row7); + + // 8bit 8x8 transpose pass 1 + dct_interleave8(p0, p2); // a0e0a1e1... + dct_interleave8(p1, p3); // c0g0c1g1... + + // transpose pass 2 + dct_interleave8(p0, p1); // a0c0e0g0... + dct_interleave8(p2, p3); // b0d0f0h0... + + // transpose pass 3 + dct_interleave8(p0, p2); // a0b0c0d0... + dct_interleave8(p1, p3); // a4b4c4d4... + + // store + _mm_storel_epi64((__m128i *)out, p0); + out += out_stride; + _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p0, 0x4e)); + out += out_stride; + _mm_storel_epi64((__m128i *)out, p2); + out += out_stride; + _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p2, 0x4e)); + out += out_stride; + _mm_storel_epi64((__m128i *)out, p1); + out += out_stride; + _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p1, 0x4e)); + out += out_stride; + _mm_storel_epi64((__m128i *)out, p3); + out += out_stride; + _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p3, 0x4e)); + } #undef dct_const #undef dct_rot @@ -2512,198 +2713,236 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) // NEON integer IDCT. should produce bit-identical // results to the generic C version. -static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) -{ - int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; - - int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); - int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); - int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f)); - int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f)); - int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); - int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); - int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); - int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); - int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f)); - int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f)); - int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f)); - int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f)); - -#define dct_long_mul(out, inq, coeff) \ - int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ - int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) - -#define dct_long_mac(out, acc, inq, coeff) \ - int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ - int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) - -#define dct_widen(out, inq) \ - int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ - int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) +static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) { + int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; + + int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); + int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); + int16x4_t rot0_2 = vdup_n_s16(stbi__f2f(0.765366865f)); + int16x4_t rot1_0 = vdup_n_s16(stbi__f2f(1.175875602f)); + int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); + int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); + int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); + int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); + int16x4_t rot3_0 = vdup_n_s16(stbi__f2f(0.298631336f)); + int16x4_t rot3_1 = vdup_n_s16(stbi__f2f(2.053119869f)); + int16x4_t rot3_2 = vdup_n_s16(stbi__f2f(3.072711026f)); + int16x4_t rot3_3 = vdup_n_s16(stbi__f2f(1.501321110f)); + +#define dct_long_mul(out, inq, coeff) \ + int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ + int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) + +#define dct_long_mac(out, acc, inq, coeff) \ + int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ + int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) + +#define dct_widen(out, inq) \ + int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ + int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) // wide add -#define dct_wadd(out, a, b) \ - int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ - int32x4_t out##_h = vaddq_s32(a##_h, b##_h) +#define dct_wadd(out, a, b) \ + int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ + int32x4_t out##_h = vaddq_s32(a##_h, b##_h) // wide sub -#define dct_wsub(out, a, b) \ - int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ - int32x4_t out##_h = vsubq_s32(a##_h, b##_h) +#define dct_wsub(out, a, b) \ + int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ + int32x4_t out##_h = vsubq_s32(a##_h, b##_h) // butterfly a/b, then shift using "shiftop" by "s" and pack -#define dct_bfly32o(out0,out1, a,b,shiftop,s) \ - { \ - dct_wadd(sum, a, b); \ - dct_wsub(dif, a, b); \ - out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ - out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ - } - -#define dct_pass(shiftop, shift) \ - { \ - /* even part */ \ - int16x8_t sum26 = vaddq_s16(row2, row6); \ - dct_long_mul(p1e, sum26, rot0_0); \ - dct_long_mac(t2e, p1e, row6, rot0_1); \ - dct_long_mac(t3e, p1e, row2, rot0_2); \ - int16x8_t sum04 = vaddq_s16(row0, row4); \ - int16x8_t dif04 = vsubq_s16(row0, row4); \ - dct_widen(t0e, sum04); \ - dct_widen(t1e, dif04); \ - dct_wadd(x0, t0e, t3e); \ - dct_wsub(x3, t0e, t3e); \ - dct_wadd(x1, t1e, t2e); \ - dct_wsub(x2, t1e, t2e); \ - /* odd part */ \ - int16x8_t sum15 = vaddq_s16(row1, row5); \ - int16x8_t sum17 = vaddq_s16(row1, row7); \ - int16x8_t sum35 = vaddq_s16(row3, row5); \ - int16x8_t sum37 = vaddq_s16(row3, row7); \ - int16x8_t sumodd = vaddq_s16(sum17, sum35); \ - dct_long_mul(p5o, sumodd, rot1_0); \ - dct_long_mac(p1o, p5o, sum17, rot1_1); \ - dct_long_mac(p2o, p5o, sum35, rot1_2); \ - dct_long_mul(p3o, sum37, rot2_0); \ - dct_long_mul(p4o, sum15, rot2_1); \ - dct_wadd(sump13o, p1o, p3o); \ - dct_wadd(sump24o, p2o, p4o); \ - dct_wadd(sump23o, p2o, p3o); \ - dct_wadd(sump14o, p1o, p4o); \ - dct_long_mac(x4, sump13o, row7, rot3_0); \ - dct_long_mac(x5, sump24o, row5, rot3_1); \ - dct_long_mac(x6, sump23o, row3, rot3_2); \ - dct_long_mac(x7, sump14o, row1, rot3_3); \ - dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \ - dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \ - dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \ - dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \ - } - - // load - row0 = vld1q_s16(data + 0*8); - row1 = vld1q_s16(data + 1*8); - row2 = vld1q_s16(data + 2*8); - row3 = vld1q_s16(data + 3*8); - row4 = vld1q_s16(data + 4*8); - row5 = vld1q_s16(data + 5*8); - row6 = vld1q_s16(data + 6*8); - row7 = vld1q_s16(data + 7*8); - - // add DC bias - row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); - - // column pass - dct_pass(vrshrn_n_s32, 10); - - // 16bit 8x8 transpose - { +#define dct_bfly32o(out0, out1, a, b, shiftop, s) \ + { \ + dct_wadd(sum, a, b); \ + dct_wsub(dif, a, b); \ + out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ + out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ + } + +#define dct_pass(shiftop, shift) \ + { \ + /* even part */ \ + int16x8_t sum26 = vaddq_s16(row2, row6); \ + dct_long_mul(p1e, sum26, rot0_0); \ + dct_long_mac(t2e, p1e, row6, rot0_1); \ + dct_long_mac(t3e, p1e, row2, rot0_2); \ + int16x8_t sum04 = vaddq_s16(row0, row4); \ + int16x8_t dif04 = vsubq_s16(row0, row4); \ + dct_widen(t0e, sum04); \ + dct_widen(t1e, dif04); \ + dct_wadd(x0, t0e, t3e); \ + dct_wsub(x3, t0e, t3e); \ + dct_wadd(x1, t1e, t2e); \ + dct_wsub(x2, t1e, t2e); \ + /* odd part */ \ + int16x8_t sum15 = vaddq_s16(row1, row5); \ + int16x8_t sum17 = vaddq_s16(row1, row7); \ + int16x8_t sum35 = vaddq_s16(row3, row5); \ + int16x8_t sum37 = vaddq_s16(row3, row7); \ + int16x8_t sumodd = vaddq_s16(sum17, sum35); \ + dct_long_mul(p5o, sumodd, rot1_0); \ + dct_long_mac(p1o, p5o, sum17, rot1_1); \ + dct_long_mac(p2o, p5o, sum35, rot1_2); \ + dct_long_mul(p3o, sum37, rot2_0); \ + dct_long_mul(p4o, sum15, rot2_1); \ + dct_wadd(sump13o, p1o, p3o); \ + dct_wadd(sump24o, p2o, p4o); \ + dct_wadd(sump23o, p2o, p3o); \ + dct_wadd(sump14o, p1o, p4o); \ + dct_long_mac(x4, sump13o, row7, rot3_0); \ + dct_long_mac(x5, sump24o, row5, rot3_1); \ + dct_long_mac(x6, sump23o, row3, rot3_2); \ + dct_long_mac(x7, sump14o, row1, rot3_3); \ + dct_bfly32o(row0, row7, x0, x7, shiftop, shift); \ + dct_bfly32o(row1, row6, x1, x6, shiftop, shift); \ + dct_bfly32o(row2, row5, x2, x5, shiftop, shift); \ + dct_bfly32o(row3, row4, x3, x4, shiftop, shift); \ + } + + // load + row0 = vld1q_s16(data + 0 * 8); + row1 = vld1q_s16(data + 1 * 8); + row2 = vld1q_s16(data + 2 * 8); + row3 = vld1q_s16(data + 3 * 8); + row4 = vld1q_s16(data + 4 * 8); + row5 = vld1q_s16(data + 5 * 8); + row6 = vld1q_s16(data + 6 * 8); + row7 = vld1q_s16(data + 7 * 8); + + // add DC bias + row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); + + // column pass + dct_pass(vrshrn_n_s32, 10); + + // 16bit 8x8 transpose + { // these three map to a single VTRN.16, VTRN.32, and VSWP, respectively. // whether compilers actually get this is another story, sadly. -#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; } -#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); } -#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); } - - // pass 1 - dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 - dct_trn16(row2, row3); - dct_trn16(row4, row5); - dct_trn16(row6, row7); - - // pass 2 - dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 - dct_trn32(row1, row3); - dct_trn32(row4, row6); - dct_trn32(row5, row7); - - // pass 3 - dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 - dct_trn64(row1, row5); - dct_trn64(row2, row6); - dct_trn64(row3, row7); +#define dct_trn16(x, y) \ + { \ + int16x8x2_t t = vtrnq_s16(x, y); \ + x = t.val[0]; \ + y = t.val[1]; \ + } +#define dct_trn32(x, y) \ + { \ + int32x4x2_t t = \ + vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); \ + x = vreinterpretq_s16_s32(t.val[0]); \ + y = vreinterpretq_s16_s32(t.val[1]); \ + } +#define dct_trn64(x, y) \ + { \ + int16x8_t x0 = x; \ + int16x8_t y0 = y; \ + x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); \ + y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); \ + } + + // pass 1 + dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 + dct_trn16(row2, row3); + dct_trn16(row4, row5); + dct_trn16(row6, row7); + + // pass 2 + dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 + dct_trn32(row1, row3); + dct_trn32(row4, row6); + dct_trn32(row5, row7); + + // pass 3 + dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 + dct_trn64(row1, row5); + dct_trn64(row2, row6); + dct_trn64(row3, row7); #undef dct_trn16 #undef dct_trn32 #undef dct_trn64 - } - - // row pass - // vrshrn_n_s32 only supports shifts up to 16, we need - // 17. so do a non-rounding shift of 16 first then follow - // up with a rounding shift by 1. - dct_pass(vshrn_n_s32, 16); - - { - // pack and round - uint8x8_t p0 = vqrshrun_n_s16(row0, 1); - uint8x8_t p1 = vqrshrun_n_s16(row1, 1); - uint8x8_t p2 = vqrshrun_n_s16(row2, 1); - uint8x8_t p3 = vqrshrun_n_s16(row3, 1); - uint8x8_t p4 = vqrshrun_n_s16(row4, 1); - uint8x8_t p5 = vqrshrun_n_s16(row5, 1); - uint8x8_t p6 = vqrshrun_n_s16(row6, 1); - uint8x8_t p7 = vqrshrun_n_s16(row7, 1); - - // again, these can translate into one instruction, but often don't. -#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; } -#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); } -#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); } - - // sadly can't use interleaved stores here since we only write - // 8 bytes to each scan line! - - // 8x8 8-bit transpose pass 1 - dct_trn8_8(p0, p1); - dct_trn8_8(p2, p3); - dct_trn8_8(p4, p5); - dct_trn8_8(p6, p7); - - // pass 2 - dct_trn8_16(p0, p2); - dct_trn8_16(p1, p3); - dct_trn8_16(p4, p6); - dct_trn8_16(p5, p7); - - // pass 3 - dct_trn8_32(p0, p4); - dct_trn8_32(p1, p5); - dct_trn8_32(p2, p6); - dct_trn8_32(p3, p7); - - // store - vst1_u8(out, p0); out += out_stride; - vst1_u8(out, p1); out += out_stride; - vst1_u8(out, p2); out += out_stride; - vst1_u8(out, p3); out += out_stride; - vst1_u8(out, p4); out += out_stride; - vst1_u8(out, p5); out += out_stride; - vst1_u8(out, p6); out += out_stride; - vst1_u8(out, p7); + } + + // row pass + // vrshrn_n_s32 only supports shifts up to 16, we need + // 17. so do a non-rounding shift of 16 first then follow + // up with a rounding shift by 1. + dct_pass(vshrn_n_s32, 16); + + { + // pack and round + uint8x8_t p0 = vqrshrun_n_s16(row0, 1); + uint8x8_t p1 = vqrshrun_n_s16(row1, 1); + uint8x8_t p2 = vqrshrun_n_s16(row2, 1); + uint8x8_t p3 = vqrshrun_n_s16(row3, 1); + uint8x8_t p4 = vqrshrun_n_s16(row4, 1); + uint8x8_t p5 = vqrshrun_n_s16(row5, 1); + uint8x8_t p6 = vqrshrun_n_s16(row6, 1); + uint8x8_t p7 = vqrshrun_n_s16(row7, 1); + + // again, these can translate into one instruction, but often don't. +#define dct_trn8_8(x, y) \ + { \ + uint8x8x2_t t = vtrn_u8(x, y); \ + x = t.val[0]; \ + y = t.val[1]; \ + } +#define dct_trn8_16(x, y) \ + { \ + uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); \ + x = vreinterpret_u8_u16(t.val[0]); \ + y = vreinterpret_u8_u16(t.val[1]); \ + } +#define dct_trn8_32(x, y) \ + { \ + uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); \ + x = vreinterpret_u8_u32(t.val[0]); \ + y = vreinterpret_u8_u32(t.val[1]); \ + } + + // sadly can't use interleaved stores here since we only write + // 8 bytes to each scan line! + + // 8x8 8-bit transpose pass 1 + dct_trn8_8(p0, p1); + dct_trn8_8(p2, p3); + dct_trn8_8(p4, p5); + dct_trn8_8(p6, p7); + + // pass 2 + dct_trn8_16(p0, p2); + dct_trn8_16(p1, p3); + dct_trn8_16(p4, p6); + dct_trn8_16(p5, p7); + + // pass 3 + dct_trn8_32(p0, p4); + dct_trn8_32(p1, p5); + dct_trn8_32(p2, p6); + dct_trn8_32(p3, p7); + + // store + vst1_u8(out, p0); + out += out_stride; + vst1_u8(out, p1); + out += out_stride; + vst1_u8(out, p2); + out += out_stride; + vst1_u8(out, p3); + out += out_stride; + vst1_u8(out, p4); + out += out_stride; + vst1_u8(out, p5); + out += out_stride; + vst1_u8(out, p6); + out += out_stride; + vst1_u8(out, p7); #undef dct_trn8_8 #undef dct_trn8_16 #undef dct_trn8_32 - } + } #undef dct_long_mul #undef dct_long_mac @@ -2716,1130 +2955,1270 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) #endif // STBI_NEON -#define STBI__MARKER_none 0xff +#define STBI__MARKER_none 0xff // if there's a pending marker from the entropy stream, return that // otherwise, fetch from the stream and get a marker. if there's no // marker, return 0xff, which is never a valid marker value -static stbi_uc stbi__get_marker(stbi__jpeg *j) -{ - stbi_uc x; - if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; } - x = stbi__get8(j->s); - if (x != 0xff) return STBI__MARKER_none; - while (x == 0xff) - x = stbi__get8(j->s); // consume repeated 0xff fill bytes - return x; +static stbi_uc stbi__get_marker(stbi__jpeg *j) { + stbi_uc x; + if (j->marker != STBI__MARKER_none) { + x = j->marker; + j->marker = STBI__MARKER_none; + return x; + } + x = stbi__get8(j->s); + if (x != 0xff) + return STBI__MARKER_none; + while (x == 0xff) + x = stbi__get8(j->s); // consume repeated 0xff fill bytes + return x; } // in each scan, we'll have scan_n components, and the order // of the components is specified by order[] -#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) +#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) // after a restart interval, stbi__jpeg_reset the entropy decoder and // the dc prediction -static void stbi__jpeg_reset(stbi__jpeg *j) -{ - j->code_bits = 0; - j->code_buffer = 0; - j->nomore = 0; - j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0; - j->marker = STBI__MARKER_none; - j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; - j->eob_run = 0; - // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, - // since we don't even allow 1<<30 pixels -} - -static int stbi__parse_entropy_coded_data(stbi__jpeg *z) -{ - stbi__jpeg_reset(z); - if (!z->progressive) { - if (z->scan_n == 1) { - int i,j; - STBI_SIMD_ALIGN(short, data[64]); - int n = z->order[0]; - // non-interleaved data, we just need to process one block at a time, - // in trivial scanline order - // number of blocks to do just depends on how many actual "pixels" this - // component has, independent of interleaved MCU blocking and such - int w = (z->img_comp[n].x+7) >> 3; - int h = (z->img_comp[n].y+7) >> 3; - for (j=0; j < h; ++j) { - for (i=0; i < w; ++i) { - int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; - z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); - // every data block is an MCU, so countdown the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); - // if it's NOT a restart, then just bail, so we get corrupt data - // rather than no data - if (!STBI__RESTART(z->marker)) return 1; - stbi__jpeg_reset(z); - } - } - } - return 1; - } else { // interleaved - int i,j,k,x,y; - STBI_SIMD_ALIGN(short, data[64]); - for (j=0; j < z->img_mcu_y; ++j) { - for (i=0; i < z->img_mcu_x; ++i) { - // scan an interleaved mcu... process scan_n components in order - for (k=0; k < z->scan_n; ++k) { - int n = z->order[k]; - // scan out an mcu's worth of this component; that's just determined - // by the basic H and V specified for the component - for (y=0; y < z->img_comp[n].v; ++y) { - for (x=0; x < z->img_comp[n].h; ++x) { - int x2 = (i*z->img_comp[n].h + x)*8; - int y2 = (j*z->img_comp[n].v + y)*8; - int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; - z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data); - } - } - } - // after all interleaved components, that's an interleaved MCU, - // so now count down the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) return 1; - stbi__jpeg_reset(z); - } - } - } - return 1; +static void stbi__jpeg_reset(stbi__jpeg *j) { + j->code_bits = 0; + j->code_buffer = 0; + j->nomore = 0; + j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = + j->img_comp[3].dc_pred = 0; + j->marker = STBI__MARKER_none; + j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; + j->eob_run = 0; + // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, + // since we don't even allow 1<<30 pixels +} + +static int stbi__parse_entropy_coded_data(stbi__jpeg *z) { + stbi__jpeg_reset(z); + if (!z->progressive) { + if (z->scan_n == 1) { + int i, j; + STBI_SIMD_ALIGN(short, data[64]); + int n = z->order[0]; + // non-interleaved data, we just need to process one block at a time, + // in trivial scanline order + // number of blocks to do just depends on how many actual "pixels" this + // component has, independent of interleaved MCU blocking and such + int w = (z->img_comp[n].x + 7) >> 3; + int h = (z->img_comp[n].y + 7) >> 3; + for (j = 0; j < h; ++j) { + for (i = 0; i < w; ++i) { + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block(z, data, z->huff_dc + z->img_comp[n].hd, + z->huff_ac + ha, z->fast_ac[ha], n, + z->dequant[z->img_comp[n].tq])) + return 0; + z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * j * 8 + + i * 8, + z->img_comp[n].w2, data); + // every data block is an MCU, so countdown the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) + stbi__grow_buffer_unsafe(z); + // if it's NOT a restart, then just bail, so we get corrupt data + // rather than no data + if (!STBI__RESTART(z->marker)) + return 1; + stbi__jpeg_reset(z); + } + } } - } else { - if (z->scan_n == 1) { - int i,j; - int n = z->order[0]; - // non-interleaved data, we just need to process one block at a time, - // in trivial scanline order - // number of blocks to do just depends on how many actual "pixels" this - // component has, independent of interleaved MCU blocking and such - int w = (z->img_comp[n].x+7) >> 3; - int h = (z->img_comp[n].y+7) >> 3; - for (j=0; j < h; ++j) { - for (i=0; i < w; ++i) { - short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); - if (z->spec_start == 0) { - if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) - return 0; - } else { - int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha])) - return 0; - } - // every data block is an MCU, so countdown the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) return 1; - stbi__jpeg_reset(z); - } - } - } - return 1; - } else { // interleaved - int i,j,k,x,y; - for (j=0; j < z->img_mcu_y; ++j) { - for (i=0; i < z->img_mcu_x; ++i) { - // scan an interleaved mcu... process scan_n components in order - for (k=0; k < z->scan_n; ++k) { - int n = z->order[k]; - // scan out an mcu's worth of this component; that's just determined - // by the basic H and V specified for the component - for (y=0; y < z->img_comp[n].v; ++y) { - for (x=0; x < z->img_comp[n].h; ++x) { - int x2 = (i*z->img_comp[n].h + x); - int y2 = (j*z->img_comp[n].v + y); - short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w); - if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) - return 0; - } - } - } - // after all interleaved components, that's an interleaved MCU, - // so now count down the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) return 1; - stbi__jpeg_reset(z); - } + return 1; + } else { // interleaved + int i, j, k, x, y; + STBI_SIMD_ALIGN(short, data[64]); + for (j = 0; j < z->img_mcu_y; ++j) { + for (i = 0; i < z->img_mcu_x; ++i) { + // scan an interleaved mcu... process scan_n components in order + for (k = 0; k < z->scan_n; ++k) { + int n = z->order[k]; + // scan out an mcu's worth of this component; that's just determined + // by the basic H and V specified for the component + for (y = 0; y < z->img_comp[n].v; ++y) { + for (x = 0; x < z->img_comp[n].h; ++x) { + int x2 = (i * z->img_comp[n].h + x) * 8; + int y2 = (j * z->img_comp[n].v + y) * 8; + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block(z, data, + z->huff_dc + z->img_comp[n].hd, + z->huff_ac + ha, z->fast_ac[ha], n, + z->dequant[z->img_comp[n].tq])) + return 0; + z->idct_block_kernel(z->img_comp[n].data + + z->img_comp[n].w2 * y2 + x2, + z->img_comp[n].w2, data); + } } - } - return 1; + } + // after all interleaved components, that's an interleaved MCU, + // so now count down the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) + stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) + return 1; + stbi__jpeg_reset(z); + } + } } - } -} - -static void stbi__jpeg_dequantize(short *data, stbi__uint16 *dequant) -{ - int i; - for (i=0; i < 64; ++i) - data[i] *= dequant[i]; -} - -static void stbi__jpeg_finish(stbi__jpeg *z) -{ - if (z->progressive) { - // dequantize and idct the data - int i,j,n; - for (n=0; n < z->s->img_n; ++n) { - int w = (z->img_comp[n].x+7) >> 3; - int h = (z->img_comp[n].y+7) >> 3; - for (j=0; j < h; ++j) { - for (i=0; i < w; ++i) { - short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); - stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); - z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); - } - } + return 1; + } + } else { + if (z->scan_n == 1) { + int i, j; + int n = z->order[0]; + // non-interleaved data, we just need to process one block at a time, + // in trivial scanline order + // number of blocks to do just depends on how many actual "pixels" this + // component has, independent of interleaved MCU blocking and such + int w = (z->img_comp[n].x + 7) >> 3; + int h = (z->img_comp[n].y + 7) >> 3; + for (j = 0; j < h; ++j) { + for (i = 0; i < w; ++i) { + short *data = + z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); + if (z->spec_start == 0) { + if (!stbi__jpeg_decode_block_prog_dc( + z, data, &z->huff_dc[z->img_comp[n].hd], n)) + return 0; + } else { + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], + z->fast_ac[ha])) + return 0; + } + // every data block is an MCU, so countdown the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) + stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) + return 1; + stbi__jpeg_reset(z); + } + } } - } -} - -static int stbi__process_marker(stbi__jpeg *z, int m) -{ - int L; - switch (m) { - case STBI__MARKER_none: // no marker found - return stbi__err("expected marker","Corrupt JPEG"); - - case 0xDD: // DRI - specify restart interval - if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG"); - z->restart_interval = stbi__get16be(z->s); - return 1; - - case 0xDB: // DQT - define quantization table - L = stbi__get16be(z->s)-2; - while (L > 0) { - int q = stbi__get8(z->s); - int p = q >> 4, sixteen = (p != 0); - int t = q & 15,i; - if (p != 0 && p != 1) return stbi__err("bad DQT type","Corrupt JPEG"); - if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG"); - - for (i=0; i < 64; ++i) - z->dequant[t][stbi__jpeg_dezigzag[i]] = (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s)); - L -= (sixteen ? 129 : 65); - } - return L==0; - - case 0xC4: // DHT - define huffman table - L = stbi__get16be(z->s)-2; - while (L > 0) { - stbi_uc *v; - int sizes[16],i,n=0; - int q = stbi__get8(z->s); - int tc = q >> 4; - int th = q & 15; - if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG"); - for (i=0; i < 16; ++i) { - sizes[i] = stbi__get8(z->s); - n += sizes[i]; - } - L -= 17; - if (tc == 0) { - if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0; - v = z->huff_dc[th].values; - } else { - if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0; - v = z->huff_ac[th].values; + return 1; + } else { // interleaved + int i, j, k, x, y; + for (j = 0; j < z->img_mcu_y; ++j) { + for (i = 0; i < z->img_mcu_x; ++i) { + // scan an interleaved mcu... process scan_n components in order + for (k = 0; k < z->scan_n; ++k) { + int n = z->order[k]; + // scan out an mcu's worth of this component; that's just determined + // by the basic H and V specified for the component + for (y = 0; y < z->img_comp[n].v; ++y) { + for (x = 0; x < z->img_comp[n].h; ++x) { + int x2 = (i * z->img_comp[n].h + x); + int y2 = (j * z->img_comp[n].v + y); + short *data = z->img_comp[n].coeff + + 64 * (x2 + y2 * z->img_comp[n].coeff_w); + if (!stbi__jpeg_decode_block_prog_dc( + z, data, &z->huff_dc[z->img_comp[n].hd], n)) + return 0; + } } - for (i=0; i < n; ++i) - v[i] = stbi__get8(z->s); - if (tc != 0) - stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); - L -= n; - } - return L==0; - } - - // check for comment block or APP blocks - if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { - L = stbi__get16be(z->s); - if (L < 2) { - if (m == 0xFE) - return stbi__err("bad COM len","Corrupt JPEG"); - else - return stbi__err("bad APP len","Corrupt JPEG"); + } + // after all interleaved components, that's an interleaved MCU, + // so now count down the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) + stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) + return 1; + stbi__jpeg_reset(z); + } + } } - L -= 2; - - if (m == 0xE0 && L >= 5) { // JFIF APP0 segment - static const unsigned char tag[5] = {'J','F','I','F','\0'}; - int ok = 1; - int i; - for (i=0; i < 5; ++i) - if (stbi__get8(z->s) != tag[i]) - ok = 0; - L -= 5; - if (ok) - z->jfif = 1; - } else if (m == 0xEE && L >= 12) { // Adobe APP14 segment - static const unsigned char tag[6] = {'A','d','o','b','e','\0'}; - int ok = 1; - int i; - for (i=0; i < 6; ++i) - if (stbi__get8(z->s) != tag[i]) - ok = 0; - L -= 6; - if (ok) { - stbi__get8(z->s); // version - stbi__get16be(z->s); // flags0 - stbi__get16be(z->s); // flags1 - z->app14_color_transform = stbi__get8(z->s); // color transform - L -= 6; - } + return 1; + } + } +} + +static void stbi__jpeg_dequantize(short *data, stbi__uint16 *dequant) { + int i; + for (i = 0; i < 64; ++i) + data[i] *= dequant[i]; +} + +static void stbi__jpeg_finish(stbi__jpeg *z) { + if (z->progressive) { + // dequantize and idct the data + int i, j, n; + for (n = 0; n < z->s->img_n; ++n) { + int w = (z->img_comp[n].x + 7) >> 3; + int h = (z->img_comp[n].y + 7) >> 3; + for (j = 0; j < h; ++j) { + for (i = 0; i < w; ++i) { + short *data = + z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); + stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); + z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * j * 8 + + i * 8, + z->img_comp[n].w2, data); + } } + } + } +} - stbi__skip(z->s, L); - return 1; - } +static int stbi__process_marker(stbi__jpeg *z, int m) { + int L; + switch (m) { + case STBI__MARKER_none: // no marker found + return stbi__err("expected marker", "Corrupt JPEG"); - return stbi__err("unknown marker","Corrupt JPEG"); -} + case 0xDD: // DRI - specify restart interval + if (stbi__get16be(z->s) != 4) + return stbi__err("bad DRI len", "Corrupt JPEG"); + z->restart_interval = stbi__get16be(z->s); + return 1; -// after we see SOS -static int stbi__process_scan_header(stbi__jpeg *z) -{ - int i; - int Ls = stbi__get16be(z->s); - z->scan_n = stbi__get8(z->s); - if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad SOS component count","Corrupt JPEG"); - if (Ls != 6+2*z->scan_n) return stbi__err("bad SOS len","Corrupt JPEG"); - for (i=0; i < z->scan_n; ++i) { - int id = stbi__get8(z->s), which; + case 0xDB: // DQT - define quantization table + L = stbi__get16be(z->s) - 2; + while (L > 0) { int q = stbi__get8(z->s); - for (which = 0; which < z->s->img_n; ++which) - if (z->img_comp[which].id == id) - break; - if (which == z->s->img_n) return 0; // no match - z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG"); - z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG"); - z->order[i] = which; - } - - { - int aa; - z->spec_start = stbi__get8(z->s); - z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 - aa = stbi__get8(z->s); - z->succ_high = (aa >> 4); - z->succ_low = (aa & 15); - if (z->progressive) { - if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) - return stbi__err("bad SOS", "Corrupt JPEG"); + int p = q >> 4, sixteen = (p != 0); + int t = q & 15, i; + if (p != 0 && p != 1) + return stbi__err("bad DQT type", "Corrupt JPEG"); + if (t > 3) + return stbi__err("bad DQT table", "Corrupt JPEG"); + + for (i = 0; i < 64; ++i) + z->dequant[t][stbi__jpeg_dezigzag[i]] = + (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s)); + L -= (sixteen ? 129 : 65); + } + return L == 0; + + case 0xC4: // DHT - define huffman table + L = stbi__get16be(z->s) - 2; + while (L > 0) { + stbi_uc *v; + int sizes[16], i, n = 0; + int q = stbi__get8(z->s); + int tc = q >> 4; + int th = q & 15; + if (tc > 1 || th > 3) + return stbi__err("bad DHT header", "Corrupt JPEG"); + for (i = 0; i < 16; ++i) { + sizes[i] = stbi__get8(z->s); + n += sizes[i]; + } + L -= 17; + if (tc == 0) { + if (!stbi__build_huffman(z->huff_dc + th, sizes)) + return 0; + v = z->huff_dc[th].values; } else { - if (z->spec_start != 0) return stbi__err("bad SOS","Corrupt JPEG"); - if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS","Corrupt JPEG"); - z->spec_end = 63; + if (!stbi__build_huffman(z->huff_ac + th, sizes)) + return 0; + v = z->huff_ac[th].values; + } + for (i = 0; i < n; ++i) + v[i] = stbi__get8(z->s); + if (tc != 0) + stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); + L -= n; + } + return L == 0; + } + + // check for comment block or APP blocks + if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { + L = stbi__get16be(z->s); + if (L < 2) { + if (m == 0xFE) + return stbi__err("bad COM len", "Corrupt JPEG"); + else + return stbi__err("bad APP len", "Corrupt JPEG"); + } + L -= 2; + + if (m == 0xE0 && L >= 5) { // JFIF APP0 segment + static const unsigned char tag[5] = {'J', 'F', 'I', 'F', '\0'}; + int ok = 1; + int i; + for (i = 0; i < 5; ++i) + if (stbi__get8(z->s) != tag[i]) + ok = 0; + L -= 5; + if (ok) + z->jfif = 1; + } else if (m == 0xEE && L >= 12) { // Adobe APP14 segment + static const unsigned char tag[6] = {'A', 'd', 'o', 'b', 'e', '\0'}; + int ok = 1; + int i; + for (i = 0; i < 6; ++i) + if (stbi__get8(z->s) != tag[i]) + ok = 0; + L -= 6; + if (ok) { + stbi__get8(z->s); // version + stbi__get16be(z->s); // flags0 + stbi__get16be(z->s); // flags1 + z->app14_color_transform = stbi__get8(z->s); // color transform + L -= 6; } - } + } + + stbi__skip(z->s, L); + return 1; + } - return 1; + return stbi__err("unknown marker", "Corrupt JPEG"); } -static int stbi__free_jpeg_components(stbi__jpeg *z, int ncomp, int why) -{ - int i; - for (i=0; i < ncomp; ++i) { - if (z->img_comp[i].raw_data) { - STBI_FREE(z->img_comp[i].raw_data); - z->img_comp[i].raw_data = NULL; - z->img_comp[i].data = NULL; - } - if (z->img_comp[i].raw_coeff) { - STBI_FREE(z->img_comp[i].raw_coeff); - z->img_comp[i].raw_coeff = 0; - z->img_comp[i].coeff = 0; - } - if (z->img_comp[i].linebuf) { - STBI_FREE(z->img_comp[i].linebuf); - z->img_comp[i].linebuf = NULL; - } - } - return why; +// after we see SOS +static int stbi__process_scan_header(stbi__jpeg *z) { + int i; + int Ls = stbi__get16be(z->s); + z->scan_n = stbi__get8(z->s); + if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int)z->s->img_n) + return stbi__err("bad SOS component count", "Corrupt JPEG"); + if (Ls != 6 + 2 * z->scan_n) + return stbi__err("bad SOS len", "Corrupt JPEG"); + for (i = 0; i < z->scan_n; ++i) { + int id = stbi__get8(z->s), which; + int q = stbi__get8(z->s); + for (which = 0; which < z->s->img_n; ++which) + if (z->img_comp[which].id == id) + break; + if (which == z->s->img_n) + return 0; // no match + z->img_comp[which].hd = q >> 4; + if (z->img_comp[which].hd > 3) + return stbi__err("bad DC huff", "Corrupt JPEG"); + z->img_comp[which].ha = q & 15; + if (z->img_comp[which].ha > 3) + return stbi__err("bad AC huff", "Corrupt JPEG"); + z->order[i] = which; + } + + { + int aa; + z->spec_start = stbi__get8(z->s); + z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 + aa = stbi__get8(z->s); + z->succ_high = (aa >> 4); + z->succ_low = (aa & 15); + if (z->progressive) { + if (z->spec_start > 63 || z->spec_end > 63 || + z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) + return stbi__err("bad SOS", "Corrupt JPEG"); + } else { + if (z->spec_start != 0) + return stbi__err("bad SOS", "Corrupt JPEG"); + if (z->succ_high != 0 || z->succ_low != 0) + return stbi__err("bad SOS", "Corrupt JPEG"); + z->spec_end = 63; + } + } + + return 1; } -static int stbi__process_frame_header(stbi__jpeg *z, int scan) -{ - stbi__context *s = z->s; - int Lf,p,i,q, h_max=1,v_max=1,c; - Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG - p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline - s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG - s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires - c = stbi__get8(s); - if (c != 3 && c != 1 && c != 4) return stbi__err("bad component count","Corrupt JPEG"); - s->img_n = c; - for (i=0; i < c; ++i) { +static int stbi__free_jpeg_components(stbi__jpeg *z, int ncomp, int why) { + int i; + for (i = 0; i < ncomp; ++i) { + if (z->img_comp[i].raw_data) { + STBI_FREE(z->img_comp[i].raw_data); + z->img_comp[i].raw_data = NULL; z->img_comp[i].data = NULL; - z->img_comp[i].linebuf = NULL; - } - - if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG"); - - z->rgb = 0; - for (i=0; i < s->img_n; ++i) { - static const unsigned char rgb[3] = { 'R', 'G', 'B' }; - z->img_comp[i].id = stbi__get8(s); - if (s->img_n == 3 && z->img_comp[i].id == rgb[i]) - ++z->rgb; - q = stbi__get8(s); - z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG"); - z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG"); - z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG"); - } - - if (scan != STBI__SCAN_load) return 1; - - if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) return stbi__err("too large", "Image too large to decode"); - - for (i=0; i < s->img_n; ++i) { - if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; - if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; - } - - // compute interleaved mcu info - z->img_h_max = h_max; - z->img_v_max = v_max; - z->img_mcu_w = h_max * 8; - z->img_mcu_h = v_max * 8; - // these sizes can't be more than 17 bits - z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; - z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; - - for (i=0; i < s->img_n; ++i) { - // number of effective pixels (e.g. for non-interleaved MCU) - z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; - z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; - // to simplify generation, we'll allocate enough memory to decode - // the bogus oversized data from using interleaved MCUs and their - // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't - // discard the extra data until colorspace conversion - // - // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier) - // so these muls can't overflow with 32-bit ints (which we require) - z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; - z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; - z->img_comp[i].coeff = 0; + } + if (z->img_comp[i].raw_coeff) { + STBI_FREE(z->img_comp[i].raw_coeff); z->img_comp[i].raw_coeff = 0; + z->img_comp[i].coeff = 0; + } + if (z->img_comp[i].linebuf) { + STBI_FREE(z->img_comp[i].linebuf); z->img_comp[i].linebuf = NULL; - z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15); - if (z->img_comp[i].raw_data == NULL) - return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); - // align blocks for idct using mmx/sse - z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); - if (z->progressive) { - // w2, h2 are multiples of 8 (see above) - z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8; - z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8; - z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15); - if (z->img_comp[i].raw_coeff == NULL) - return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); - z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15); - } - } + } + } + return why; +} + +static int stbi__process_frame_header(stbi__jpeg *z, int scan) { + stbi__context *s = z->s; + int Lf, p, i, q, h_max = 1, v_max = 1, c; + Lf = stbi__get16be(s); + if (Lf < 11) + return stbi__err("bad SOF len", "Corrupt JPEG"); // JPEG + p = stbi__get8(s); + if (p != 8) + return stbi__err("only 8-bit", + "JPEG format not supported: 8-bit only"); // JPEG baseline + s->img_y = stbi__get16be(s); + if (s->img_y == 0) + return stbi__err( + "no header height", + "JPEG format not supported: delayed height"); // Legal, but we don't + // handle it--but neither + // does IJG + s->img_x = stbi__get16be(s); + if (s->img_x == 0) + return stbi__err("0 width", "Corrupt JPEG"); // JPEG requires + c = stbi__get8(s); + if (c != 3 && c != 1 && c != 4) + return stbi__err("bad component count", "Corrupt JPEG"); + s->img_n = c; + for (i = 0; i < c; ++i) { + z->img_comp[i].data = NULL; + z->img_comp[i].linebuf = NULL; + } + + if (Lf != 8 + 3 * s->img_n) + return stbi__err("bad SOF len", "Corrupt JPEG"); + + z->rgb = 0; + for (i = 0; i < s->img_n; ++i) { + static const unsigned char rgb[3] = {'R', 'G', 'B'}; + z->img_comp[i].id = stbi__get8(s); + if (s->img_n == 3 && z->img_comp[i].id == rgb[i]) + ++z->rgb; + q = stbi__get8(s); + z->img_comp[i].h = (q >> 4); + if (!z->img_comp[i].h || z->img_comp[i].h > 4) + return stbi__err("bad H", "Corrupt JPEG"); + z->img_comp[i].v = q & 15; + if (!z->img_comp[i].v || z->img_comp[i].v > 4) + return stbi__err("bad V", "Corrupt JPEG"); + z->img_comp[i].tq = stbi__get8(s); + if (z->img_comp[i].tq > 3) + return stbi__err("bad TQ", "Corrupt JPEG"); + } + + if (scan != STBI__SCAN_load) + return 1; + + if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) + return stbi__err("too large", "Image too large to decode"); + + for (i = 0; i < s->img_n; ++i) { + if (z->img_comp[i].h > h_max) + h_max = z->img_comp[i].h; + if (z->img_comp[i].v > v_max) + v_max = z->img_comp[i].v; + } + + // compute interleaved mcu info + z->img_h_max = h_max; + z->img_v_max = v_max; + z->img_mcu_w = h_max * 8; + z->img_mcu_h = v_max * 8; + // these sizes can't be more than 17 bits + z->img_mcu_x = (s->img_x + z->img_mcu_w - 1) / z->img_mcu_w; + z->img_mcu_y = (s->img_y + z->img_mcu_h - 1) / z->img_mcu_h; + + for (i = 0; i < s->img_n; ++i) { + // number of effective pixels (e.g. for non-interleaved MCU) + z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max - 1) / h_max; + z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max - 1) / v_max; + // to simplify generation, we'll allocate enough memory to decode + // the bogus oversized data from using interleaved MCUs and their + // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't + // discard the extra data until colorspace conversion + // + // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked + // earlier) so these muls can't overflow with 32-bit ints (which we require) + z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; + z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; + z->img_comp[i].coeff = 0; + z->img_comp[i].raw_coeff = 0; + z->img_comp[i].linebuf = NULL; + z->img_comp[i].raw_data = + stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15); + if (z->img_comp[i].raw_data == NULL) + return stbi__free_jpeg_components(z, i + 1, + stbi__err("outofmem", "Out of memory")); + // align blocks for idct using mmx/sse + z->img_comp[i].data = + (stbi_uc *)(((size_t)z->img_comp[i].raw_data + 15) & ~15); + if (z->progressive) { + // w2, h2 are multiples of 8 (see above) + z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8; + z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8; + z->img_comp[i].raw_coeff = stbi__malloc_mad3( + z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15); + if (z->img_comp[i].raw_coeff == NULL) + return stbi__free_jpeg_components( + z, i + 1, stbi__err("outofmem", "Out of memory")); + z->img_comp[i].coeff = + (short *)(((size_t)z->img_comp[i].raw_coeff + 15) & ~15); + } + } - return 1; + return 1; } // use comparisons since in some cases we handle more than one case (e.g. SOF) -#define stbi__DNL(x) ((x) == 0xdc) -#define stbi__SOI(x) ((x) == 0xd8) -#define stbi__EOI(x) ((x) == 0xd9) -#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) -#define stbi__SOS(x) ((x) == 0xda) - -#define stbi__SOF_progressive(x) ((x) == 0xc2) - -static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) -{ - int m; - z->jfif = 0; - z->app14_color_transform = -1; // valid values are 0,1,2 - z->marker = STBI__MARKER_none; // initialize cached marker to empty - m = stbi__get_marker(z); - if (!stbi__SOI(m)) return stbi__err("no SOI","Corrupt JPEG"); - if (scan == STBI__SCAN_type) return 1; - m = stbi__get_marker(z); - while (!stbi__SOF(m)) { - if (!stbi__process_marker(z,m)) return 0; +#define stbi__DNL(x) ((x) == 0xdc) +#define stbi__SOI(x) ((x) == 0xd8) +#define stbi__EOI(x) ((x) == 0xd9) +#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) +#define stbi__SOS(x) ((x) == 0xda) + +#define stbi__SOF_progressive(x) ((x) == 0xc2) + +static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) { + int m; + z->jfif = 0; + z->app14_color_transform = -1; // valid values are 0,1,2 + z->marker = STBI__MARKER_none; // initialize cached marker to empty + m = stbi__get_marker(z); + if (!stbi__SOI(m)) + return stbi__err("no SOI", "Corrupt JPEG"); + if (scan == STBI__SCAN_type) + return 1; + m = stbi__get_marker(z); + while (!stbi__SOF(m)) { + if (!stbi__process_marker(z, m)) + return 0; + m = stbi__get_marker(z); + while (m == STBI__MARKER_none) { + // some files have extra padding after their blocks, so ok, we'll scan + if (stbi__at_eof(z->s)) + return stbi__err("no SOF", "Corrupt JPEG"); m = stbi__get_marker(z); - while (m == STBI__MARKER_none) { - // some files have extra padding after their blocks, so ok, we'll scan - if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG"); - m = stbi__get_marker(z); - } - } - z->progressive = stbi__SOF_progressive(m); - if (!stbi__process_frame_header(z, scan)) return 0; - return 1; + } + } + z->progressive = stbi__SOF_progressive(m); + if (!stbi__process_frame_header(z, scan)) + return 0; + return 1; } // decode image to YCbCr format -static int stbi__decode_jpeg_image(stbi__jpeg *j) -{ - int m; - for (m = 0; m < 4; m++) { - j->img_comp[m].raw_data = NULL; - j->img_comp[m].raw_coeff = NULL; - } - j->restart_interval = 0; - if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0; - m = stbi__get_marker(j); - while (!stbi__EOI(m)) { - if (stbi__SOS(m)) { - if (!stbi__process_scan_header(j)) return 0; - if (!stbi__parse_entropy_coded_data(j)) return 0; - if (j->marker == STBI__MARKER_none ) { - // handle 0s at the end of image data from IP Kamera 9060 - while (!stbi__at_eof(j->s)) { - int x = stbi__get8(j->s); - if (x == 255) { - j->marker = stbi__get8(j->s); - break; - } - } - // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0 - } - } else if (stbi__DNL(m)) { - int Ld = stbi__get16be(j->s); - stbi__uint32 NL = stbi__get16be(j->s); - if (Ld != 4) return stbi__err("bad DNL len", "Corrupt JPEG"); - if (NL != j->s->img_y) return stbi__err("bad DNL height", "Corrupt JPEG"); - } else { - if (!stbi__process_marker(j, m)) return 0; +static int stbi__decode_jpeg_image(stbi__jpeg *j) { + int m; + for (m = 0; m < 4; m++) { + j->img_comp[m].raw_data = NULL; + j->img_comp[m].raw_coeff = NULL; + } + j->restart_interval = 0; + if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) + return 0; + m = stbi__get_marker(j); + while (!stbi__EOI(m)) { + if (stbi__SOS(m)) { + if (!stbi__process_scan_header(j)) + return 0; + if (!stbi__parse_entropy_coded_data(j)) + return 0; + if (j->marker == STBI__MARKER_none) { + // handle 0s at the end of image data from IP Kamera 9060 + while (!stbi__at_eof(j->s)) { + int x = stbi__get8(j->s); + if (x == 255) { + j->marker = stbi__get8(j->s); + break; + } + } + // if we reach eof without hitting a marker, stbi__get_marker() below + // will fail and we'll eventually return 0 } - m = stbi__get_marker(j); - } - if (j->progressive) - stbi__jpeg_finish(j); - return 1; + } else if (stbi__DNL(m)) { + int Ld = stbi__get16be(j->s); + stbi__uint32 NL = stbi__get16be(j->s); + if (Ld != 4) + return stbi__err("bad DNL len", "Corrupt JPEG"); + if (NL != j->s->img_y) + return stbi__err("bad DNL height", "Corrupt JPEG"); + } else { + if (!stbi__process_marker(j, m)) + return 0; + } + m = stbi__get_marker(j); + } + if (j->progressive) + stbi__jpeg_finish(j); + return 1; } // static jfif-centered resampling (across block boundaries) typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1, - int w, int hs); - -#define stbi__div4(x) ((stbi_uc) ((x) >> 2)) - -static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - STBI_NOTUSED(out); - STBI_NOTUSED(in_far); - STBI_NOTUSED(w); - STBI_NOTUSED(hs); - return in_near; -} - -static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // need to generate two samples vertically for every one in input - int i; - STBI_NOTUSED(hs); - for (i=0; i < w; ++i) - out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2); - return out; -} - -static stbi_uc* stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // need to generate two samples horizontally for every one in input - int i; - stbi_uc *input = in_near; - - if (w == 1) { - // if only one sample, can't do any interpolation - out[0] = out[1] = input[0]; - return out; - } - - out[0] = input[0]; - out[1] = stbi__div4(input[0]*3 + input[1] + 2); - for (i=1; i < w-1; ++i) { - int n = 3*input[i]+2; - out[i*2+0] = stbi__div4(n+input[i-1]); - out[i*2+1] = stbi__div4(n+input[i+1]); - } - out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2); - out[i*2+1] = input[w-1]; - - STBI_NOTUSED(in_far); - STBI_NOTUSED(hs); - - return out; -} - -#define stbi__div16(x) ((stbi_uc) ((x) >> 4)) - -static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // need to generate 2x2 samples for every one in input - int i,t0,t1; - if (w == 1) { - out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); - return out; - } - - t1 = 3*in_near[0] + in_far[0]; - out[0] = stbi__div4(t1+2); - for (i=1; i < w; ++i) { - t0 = t1; - t1 = 3*in_near[i]+in_far[i]; - out[i*2-1] = stbi__div16(3*t0 + t1 + 8); - out[i*2 ] = stbi__div16(3*t1 + t0 + 8); - } - out[w*2-1] = stbi__div4(t1+2); - - STBI_NOTUSED(hs); - - return out; + int w, int hs); + +#define stbi__div4(x) ((stbi_uc)((x) >> 2)) + +static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, + int w, int hs) { + STBI_NOTUSED(out); + STBI_NOTUSED(in_far); + STBI_NOTUSED(w); + STBI_NOTUSED(hs); + return in_near; +} + +static stbi_uc *stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, + stbi_uc *in_far, int w, int hs) { + // need to generate two samples vertically for every one in input + int i; + STBI_NOTUSED(hs); + for (i = 0; i < w; ++i) + out[i] = stbi__div4(3 * in_near[i] + in_far[i] + 2); + return out; +} + +static stbi_uc *stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, + stbi_uc *in_far, int w, int hs) { + // need to generate two samples horizontally for every one in input + int i; + stbi_uc *input = in_near; + + if (w == 1) { + // if only one sample, can't do any interpolation + out[0] = out[1] = input[0]; + return out; + } + + out[0] = input[0]; + out[1] = stbi__div4(input[0] * 3 + input[1] + 2); + for (i = 1; i < w - 1; ++i) { + int n = 3 * input[i] + 2; + out[i * 2 + 0] = stbi__div4(n + input[i - 1]); + out[i * 2 + 1] = stbi__div4(n + input[i + 1]); + } + out[i * 2 + 0] = stbi__div4(input[w - 2] * 3 + input[w - 1] + 2); + out[i * 2 + 1] = input[w - 1]; + + STBI_NOTUSED(in_far); + STBI_NOTUSED(hs); + + return out; +} + +#define stbi__div16(x) ((stbi_uc)((x) >> 4)) + +static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, + stbi_uc *in_far, int w, int hs) { + // need to generate 2x2 samples for every one in input + int i, t0, t1; + if (w == 1) { + out[0] = out[1] = stbi__div4(3 * in_near[0] + in_far[0] + 2); + return out; + } + + t1 = 3 * in_near[0] + in_far[0]; + out[0] = stbi__div4(t1 + 2); + for (i = 1; i < w; ++i) { + t0 = t1; + t1 = 3 * in_near[i] + in_far[i]; + out[i * 2 - 1] = stbi__div16(3 * t0 + t1 + 8); + out[i * 2] = stbi__div16(3 * t1 + t0 + 8); + } + out[w * 2 - 1] = stbi__div4(t1 + 2); + + STBI_NOTUSED(hs); + + return out; } #if defined(STBI_SSE2) || defined(STBI_NEON) -static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // need to generate 2x2 samples for every one in input - int i=0,t0,t1; - - if (w == 1) { - out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); - return out; - } - - t1 = 3*in_near[0] + in_far[0]; - // process groups of 8 pixels for as long as we can. - // note we can't handle the last pixel in a row in this loop - // because we need to handle the filter boundary conditions. - for (; i < ((w-1) & ~7); i += 8) { +static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, + stbi_uc *in_far, int w, int hs) { + // need to generate 2x2 samples for every one in input + int i = 0, t0, t1; + + if (w == 1) { + out[0] = out[1] = stbi__div4(3 * in_near[0] + in_far[0] + 2); + return out; + } + + t1 = 3 * in_near[0] + in_far[0]; + // process groups of 8 pixels for as long as we can. + // note we can't handle the last pixel in a row in this loop + // because we need to handle the filter boundary conditions. + for (; i < ((w - 1) & ~7); i += 8) { #if defined(STBI_SSE2) - // load and perform the vertical filtering pass - // this uses 3*x + y = 4*x + (y - x) - __m128i zero = _mm_setzero_si128(); - __m128i farb = _mm_loadl_epi64((__m128i *) (in_far + i)); - __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i)); - __m128i farw = _mm_unpacklo_epi8(farb, zero); - __m128i nearw = _mm_unpacklo_epi8(nearb, zero); - __m128i diff = _mm_sub_epi16(farw, nearw); - __m128i nears = _mm_slli_epi16(nearw, 2); - __m128i curr = _mm_add_epi16(nears, diff); // current row - - // horizontal filter works the same based on shifted vers of current - // row. "prev" is current row shifted right by 1 pixel; we need to - // insert the previous pixel value (from t1). - // "next" is current row shifted left by 1 pixel, with first pixel - // of next block of 8 pixels added in. - __m128i prv0 = _mm_slli_si128(curr, 2); - __m128i nxt0 = _mm_srli_si128(curr, 2); - __m128i prev = _mm_insert_epi16(prv0, t1, 0); - __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7); - - // horizontal filter, polyphase implementation since it's convenient: - // even pixels = 3*cur + prev = cur*4 + (prev - cur) - // odd pixels = 3*cur + next = cur*4 + (next - cur) - // note the shared term. - __m128i bias = _mm_set1_epi16(8); - __m128i curs = _mm_slli_epi16(curr, 2); - __m128i prvd = _mm_sub_epi16(prev, curr); - __m128i nxtd = _mm_sub_epi16(next, curr); - __m128i curb = _mm_add_epi16(curs, bias); - __m128i even = _mm_add_epi16(prvd, curb); - __m128i odd = _mm_add_epi16(nxtd, curb); - - // interleave even and odd pixels, then undo scaling. - __m128i int0 = _mm_unpacklo_epi16(even, odd); - __m128i int1 = _mm_unpackhi_epi16(even, odd); - __m128i de0 = _mm_srli_epi16(int0, 4); - __m128i de1 = _mm_srli_epi16(int1, 4); - - // pack and write output - __m128i outv = _mm_packus_epi16(de0, de1); - _mm_storeu_si128((__m128i *) (out + i*2), outv); + // load and perform the vertical filtering pass + // this uses 3*x + y = 4*x + (y - x) + __m128i zero = _mm_setzero_si128(); + __m128i farb = _mm_loadl_epi64((__m128i *)(in_far + i)); + __m128i nearb = _mm_loadl_epi64((__m128i *)(in_near + i)); + __m128i farw = _mm_unpacklo_epi8(farb, zero); + __m128i nearw = _mm_unpacklo_epi8(nearb, zero); + __m128i diff = _mm_sub_epi16(farw, nearw); + __m128i nears = _mm_slli_epi16(nearw, 2); + __m128i curr = _mm_add_epi16(nears, diff); // current row + + // horizontal filter works the same based on shifted vers of current + // row. "prev" is current row shifted right by 1 pixel; we need to + // insert the previous pixel value (from t1). + // "next" is current row shifted left by 1 pixel, with first pixel + // of next block of 8 pixels added in. + __m128i prv0 = _mm_slli_si128(curr, 2); + __m128i nxt0 = _mm_srli_si128(curr, 2); + __m128i prev = _mm_insert_epi16(prv0, t1, 0); + __m128i next = + _mm_insert_epi16(nxt0, 3 * in_near[i + 8] + in_far[i + 8], 7); + + // horizontal filter, polyphase implementation since it's convenient: + // even pixels = 3*cur + prev = cur*4 + (prev - cur) + // odd pixels = 3*cur + next = cur*4 + (next - cur) + // note the shared term. + __m128i bias = _mm_set1_epi16(8); + __m128i curs = _mm_slli_epi16(curr, 2); + __m128i prvd = _mm_sub_epi16(prev, curr); + __m128i nxtd = _mm_sub_epi16(next, curr); + __m128i curb = _mm_add_epi16(curs, bias); + __m128i even = _mm_add_epi16(prvd, curb); + __m128i odd = _mm_add_epi16(nxtd, curb); + + // interleave even and odd pixels, then undo scaling. + __m128i int0 = _mm_unpacklo_epi16(even, odd); + __m128i int1 = _mm_unpackhi_epi16(even, odd); + __m128i de0 = _mm_srli_epi16(int0, 4); + __m128i de1 = _mm_srli_epi16(int1, 4); + + // pack and write output + __m128i outv = _mm_packus_epi16(de0, de1); + _mm_storeu_si128((__m128i *)(out + i * 2), outv); #elif defined(STBI_NEON) - // load and perform the vertical filtering pass - // this uses 3*x + y = 4*x + (y - x) - uint8x8_t farb = vld1_u8(in_far + i); - uint8x8_t nearb = vld1_u8(in_near + i); - int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); - int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); - int16x8_t curr = vaddq_s16(nears, diff); // current row - - // horizontal filter works the same based on shifted vers of current - // row. "prev" is current row shifted right by 1 pixel; we need to - // insert the previous pixel value (from t1). - // "next" is current row shifted left by 1 pixel, with first pixel - // of next block of 8 pixels added in. - int16x8_t prv0 = vextq_s16(curr, curr, 7); - int16x8_t nxt0 = vextq_s16(curr, curr, 1); - int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); - int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7); - - // horizontal filter, polyphase implementation since it's convenient: - // even pixels = 3*cur + prev = cur*4 + (prev - cur) - // odd pixels = 3*cur + next = cur*4 + (next - cur) - // note the shared term. - int16x8_t curs = vshlq_n_s16(curr, 2); - int16x8_t prvd = vsubq_s16(prev, curr); - int16x8_t nxtd = vsubq_s16(next, curr); - int16x8_t even = vaddq_s16(curs, prvd); - int16x8_t odd = vaddq_s16(curs, nxtd); - - // undo scaling and round, then store with even/odd phases interleaved - uint8x8x2_t o; - o.val[0] = vqrshrun_n_s16(even, 4); - o.val[1] = vqrshrun_n_s16(odd, 4); - vst2_u8(out + i*2, o); + // load and perform the vertical filtering pass + // this uses 3*x + y = 4*x + (y - x) + uint8x8_t farb = vld1_u8(in_far + i); + uint8x8_t nearb = vld1_u8(in_near + i); + int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); + int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); + int16x8_t curr = vaddq_s16(nears, diff); // current row + + // horizontal filter works the same based on shifted vers of current + // row. "prev" is current row shifted right by 1 pixel; we need to + // insert the previous pixel value (from t1). + // "next" is current row shifted left by 1 pixel, with first pixel + // of next block of 8 pixels added in. + int16x8_t prv0 = vextq_s16(curr, curr, 7); + int16x8_t nxt0 = vextq_s16(curr, curr, 1); + int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); + int16x8_t next = + vsetq_lane_s16(3 * in_near[i + 8] + in_far[i + 8], nxt0, 7); + + // horizontal filter, polyphase implementation since it's convenient: + // even pixels = 3*cur + prev = cur*4 + (prev - cur) + // odd pixels = 3*cur + next = cur*4 + (next - cur) + // note the shared term. + int16x8_t curs = vshlq_n_s16(curr, 2); + int16x8_t prvd = vsubq_s16(prev, curr); + int16x8_t nxtd = vsubq_s16(next, curr); + int16x8_t even = vaddq_s16(curs, prvd); + int16x8_t odd = vaddq_s16(curs, nxtd); + + // undo scaling and round, then store with even/odd phases interleaved + uint8x8x2_t o; + o.val[0] = vqrshrun_n_s16(even, 4); + o.val[1] = vqrshrun_n_s16(odd, 4); + vst2_u8(out + i * 2, o); #endif - // "previous" value for next iter - t1 = 3*in_near[i+7] + in_far[i+7]; - } + // "previous" value for next iter + t1 = 3 * in_near[i + 7] + in_far[i + 7]; + } - t0 = t1; - t1 = 3*in_near[i] + in_far[i]; - out[i*2] = stbi__div16(3*t1 + t0 + 8); + t0 = t1; + t1 = 3 * in_near[i] + in_far[i]; + out[i * 2] = stbi__div16(3 * t1 + t0 + 8); - for (++i; i < w; ++i) { - t0 = t1; - t1 = 3*in_near[i]+in_far[i]; - out[i*2-1] = stbi__div16(3*t0 + t1 + 8); - out[i*2 ] = stbi__div16(3*t1 + t0 + 8); - } - out[w*2-1] = stbi__div4(t1+2); + for (++i; i < w; ++i) { + t0 = t1; + t1 = 3 * in_near[i] + in_far[i]; + out[i * 2 - 1] = stbi__div16(3 * t0 + t1 + 8); + out[i * 2] = stbi__div16(3 * t1 + t0 + 8); + } + out[w * 2 - 1] = stbi__div4(t1 + 2); - STBI_NOTUSED(hs); + STBI_NOTUSED(hs); - return out; + return out; } #endif -static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // resample with nearest-neighbor - int i,j; - STBI_NOTUSED(in_far); - for (i=0; i < w; ++i) - for (j=0; j < hs; ++j) - out[i*hs+j] = in_near[i]; - return out; +static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, + stbi_uc *in_far, int w, int hs) { + // resample with nearest-neighbor + int i, j; + STBI_NOTUSED(in_far); + for (i = 0; i < w; ++i) + for (j = 0; j < hs; ++j) + out[i * hs + j] = in_near[i]; + return out; } // this is a reduced-precision calculation of YCbCr-to-RGB introduced // to make sure the code produces the same results in both SIMD and scalar -#define stbi__float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8) -static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) -{ - int i; - for (i=0; i < count; ++i) { - int y_fixed = (y[i] << 20) + (1<<19); // rounding - int r,g,b; - int cr = pcr[i] - 128; - int cb = pcb[i] - 128; - r = y_fixed + cr* stbi__float2fixed(1.40200f); - g = y_fixed + (cr*-stbi__float2fixed(0.71414f)) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000); - b = y_fixed + cb* stbi__float2fixed(1.77200f); - r >>= 20; - g >>= 20; - b >>= 20; - if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } - if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } - if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } - out[0] = (stbi_uc)r; - out[1] = (stbi_uc)g; - out[2] = (stbi_uc)b; - out[3] = 255; - out += step; - } +#define stbi__float2fixed(x) (((int)((x)*4096.0f + 0.5f)) << 8) +static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, + const stbi_uc *pcb, const stbi_uc *pcr, + int count, int step) { + int i; + for (i = 0; i < count; ++i) { + int y_fixed = (y[i] << 20) + (1 << 19); // rounding + int r, g, b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr * stbi__float2fixed(1.40200f); + g = y_fixed + (cr * -stbi__float2fixed(0.71414f)) + + ((cb * -stbi__float2fixed(0.34414f)) & 0xffff0000); + b = y_fixed + cb * stbi__float2fixed(1.77200f); + r >>= 20; + g >>= 20; + b >>= 20; + if ((unsigned)r > 255) { + if (r < 0) + r = 0; + else + r = 255; + } + if ((unsigned)g > 255) { + if (g < 0) + g = 0; + else + g = 255; + } + if ((unsigned)b > 255) { + if (b < 0) + b = 0; + else + b = 255; + } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } } #if defined(STBI_SSE2) || defined(STBI_NEON) -static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step) -{ - int i = 0; +static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, + stbi_uc const *pcb, stbi_uc const *pcr, + int count, int step) { + int i = 0; #ifdef STBI_SSE2 - // step == 3 is pretty ugly on the final interleave, and i'm not convinced - // it's useful in practice (you wouldn't use it for textures, for example). - // so just accelerate step == 4 case. - if (step == 4) { - // this is a fairly straightforward implementation and not super-optimized. - __m128i signflip = _mm_set1_epi8(-0x80); - __m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f)); - __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f)); - __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f)); - __m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f)); - __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128); - __m128i xw = _mm_set1_epi16(255); // alpha channel - - for (; i+7 < count; i += 8) { - // load - __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i)); - __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i)); - __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i)); - __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 - __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 - - // unpack to short (and left-shift cr, cb by 8) - __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); - __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); - __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); - - // color transform - __m128i yws = _mm_srli_epi16(yw, 4); - __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); - __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); - __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); - __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); - __m128i rws = _mm_add_epi16(cr0, yws); - __m128i gwt = _mm_add_epi16(cb0, yws); - __m128i bws = _mm_add_epi16(yws, cb1); - __m128i gws = _mm_add_epi16(gwt, cr1); - - // descale - __m128i rw = _mm_srai_epi16(rws, 4); - __m128i bw = _mm_srai_epi16(bws, 4); - __m128i gw = _mm_srai_epi16(gws, 4); - - // back to byte, set up for transpose - __m128i brb = _mm_packus_epi16(rw, bw); - __m128i gxb = _mm_packus_epi16(gw, xw); - - // transpose to interleave channels - __m128i t0 = _mm_unpacklo_epi8(brb, gxb); - __m128i t1 = _mm_unpackhi_epi8(brb, gxb); - __m128i o0 = _mm_unpacklo_epi16(t0, t1); - __m128i o1 = _mm_unpackhi_epi16(t0, t1); - - // store - _mm_storeu_si128((__m128i *) (out + 0), o0); - _mm_storeu_si128((__m128i *) (out + 16), o1); - out += 32; - } - } + // step == 3 is pretty ugly on the final interleave, and i'm not convinced + // it's useful in practice (you wouldn't use it for textures, for example). + // so just accelerate step == 4 case. + if (step == 4) { + // this is a fairly straightforward implementation and not super-optimized. + __m128i signflip = _mm_set1_epi8(-0x80); + __m128i cr_const0 = _mm_set1_epi16((short)(1.40200f * 4096.0f + 0.5f)); + __m128i cr_const1 = _mm_set1_epi16(-(short)(0.71414f * 4096.0f + 0.5f)); + __m128i cb_const0 = _mm_set1_epi16(-(short)(0.34414f * 4096.0f + 0.5f)); + __m128i cb_const1 = _mm_set1_epi16((short)(1.77200f * 4096.0f + 0.5f)); + __m128i y_bias = _mm_set1_epi8((char)(unsigned char)128); + __m128i xw = _mm_set1_epi16(255); // alpha channel + + for (; i + 7 < count; i += 8) { + // load + __m128i y_bytes = _mm_loadl_epi64((__m128i *)(y + i)); + __m128i cr_bytes = _mm_loadl_epi64((__m128i *)(pcr + i)); + __m128i cb_bytes = _mm_loadl_epi64((__m128i *)(pcb + i)); + __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 + __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 + + // unpack to short (and left-shift cr, cb by 8) + __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); + __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); + __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); + + // color transform + __m128i yws = _mm_srli_epi16(yw, 4); + __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); + __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); + __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); + __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); + __m128i rws = _mm_add_epi16(cr0, yws); + __m128i gwt = _mm_add_epi16(cb0, yws); + __m128i bws = _mm_add_epi16(yws, cb1); + __m128i gws = _mm_add_epi16(gwt, cr1); + + // descale + __m128i rw = _mm_srai_epi16(rws, 4); + __m128i bw = _mm_srai_epi16(bws, 4); + __m128i gw = _mm_srai_epi16(gws, 4); + + // back to byte, set up for transpose + __m128i brb = _mm_packus_epi16(rw, bw); + __m128i gxb = _mm_packus_epi16(gw, xw); + + // transpose to interleave channels + __m128i t0 = _mm_unpacklo_epi8(brb, gxb); + __m128i t1 = _mm_unpackhi_epi8(brb, gxb); + __m128i o0 = _mm_unpacklo_epi16(t0, t1); + __m128i o1 = _mm_unpackhi_epi16(t0, t1); + + // store + _mm_storeu_si128((__m128i *)(out + 0), o0); + _mm_storeu_si128((__m128i *)(out + 16), o1); + out += 32; + } + } #endif #ifdef STBI_NEON - // in this version, step=3 support would be easy to add. but is there demand? - if (step == 4) { - // this is a fairly straightforward implementation and not super-optimized. - uint8x8_t signflip = vdup_n_u8(0x80); - int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f)); - int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f)); - int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f)); - int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f)); - - for (; i+7 < count; i += 8) { - // load - uint8x8_t y_bytes = vld1_u8(y + i); - uint8x8_t cr_bytes = vld1_u8(pcr + i); - uint8x8_t cb_bytes = vld1_u8(pcb + i); - int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); - int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); - - // expand to s16 - int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); - int16x8_t crw = vshll_n_s8(cr_biased, 7); - int16x8_t cbw = vshll_n_s8(cb_biased, 7); - - // color transform - int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); - int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); - int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); - int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); - int16x8_t rws = vaddq_s16(yws, cr0); - int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); - int16x8_t bws = vaddq_s16(yws, cb1); - - // undo scaling, round, convert to byte - uint8x8x4_t o; - o.val[0] = vqrshrun_n_s16(rws, 4); - o.val[1] = vqrshrun_n_s16(gws, 4); - o.val[2] = vqrshrun_n_s16(bws, 4); - o.val[3] = vdup_n_u8(255); - - // store, interleaving r/g/b/a - vst4_u8(out, o); - out += 8*4; - } - } + // in this version, step=3 support would be easy to add. but is there demand? + if (step == 4) { + // this is a fairly straightforward implementation and not super-optimized. + uint8x8_t signflip = vdup_n_u8(0x80); + int16x8_t cr_const0 = vdupq_n_s16((short)(1.40200f * 4096.0f + 0.5f)); + int16x8_t cr_const1 = vdupq_n_s16(-(short)(0.71414f * 4096.0f + 0.5f)); + int16x8_t cb_const0 = vdupq_n_s16(-(short)(0.34414f * 4096.0f + 0.5f)); + int16x8_t cb_const1 = vdupq_n_s16((short)(1.77200f * 4096.0f + 0.5f)); + + for (; i + 7 < count; i += 8) { + // load + uint8x8_t y_bytes = vld1_u8(y + i); + uint8x8_t cr_bytes = vld1_u8(pcr + i); + uint8x8_t cb_bytes = vld1_u8(pcb + i); + int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); + int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); + + // expand to s16 + int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); + int16x8_t crw = vshll_n_s8(cr_biased, 7); + int16x8_t cbw = vshll_n_s8(cb_biased, 7); + + // color transform + int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); + int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); + int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); + int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); + int16x8_t rws = vaddq_s16(yws, cr0); + int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); + int16x8_t bws = vaddq_s16(yws, cb1); + + // undo scaling, round, convert to byte + uint8x8x4_t o; + o.val[0] = vqrshrun_n_s16(rws, 4); + o.val[1] = vqrshrun_n_s16(gws, 4); + o.val[2] = vqrshrun_n_s16(bws, 4); + o.val[3] = vdup_n_u8(255); + + // store, interleaving r/g/b/a + vst4_u8(out, o); + out += 8 * 4; + } + } #endif - for (; i < count; ++i) { - int y_fixed = (y[i] << 20) + (1<<19); // rounding - int r,g,b; - int cr = pcr[i] - 128; - int cb = pcb[i] - 128; - r = y_fixed + cr* stbi__float2fixed(1.40200f); - g = y_fixed + cr*-stbi__float2fixed(0.71414f) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000); - b = y_fixed + cb* stbi__float2fixed(1.77200f); - r >>= 20; - g >>= 20; - b >>= 20; - if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } - if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } - if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } - out[0] = (stbi_uc)r; - out[1] = (stbi_uc)g; - out[2] = (stbi_uc)b; - out[3] = 255; - out += step; - } + for (; i < count; ++i) { + int y_fixed = (y[i] << 20) + (1 << 19); // rounding + int r, g, b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr * stbi__float2fixed(1.40200f); + g = y_fixed + cr * -stbi__float2fixed(0.71414f) + + ((cb * -stbi__float2fixed(0.34414f)) & 0xffff0000); + b = y_fixed + cb * stbi__float2fixed(1.77200f); + r >>= 20; + g >>= 20; + b >>= 20; + if ((unsigned)r > 255) { + if (r < 0) + r = 0; + else + r = 255; + } + if ((unsigned)g > 255) { + if (g < 0) + g = 0; + else + g = 255; + } + if ((unsigned)b > 255) { + if (b < 0) + b = 0; + else + b = 255; + } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } } #endif // set up the kernels -static void stbi__setup_jpeg(stbi__jpeg *j) -{ - j->idct_block_kernel = stbi__idct_block; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; +static void stbi__setup_jpeg(stbi__jpeg *j) { + j->idct_block_kernel = stbi__idct_block; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; #ifdef STBI_SSE2 - if (stbi__sse2_available()) { - j->idct_block_kernel = stbi__idct_simd; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; - } + if (stbi__sse2_available()) { + j->idct_block_kernel = stbi__idct_simd; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; + } #endif #ifdef STBI_NEON - j->idct_block_kernel = stbi__idct_simd; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; + j->idct_block_kernel = stbi__idct_simd; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; #endif } // clean up the temporary component buffers -static void stbi__cleanup_jpeg(stbi__jpeg *j) -{ - stbi__free_jpeg_components(j, j->s->img_n, 0); +static void stbi__cleanup_jpeg(stbi__jpeg *j) { + stbi__free_jpeg_components(j, j->s->img_n, 0); } -typedef struct -{ - resample_row_func resample; - stbi_uc *line0,*line1; - int hs,vs; // expansion factor in each axis - int w_lores; // horizontal pixels pre-expansion - int ystep; // how far through vertical expansion we are - int ypos; // which pre-expansion row we're on +typedef struct { + resample_row_func resample; + stbi_uc *line0, *line1; + int hs, vs; // expansion factor in each axis + int w_lores; // horizontal pixels pre-expansion + int ystep; // how far through vertical expansion we are + int ypos; // which pre-expansion row we're on } stbi__resample; // fast 0..255 * 0..255 => 0..255 rounded multiplication -static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y) -{ - unsigned int t = x*y + 128; - return (stbi_uc) ((t + (t >>8)) >> 8); -} - -static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) -{ - int n, decode_n, is_rgb; - z->s->img_n = 0; // make stbi__cleanup_jpeg safe - - // validate req_comp - if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); - - // load a jpeg image from whichever source, but leave in YCbCr format - if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; } - - // determine actual number of components to generate - n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1; - - is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif)); - - if (z->s->img_n == 3 && n < 3 && !is_rgb) - decode_n = 1; - else - decode_n = z->s->img_n; - - // resample and color-convert - { - int k; - unsigned int i,j; - stbi_uc *output; - stbi_uc *coutput[4] = { NULL, NULL, NULL, NULL }; - - stbi__resample res_comp[4]; - - for (k=0; k < decode_n; ++k) { - stbi__resample *r = &res_comp[k]; - - // allocate line buffer big enough for upsampling off the edges - // with upsample factor of 4 - z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3); - if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } - - r->hs = z->img_h_max / z->img_comp[k].h; - r->vs = z->img_v_max / z->img_comp[k].v; - r->ystep = r->vs >> 1; - r->w_lores = (z->s->img_x + r->hs-1) / r->hs; - r->ypos = 0; - r->line0 = r->line1 = z->img_comp[k].data; - - if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; - else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2; - else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2; - else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel; - else r->resample = stbi__resample_row_generic; +static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y) { + unsigned int t = x * y + 128; + return (stbi_uc)((t + (t >> 8)) >> 8); +} + +static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, + int *comp, int req_comp) { + int n, decode_n, is_rgb; + z->s->img_n = 0; // make stbi__cleanup_jpeg safe + + // validate req_comp + if (req_comp < 0 || req_comp > 4) + return stbi__errpuc("bad req_comp", "Internal error"); + + // load a jpeg image from whichever source, but leave in YCbCr format + if (!stbi__decode_jpeg_image(z)) { + stbi__cleanup_jpeg(z); + return NULL; + } + + // determine actual number of components to generate + n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1; + + is_rgb = z->s->img_n == 3 && + (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif)); + + if (z->s->img_n == 3 && n < 3 && !is_rgb) + decode_n = 1; + else + decode_n = z->s->img_n; + + // resample and color-convert + { + int k; + unsigned int i, j; + stbi_uc *output; + stbi_uc *coutput[4] = {NULL, NULL, NULL, NULL}; + + stbi__resample res_comp[4]; + + for (k = 0; k < decode_n; ++k) { + stbi__resample *r = &res_comp[k]; + + // allocate line buffer big enough for upsampling off the edges + // with upsample factor of 4 + z->img_comp[k].linebuf = (stbi_uc *)stbi__malloc(z->s->img_x + 3); + if (!z->img_comp[k].linebuf) { + stbi__cleanup_jpeg(z); + return stbi__errpuc("outofmem", "Out of memory"); } - // can't error after this so, this is safe - output = (stbi_uc *) stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1); - if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } - - // now go ahead and resample - for (j=0; j < z->s->img_y; ++j) { - stbi_uc *out = output + n * z->s->img_x * j; - for (k=0; k < decode_n; ++k) { - stbi__resample *r = &res_comp[k]; - int y_bot = r->ystep >= (r->vs >> 1); - coutput[k] = r->resample(z->img_comp[k].linebuf, - y_bot ? r->line1 : r->line0, - y_bot ? r->line0 : r->line1, - r->w_lores, r->hs); - if (++r->ystep >= r->vs) { - r->ystep = 0; - r->line0 = r->line1; - if (++r->ypos < z->img_comp[k].y) - r->line1 += z->img_comp[k].w2; + r->hs = z->img_h_max / z->img_comp[k].h; + r->vs = z->img_v_max / z->img_comp[k].v; + r->ystep = r->vs >> 1; + r->w_lores = (z->s->img_x + r->hs - 1) / r->hs; + r->ypos = 0; + r->line0 = r->line1 = z->img_comp[k].data; + + if (r->hs == 1 && r->vs == 1) + r->resample = resample_row_1; + else if (r->hs == 1 && r->vs == 2) + r->resample = stbi__resample_row_v_2; + else if (r->hs == 2 && r->vs == 1) + r->resample = stbi__resample_row_h_2; + else if (r->hs == 2 && r->vs == 2) + r->resample = z->resample_row_hv_2_kernel; + else + r->resample = stbi__resample_row_generic; + } + + // can't error after this so, this is safe + output = (stbi_uc *)stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1); + if (!output) { + stbi__cleanup_jpeg(z); + return stbi__errpuc("outofmem", "Out of memory"); + } + + // now go ahead and resample + for (j = 0; j < z->s->img_y; ++j) { + stbi_uc *out = output + n * z->s->img_x * j; + for (k = 0; k < decode_n; ++k) { + stbi__resample *r = &res_comp[k]; + int y_bot = r->ystep >= (r->vs >> 1); + coutput[k] = + r->resample(z->img_comp[k].linebuf, y_bot ? r->line1 : r->line0, + y_bot ? r->line0 : r->line1, r->w_lores, r->hs); + if (++r->ystep >= r->vs) { + r->ystep = 0; + r->line0 = r->line1; + if (++r->ypos < z->img_comp[k].y) + r->line1 += z->img_comp[k].w2; + } + } + if (n >= 3) { + stbi_uc *y = coutput[0]; + if (z->s->img_n == 3) { + if (is_rgb) { + for (i = 0; i < z->s->img_x; ++i) { + out[0] = y[i]; + out[1] = coutput[1][i]; + out[2] = coutput[2][i]; + out[3] = 255; + out += n; + } + } else { + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, + n); + } + } else if (z->s->img_n == 4) { + if (z->app14_color_transform == 0) { // CMYK + for (i = 0; i < z->s->img_x; ++i) { + stbi_uc m = coutput[3][i]; + out[0] = stbi__blinn_8x8(coutput[0][i], m); + out[1] = stbi__blinn_8x8(coutput[1][i], m); + out[2] = stbi__blinn_8x8(coutput[2][i], m); + out[3] = 255; + out += n; + } + } else if (z->app14_color_transform == 2) { // YCCK + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, + n); + for (i = 0; i < z->s->img_x; ++i) { + stbi_uc m = coutput[3][i]; + out[0] = stbi__blinn_8x8(255 - out[0], m); + out[1] = stbi__blinn_8x8(255 - out[1], m); + out[2] = stbi__blinn_8x8(255 - out[2], m); + out += n; + } + } else { // YCbCr + alpha? Ignore the fourth channel for now + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, + n); + } + } else + for (i = 0; i < z->s->img_x; ++i) { + out[0] = out[1] = out[2] = y[i]; + out[3] = 255; // not used if n==3 + out += n; + } + } else { + if (is_rgb) { + if (n == 1) + for (i = 0; i < z->s->img_x; ++i) + *out++ = + stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); + else { + for (i = 0; i < z->s->img_x; ++i, out += 2) { + out[0] = + stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); + out[1] = 255; } - } - if (n >= 3) { - stbi_uc *y = coutput[0]; - if (z->s->img_n == 3) { - if (is_rgb) { - for (i=0; i < z->s->img_x; ++i) { - out[0] = y[i]; - out[1] = coutput[1][i]; - out[2] = coutput[2][i]; - out[3] = 255; - out += n; - } - } else { - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - } - } else if (z->s->img_n == 4) { - if (z->app14_color_transform == 0) { // CMYK - for (i=0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - out[0] = stbi__blinn_8x8(coutput[0][i], m); - out[1] = stbi__blinn_8x8(coutput[1][i], m); - out[2] = stbi__blinn_8x8(coutput[2][i], m); - out[3] = 255; - out += n; - } - } else if (z->app14_color_transform == 2) { // YCCK - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - for (i=0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - out[0] = stbi__blinn_8x8(255 - out[0], m); - out[1] = stbi__blinn_8x8(255 - out[1], m); - out[2] = stbi__blinn_8x8(255 - out[2], m); - out += n; - } - } else { // YCbCr + alpha? Ignore the fourth channel for now - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - } - } else - for (i=0; i < z->s->img_x; ++i) { - out[0] = out[1] = out[2] = y[i]; - out[3] = 255; // not used if n==3 - out += n; - } - } else { - if (is_rgb) { - if (n == 1) - for (i=0; i < z->s->img_x; ++i) - *out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); - else { - for (i=0; i < z->s->img_x; ++i, out += 2) { - out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); - out[1] = 255; - } - } - } else if (z->s->img_n == 4 && z->app14_color_transform == 0) { - for (i=0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - stbi_uc r = stbi__blinn_8x8(coutput[0][i], m); - stbi_uc g = stbi__blinn_8x8(coutput[1][i], m); - stbi_uc b = stbi__blinn_8x8(coutput[2][i], m); - out[0] = stbi__compute_y(r, g, b); - out[1] = 255; - out += n; - } - } else if (z->s->img_n == 4 && z->app14_color_transform == 2) { - for (i=0; i < z->s->img_x; ++i) { - out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]); - out[1] = 255; - out += n; - } - } else { - stbi_uc *y = coutput[0]; - if (n == 1) - for (i=0; i < z->s->img_x; ++i) out[i] = y[i]; - else - for (i=0; i < z->s->img_x; ++i) { *out++ = y[i]; *out++ = 255; } + } + } else if (z->s->img_n == 4 && z->app14_color_transform == 0) { + for (i = 0; i < z->s->img_x; ++i) { + stbi_uc m = coutput[3][i]; + stbi_uc r = stbi__blinn_8x8(coutput[0][i], m); + stbi_uc g = stbi__blinn_8x8(coutput[1][i], m); + stbi_uc b = stbi__blinn_8x8(coutput[2][i], m); + out[0] = stbi__compute_y(r, g, b); + out[1] = 255; + out += n; + } + } else if (z->s->img_n == 4 && z->app14_color_transform == 2) { + for (i = 0; i < z->s->img_x; ++i) { + out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]); + out[1] = 255; + out += n; + } + } else { + stbi_uc *y = coutput[0]; + if (n == 1) + for (i = 0; i < z->s->img_x; ++i) + out[i] = y[i]; + else + for (i = 0; i < z->s->img_x; ++i) { + *out++ = y[i]; + *out++ = 255; } - } + } } - stbi__cleanup_jpeg(z); - *out_x = z->s->img_x; - *out_y = z->s->img_y; - if (comp) *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output - return output; - } -} - -static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - unsigned char* result; - stbi__jpeg* j = (stbi__jpeg*) stbi__malloc(sizeof(stbi__jpeg)); - STBI_NOTUSED(ri); - j->s = s; - stbi__setup_jpeg(j); - result = load_jpeg_image(j, x,y,comp,req_comp); - STBI_FREE(j); - return result; -} - -static int stbi__jpeg_test(stbi__context *s) -{ - int r; - stbi__jpeg* j = (stbi__jpeg*)stbi__malloc(sizeof(stbi__jpeg)); - j->s = s; - stbi__setup_jpeg(j); - r = stbi__decode_jpeg_header(j, STBI__SCAN_type); - stbi__rewind(s); - STBI_FREE(j); - return r; -} - -static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) -{ - if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) { - stbi__rewind( j->s ); - return 0; - } - if (x) *x = j->s->img_x; - if (y) *y = j->s->img_y; - if (comp) *comp = j->s->img_n >= 3 ? 3 : 1; - return 1; -} - -static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) -{ - int result; - stbi__jpeg* j = (stbi__jpeg*) (stbi__malloc(sizeof(stbi__jpeg))); - j->s = s; - result = stbi__jpeg_info_raw(j, x, y, comp); - STBI_FREE(j); - return result; + } + stbi__cleanup_jpeg(z); + *out_x = z->s->img_x; + *out_y = z->s->img_y; + if (comp) + *comp = + z->s->img_n >= 3 ? 3 : 1; // report original components, not output + return output; + } +} + +static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri) { + unsigned char *result; + stbi__jpeg *j = (stbi__jpeg *)stbi__malloc(sizeof(stbi__jpeg)); + STBI_NOTUSED(ri); + j->s = s; + stbi__setup_jpeg(j); + result = load_jpeg_image(j, x, y, comp, req_comp); + STBI_FREE(j); + return result; +} + +static int stbi__jpeg_test(stbi__context *s) { + int r; + stbi__jpeg *j = (stbi__jpeg *)stbi__malloc(sizeof(stbi__jpeg)); + j->s = s; + stbi__setup_jpeg(j); + r = stbi__decode_jpeg_header(j, STBI__SCAN_type); + stbi__rewind(s); + STBI_FREE(j); + return r; +} + +static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) { + if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) { + stbi__rewind(j->s); + return 0; + } + if (x) + *x = j->s->img_x; + if (y) + *y = j->s->img_y; + if (comp) + *comp = j->s->img_n >= 3 ? 3 : 1; + return 1; +} + +static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) { + int result; + stbi__jpeg *j = (stbi__jpeg *)(stbi__malloc(sizeof(stbi__jpeg))); + j->s = s; + result = stbi__jpeg_info_raw(j, x, y, comp); + STBI_FREE(j); + return result; } #endif @@ -3853,83 +4232,81 @@ static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) #ifndef STBI_NO_ZLIB // fast-way is faster to check than jpeg huffman, but slow way is slower -#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables -#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) +#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables +#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) // zlib-style huffman encoding // (jpegs packs from left, zlib from right, so can't share code) -typedef struct -{ - stbi__uint16 fast[1 << STBI__ZFAST_BITS]; - stbi__uint16 firstcode[16]; - int maxcode[17]; - stbi__uint16 firstsymbol[16]; - stbi_uc size[288]; - stbi__uint16 value[288]; +typedef struct { + stbi__uint16 fast[1 << STBI__ZFAST_BITS]; + stbi__uint16 firstcode[16]; + int maxcode[17]; + stbi__uint16 firstsymbol[16]; + stbi_uc size[288]; + stbi__uint16 value[288]; } stbi__zhuffman; -stbi_inline static int stbi__bitreverse16(int n) -{ - n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); - n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); - n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); - n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); +stbi_inline static int stbi__bitreverse16(int n) { + n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); + n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); + n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); + n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); return n; } -stbi_inline static int stbi__bit_reverse(int v, int bits) -{ - STBI_ASSERT(bits <= 16); - // to bit reverse n bits, reverse 16 and shift - // e.g. 11 bits, bit reverse and shift away 5 - return stbi__bitreverse16(v) >> (16-bits); -} - -static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, int num) -{ - int i,k=0; - int code, next_code[16], sizes[17]; - - // DEFLATE spec for generating codes - memset(sizes, 0, sizeof(sizes)); - memset(z->fast, 0, sizeof(z->fast)); - for (i=0; i < num; ++i) - ++sizes[sizelist[i]]; - sizes[0] = 0; - for (i=1; i < 16; ++i) - if (sizes[i] > (1 << i)) - return stbi__err("bad sizes", "Corrupt PNG"); - code = 0; - for (i=1; i < 16; ++i) { - next_code[i] = code; - z->firstcode[i] = (stbi__uint16) code; - z->firstsymbol[i] = (stbi__uint16) k; - code = (code + sizes[i]); - if (sizes[i]) - if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG"); - z->maxcode[i] = code << (16-i); // preshift for inner loop - code <<= 1; - k += sizes[i]; - } - z->maxcode[16] = 0x10000; // sentinel - for (i=0; i < num; ++i) { - int s = sizelist[i]; - if (s) { - int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; - stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i); - z->size [c] = (stbi_uc ) s; - z->value[c] = (stbi__uint16) i; - if (s <= STBI__ZFAST_BITS) { - int j = stbi__bit_reverse(next_code[s],s); - while (j < (1 << STBI__ZFAST_BITS)) { - z->fast[j] = fastv; - j += (1 << s); - } - } - ++next_code[s]; +stbi_inline static int stbi__bit_reverse(int v, int bits) { + STBI_ASSERT(bits <= 16); + // to bit reverse n bits, reverse 16 and shift + // e.g. 11 bits, bit reverse and shift away 5 + return stbi__bitreverse16(v) >> (16 - bits); +} + +static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, + int num) { + int i, k = 0; + int code, next_code[16], sizes[17]; + + // DEFLATE spec for generating codes + memset(sizes, 0, sizeof(sizes)); + memset(z->fast, 0, sizeof(z->fast)); + for (i = 0; i < num; ++i) + ++sizes[sizelist[i]]; + sizes[0] = 0; + for (i = 1; i < 16; ++i) + if (sizes[i] > (1 << i)) + return stbi__err("bad sizes", "Corrupt PNG"); + code = 0; + for (i = 1; i < 16; ++i) { + next_code[i] = code; + z->firstcode[i] = (stbi__uint16)code; + z->firstsymbol[i] = (stbi__uint16)k; + code = (code + sizes[i]); + if (sizes[i]) + if (code - 1 >= (1 << i)) + return stbi__err("bad codelengths", "Corrupt PNG"); + z->maxcode[i] = code << (16 - i); // preshift for inner loop + code <<= 1; + k += sizes[i]; + } + z->maxcode[16] = 0x10000; // sentinel + for (i = 0; i < num; ++i) { + int s = sizelist[i]; + if (s) { + int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; + stbi__uint16 fastv = (stbi__uint16)((s << 9) | i); + z->size[c] = (stbi_uc)s; + z->value[c] = (stbi__uint16)i; + if (s <= STBI__ZFAST_BITS) { + int j = stbi__bit_reverse(next_code[s], s); + while (j < (1 << STBI__ZFAST_BITS)) { + z->fast[j] = fastv; + j += (1 << s); + } } - } - return 1; + ++next_code[s]; + } + } + return 1; } // zlib-from-memory implementation for PNG reading @@ -3938,259 +4315,292 @@ static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, int // we require PNG read all the IDATs and combine them into a single // memory buffer -typedef struct -{ - stbi_uc *zbuffer, *zbuffer_end; - int num_bits; - stbi__uint32 code_buffer; +typedef struct { + stbi_uc *zbuffer, *zbuffer_end; + int num_bits; + stbi__uint32 code_buffer; - char *zout; - char *zout_start; - char *zout_end; - int z_expandable; + char *zout; + char *zout_start; + char *zout_end; + int z_expandable; - stbi__zhuffman z_length, z_distance; + stbi__zhuffman z_length, z_distance; } stbi__zbuf; -stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) -{ - if (z->zbuffer >= z->zbuffer_end) return 0; - return *z->zbuffer++; -} - -static void stbi__fill_bits(stbi__zbuf *z) -{ - do { - STBI_ASSERT(z->code_buffer < (1U << z->num_bits)); - z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits; - z->num_bits += 8; - } while (z->num_bits <= 24); -} - -stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) -{ - unsigned int k; - if (z->num_bits < n) stbi__fill_bits(z); - k = z->code_buffer & ((1 << n) - 1); - z->code_buffer >>= n; - z->num_bits -= n; - return k; -} - -static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) -{ - int b,s,k; - // not resolved by fast table, so compute it the slow way - // use jpeg approach, which requires MSbits at top - k = stbi__bit_reverse(a->code_buffer, 16); - for (s=STBI__ZFAST_BITS+1; ; ++s) - if (k < z->maxcode[s]) - break; - if (s == 16) return -1; // invalid code! - // code size is s, so: - b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; - STBI_ASSERT(z->size[b] == s); - a->code_buffer >>= s; - a->num_bits -= s; - return z->value[b]; -} - -stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) -{ - int b,s; - if (a->num_bits < 16) stbi__fill_bits(a); - b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; - if (b) { - s = b >> 9; - a->code_buffer >>= s; - a->num_bits -= s; - return b & 511; - } - return stbi__zhuffman_decode_slowpath(a, z); -} - -static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) // need to make room for n bytes -{ - char *q; - int cur, limit, old_limit __attribute__((unused)); - z->zout = zout; - if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG"); - cur = (int) (z->zout - z->zout_start); - limit = old_limit = (int) (z->zout_end - z->zout_start); - while (cur + n > limit) - limit *= 2; - q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); - STBI_NOTUSED(old_limit); - if (q == NULL) return stbi__err("outofmem", "Out of memory"); - z->zout_start = q; - z->zout = q + cur; - z->zout_end = q + limit; - return 1; +stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) { + if (z->zbuffer >= z->zbuffer_end) + return 0; + return *z->zbuffer++; +} + +static void stbi__fill_bits(stbi__zbuf *z) { + do { + STBI_ASSERT(z->code_buffer < (1U << z->num_bits)); + z->code_buffer |= (unsigned int)stbi__zget8(z) << z->num_bits; + z->num_bits += 8; + } while (z->num_bits <= 24); +} + +stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) { + unsigned int k; + if (z->num_bits < n) + stbi__fill_bits(z); + k = z->code_buffer & ((1 << n) - 1); + z->code_buffer >>= n; + z->num_bits -= n; + return k; +} + +static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) { + int b, s, k; + // not resolved by fast table, so compute it the slow way + // use jpeg approach, which requires MSbits at top + k = stbi__bit_reverse(a->code_buffer, 16); + for (s = STBI__ZFAST_BITS + 1;; ++s) + if (k < z->maxcode[s]) + break; + if (s == 16) + return -1; // invalid code! + // code size is s, so: + b = (k >> (16 - s)) - z->firstcode[s] + z->firstsymbol[s]; + STBI_ASSERT(z->size[b] == s); + a->code_buffer >>= s; + a->num_bits -= s; + return z->value[b]; +} + +stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) { + int b, s; + if (a->num_bits < 16) + stbi__fill_bits(a); + b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; + if (b) { + s = b >> 9; + a->code_buffer >>= s; + a->num_bits -= s; + return b & 511; + } + return stbi__zhuffman_decode_slowpath(a, z); +} + +static int stbi__zexpand(stbi__zbuf *z, char *zout, + int n) // need to make room for n bytes +{ + char *q; + int cur, limit, old_limit __attribute__((unused)); + z->zout = zout; + if (!z->z_expandable) + return stbi__err("output buffer limit", "Corrupt PNG"); + cur = (int)(z->zout - z->zout_start); + limit = old_limit = (int)(z->zout_end - z->zout_start); + while (cur + n > limit) + limit *= 2; + q = (char *)STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); + STBI_NOTUSED(old_limit); + if (q == NULL) + return stbi__err("outofmem", "Out of memory"); + z->zout_start = q; + z->zout = q + cur; + z->zout_end = q + limit; + return 1; } static const int stbi__zlength_base[31] = { - 3,4,5,6,7,8,9,10,11,13, - 15,17,19,23,27,31,35,43,51,59, - 67,83,99,115,131,163,195,227,258,0,0 }; - -static const int stbi__zlength_extra[31]= -{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; - -static const int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, -257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; - -static const int stbi__zdist_extra[32] = -{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; - -static int stbi__parse_huffman_block(stbi__zbuf *a) -{ - char *zout = a->zout; - for(;;) { - int z = stbi__zhuffman_decode(a, &a->z_length); - if (z < 256) { - if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes - if (zout >= a->zout_end) { - if (!stbi__zexpand(a, zout, 1)) return 0; - zout = a->zout; - } - *zout++ = (char) z; + 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, + 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; + +static const int stbi__zlength_extra[31] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, + 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, + 4, 4, 5, 5, 5, 5, 0, 0, 0}; + +static const int stbi__zdist_base[32] = { + 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, + 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, + 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; + +static const int stbi__zdist_extra[32] = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, + 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, + 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; + +static int stbi__parse_huffman_block(stbi__zbuf *a) { + char *zout = a->zout; + for (;;) { + int z = stbi__zhuffman_decode(a, &a->z_length); + if (z < 256) { + if (z < 0) + return stbi__err("bad huffman code", + "Corrupt PNG"); // error in huffman codes + if (zout >= a->zout_end) { + if (!stbi__zexpand(a, zout, 1)) + return 0; + zout = a->zout; + } + *zout++ = (char)z; + } else { + stbi_uc *p; + int len, dist; + if (z == 256) { + a->zout = zout; + return 1; + } + z -= 257; + len = stbi__zlength_base[z]; + if (stbi__zlength_extra[z]) + len += stbi__zreceive(a, stbi__zlength_extra[z]); + z = stbi__zhuffman_decode(a, &a->z_distance); + if (z < 0) + return stbi__err("bad huffman code", "Corrupt PNG"); + dist = stbi__zdist_base[z]; + if (stbi__zdist_extra[z]) + dist += stbi__zreceive(a, stbi__zdist_extra[z]); + if (zout - a->zout_start < dist) + return stbi__err("bad dist", "Corrupt PNG"); + if (zout + len > a->zout_end) { + if (!stbi__zexpand(a, zout, len)) + return 0; + zout = a->zout; + } + p = (stbi_uc *)(zout - dist); + if (dist == 1) { // run of one byte; common in images. + stbi_uc v = *p; + if (len) { + do + *zout++ = v; + while (--len); + } } else { - stbi_uc *p; - int len,dist; - if (z == 256) { - a->zout = zout; - return 1; - } - z -= 257; - len = stbi__zlength_base[z]; - if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]); - z = stbi__zhuffman_decode(a, &a->z_distance); - if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); - dist = stbi__zdist_base[z]; - if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]); - if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG"); - if (zout + len > a->zout_end) { - if (!stbi__zexpand(a, zout, len)) return 0; - zout = a->zout; - } - p = (stbi_uc *) (zout - dist); - if (dist == 1) { // run of one byte; common in images. - stbi_uc v = *p; - if (len) { do *zout++ = v; while (--len); } - } else { - if (len) { do *zout++ = *p++; while (--len); } - } + if (len) { + do + *zout++ = *p++; + while (--len); + } } - } -} - -static int stbi__compute_huffman_codes(stbi__zbuf *a) -{ - static const stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; - stbi__zhuffman z_codelength; - stbi_uc lencodes[286+32+137];//padding for maximum single op - stbi_uc codelength_sizes[19]; - int i,n; - - int hlit = stbi__zreceive(a,5) + 257; - int hdist = stbi__zreceive(a,5) + 1; - int hclen = stbi__zreceive(a,4) + 4; - int ntot = hlit + hdist; - - memset(codelength_sizes, 0, sizeof(codelength_sizes)); - for (i=0; i < hclen; ++i) { - int s = stbi__zreceive(a,3); - codelength_sizes[length_dezigzag[i]] = (stbi_uc) s; - } - if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; - - n = 0; - while (n < ntot) { - int c = stbi__zhuffman_decode(a, &z_codelength); - if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG"); - if (c < 16) - lencodes[n++] = (stbi_uc) c; + } + } +} + +static int stbi__compute_huffman_codes(stbi__zbuf *a) { + static const stbi_uc length_dezigzag[19] = { + 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; + stbi__zhuffman z_codelength; + stbi_uc lencodes[286 + 32 + 137]; // padding for maximum single op + stbi_uc codelength_sizes[19]; + int i, n; + + int hlit = stbi__zreceive(a, 5) + 257; + int hdist = stbi__zreceive(a, 5) + 1; + int hclen = stbi__zreceive(a, 4) + 4; + int ntot = hlit + hdist; + + memset(codelength_sizes, 0, sizeof(codelength_sizes)); + for (i = 0; i < hclen; ++i) { + int s = stbi__zreceive(a, 3); + codelength_sizes[length_dezigzag[i]] = (stbi_uc)s; + } + if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) + return 0; + + n = 0; + while (n < ntot) { + int c = stbi__zhuffman_decode(a, &z_codelength); + if (c < 0 || c >= 19) + return stbi__err("bad codelengths", "Corrupt PNG"); + if (c < 16) + lencodes[n++] = (stbi_uc)c; + else { + stbi_uc fill = 0; + if (c == 16) { + c = stbi__zreceive(a, 2) + 3; + if (n == 0) + return stbi__err("bad codelengths", "Corrupt PNG"); + fill = lencodes[n - 1]; + } else if (c == 17) + c = stbi__zreceive(a, 3) + 3; else { - stbi_uc fill = 0; - if (c == 16) { - c = stbi__zreceive(a,2)+3; - if (n == 0) return stbi__err("bad codelengths", "Corrupt PNG"); - fill = lencodes[n-1]; - } else if (c == 17) - c = stbi__zreceive(a,3)+3; - else { - STBI_ASSERT(c == 18); - c = stbi__zreceive(a,7)+11; - } - if (ntot - n < c) return stbi__err("bad codelengths", "Corrupt PNG"); - memset(lencodes+n, fill, c); - n += c; + STBI_ASSERT(c == 18); + c = stbi__zreceive(a, 7) + 11; } - } - if (n != ntot) return stbi__err("bad codelengths","Corrupt PNG"); - if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; - if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; - return 1; -} - -static int stbi__parse_uncompressed_block(stbi__zbuf *a) -{ - stbi_uc header[4]; - int len,nlen,k; - if (a->num_bits & 7) - stbi__zreceive(a, a->num_bits & 7); // discard - // drain the bit-packed data into header - k = 0; - while (a->num_bits > 0) { - header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check - a->code_buffer >>= 8; - a->num_bits -= 8; - } - STBI_ASSERT(a->num_bits == 0); - // now fill header the normal way - while (k < 4) - header[k++] = stbi__zget8(a); - len = header[1] * 256 + header[0]; - nlen = header[3] * 256 + header[2]; - if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG"); - if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG"); - if (a->zout + len > a->zout_end) - if (!stbi__zexpand(a, a->zout, len)) return 0; - memcpy(a->zout, a->zbuffer, len); - a->zbuffer += len; - a->zout += len; - return 1; -} - -static int stbi__parse_zlib_header(stbi__zbuf *a) -{ - int cmf = stbi__zget8(a); - int cm = cmf & 15; - /* int cinfo = cmf >> 4; */ - int flg = stbi__zget8(a); - if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec - if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png - if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png - // window = 1 << (8 + cinfo)... but who cares, we fully buffer output - return 1; -} - -static const stbi_uc stbi__zdefault_length[288] = -{ - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, - 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, - 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, - 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, - 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8 -}; -static const stbi_uc stbi__zdefault_distance[32] = -{ - 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 -}; + if (ntot - n < c) + return stbi__err("bad codelengths", "Corrupt PNG"); + memset(lencodes + n, fill, c); + n += c; + } + } + if (n != ntot) + return stbi__err("bad codelengths", "Corrupt PNG"); + if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) + return 0; + if (!stbi__zbuild_huffman(&a->z_distance, lencodes + hlit, hdist)) + return 0; + return 1; +} + +static int stbi__parse_uncompressed_block(stbi__zbuf *a) { + stbi_uc header[4]; + int len, nlen, k; + if (a->num_bits & 7) + stbi__zreceive(a, a->num_bits & 7); // discard + // drain the bit-packed data into header + k = 0; + while (a->num_bits > 0) { + header[k++] = + (stbi_uc)(a->code_buffer & 255); // suppress MSVC run-time check + a->code_buffer >>= 8; + a->num_bits -= 8; + } + STBI_ASSERT(a->num_bits == 0); + // now fill header the normal way + while (k < 4) + header[k++] = stbi__zget8(a); + len = header[1] * 256 + header[0]; + nlen = header[3] * 256 + header[2]; + if (nlen != (len ^ 0xffff)) + return stbi__err("zlib corrupt", "Corrupt PNG"); + if (a->zbuffer + len > a->zbuffer_end) + return stbi__err("read past buffer", "Corrupt PNG"); + if (a->zout + len > a->zout_end) + if (!stbi__zexpand(a, a->zout, len)) + return 0; + memcpy(a->zout, a->zbuffer, len); + a->zbuffer += len; + a->zout += len; + return 1; +} + +static int stbi__parse_zlib_header(stbi__zbuf *a) { + int cmf = stbi__zget8(a); + int cm = cmf & 15; + /* int cinfo = cmf >> 4; */ + int flg = stbi__zget8(a); + if ((cmf * 256 + flg) % 31 != 0) + return stbi__err("bad zlib header", "Corrupt PNG"); // zlib spec + if (flg & 32) + return stbi__err("no preset dict", + "Corrupt PNG"); // preset dictionary not allowed in png + if (cm != 8) + return stbi__err("bad compression", + "Corrupt PNG"); // DEFLATE required for png + // window = 1 << (8 + cinfo)... but who cares, we fully buffer output + return 1; +} + +static const stbi_uc stbi__zdefault_length[288] = { + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8}; +static const stbi_uc stbi__zdefault_distance[32] = { + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; /* Init algorithm: { @@ -4204,117 +4614,131 @@ Init algorithm: } */ -static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) -{ - int final, type; - if (parse_header) - if (!stbi__parse_zlib_header(a)) return 0; - a->num_bits = 0; - a->code_buffer = 0; - do { - final = stbi__zreceive(a,1); - type = stbi__zreceive(a,2); - if (type == 0) { - if (!stbi__parse_uncompressed_block(a)) return 0; - } else if (type == 3) { - return 0; +static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) { + int final, type; + if (parse_header) + if (!stbi__parse_zlib_header(a)) + return 0; + a->num_bits = 0; + a->code_buffer = 0; + do { + final = stbi__zreceive(a, 1); + type = stbi__zreceive(a, 2); + if (type == 0) { + if (!stbi__parse_uncompressed_block(a)) + return 0; + } else if (type == 3) { + return 0; + } else { + if (type == 1) { + // use fixed code lengths + if (!stbi__zbuild_huffman(&a->z_length, stbi__zdefault_length, 288)) + return 0; + if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) + return 0; } else { - if (type == 1) { - // use fixed code lengths - if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0; - if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0; - } else { - if (!stbi__compute_huffman_codes(a)) return 0; - } - if (!stbi__parse_huffman_block(a)) return 0; + if (!stbi__compute_huffman_codes(a)) + return 0; } - } while (!final); - return 1; -} - -static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) -{ - a->zout_start = obuf; - a->zout = obuf; - a->zout_end = obuf + olen; - a->z_expandable = exp; - - return stbi__parse_zlib(a, parse_header); -} - -STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) -{ - stbi__zbuf a; - char *p = (char *) stbi__malloc(initial_size); - if (p == NULL) return NULL; - a.zbuffer = (stbi_uc *) buffer; - a.zbuffer_end = (stbi_uc *) buffer + len; - if (stbi__do_zlib(&a, p, initial_size, 1, 1)) { - if (outlen) *outlen = (int) (a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } -} - -STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) -{ - return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); -} - -STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) -{ - stbi__zbuf a; - char *p = (char *) stbi__malloc(initial_size); - if (p == NULL) return NULL; - a.zbuffer = (stbi_uc *) buffer; - a.zbuffer_end = (stbi_uc *) buffer + len; - if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { - if (outlen) *outlen = (int) (a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } -} - -STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) -{ - stbi__zbuf a; - a.zbuffer = (stbi_uc *) ibuffer; - a.zbuffer_end = (stbi_uc *) ibuffer + ilen; - if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) - return (int) (a.zout - a.zout_start); - else - return -1; -} - -STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) -{ - stbi__zbuf a; - char *p = (char *) stbi__malloc(16384); - if (p == NULL) return NULL; - a.zbuffer = (stbi_uc *) buffer; - a.zbuffer_end = (stbi_uc *) buffer+len; - if (stbi__do_zlib(&a, p, 16384, 1, 0)) { - if (outlen) *outlen = (int) (a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } -} - -STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) -{ - stbi__zbuf a; - a.zbuffer = (stbi_uc *) ibuffer; - a.zbuffer_end = (stbi_uc *) ibuffer + ilen; - if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) - return (int) (a.zout - a.zout_start); - else - return -1; + if (!stbi__parse_huffman_block(a)) + return 0; + } + } while (!final); + return 1; +} + +static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, + int parse_header) { + a->zout_start = obuf; + a->zout = obuf; + a->zout_end = obuf + olen; + a->z_expandable = exp; + + return stbi__parse_zlib(a, parse_header); +} + +STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, + int initial_size, int *outlen) { + stbi__zbuf a; + char *p = (char *)stbi__malloc(initial_size); + if (p == NULL) + return NULL; + a.zbuffer = (stbi_uc *)buffer; + a.zbuffer_end = (stbi_uc *)buffer + len; + if (stbi__do_zlib(&a, p, initial_size, 1, 1)) { + if (outlen) + *outlen = (int)(a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, + int *outlen) { + return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); +} + +STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, + int len, + int initial_size, + int *outlen, + int parse_header) { + stbi__zbuf a; + char *p = (char *)stbi__malloc(initial_size); + if (p == NULL) + return NULL; + a.zbuffer = (stbi_uc *)buffer; + a.zbuffer_end = (stbi_uc *)buffer + len; + if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { + if (outlen) + *outlen = (int)(a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, + char const *ibuffer, int ilen) { + stbi__zbuf a; + a.zbuffer = (stbi_uc *)ibuffer; + a.zbuffer_end = (stbi_uc *)ibuffer + ilen; + if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) + return (int)(a.zout - a.zout_start); + else + return -1; +} + +STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, + int *outlen) { + stbi__zbuf a; + char *p = (char *)stbi__malloc(16384); + if (p == NULL) + return NULL; + a.zbuffer = (stbi_uc *)buffer; + a.zbuffer_end = (stbi_uc *)buffer + len; + if (stbi__do_zlib(&a, p, 16384, 1, 0)) { + if (outlen) + *outlen = (int)(a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, + const char *ibuffer, int ilen) { + stbi__zbuf a; + a.zbuffer = (stbi_uc *)ibuffer; + a.zbuffer_end = (stbi_uc *)ibuffer + ilen; + if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) + return (int)(a.zout - a.zout_start); + else + return -1; } #endif @@ -4329,1062 +4753,1276 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char // - uses stb_zlib, a PD zlib implementation with fast huffman decoding #ifndef STBI_NO_PNG -typedef struct -{ - stbi__uint32 length; - stbi__uint32 type; +typedef struct { + stbi__uint32 length; + stbi__uint32 type; } stbi__pngchunk; -static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) -{ - stbi__pngchunk c; - c.length = stbi__get32be(s); - c.type = stbi__get32be(s); - return c; +static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) { + stbi__pngchunk c; + c.length = stbi__get32be(s); + c.type = stbi__get32be(s); + return c; } -static int stbi__check_png_header(stbi__context *s) -{ - static const stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 }; - int i; - for (i=0; i < 8; ++i) - if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG"); - return 1; +static int stbi__check_png_header(stbi__context *s) { + static const stbi_uc png_sig[8] = {137, 80, 78, 71, 13, 10, 26, 10}; + int i; + for (i = 0; i < 8; ++i) + if (stbi__get8(s) != png_sig[i]) + return stbi__err("bad png sig", "Not a PNG"); + return 1; } -typedef struct -{ - stbi__context *s; - stbi_uc *idata, *expanded, *out; - int depth; +typedef struct { + stbi__context *s; + stbi_uc *idata, *expanded, *out; + int depth; } stbi__png; - enum { - STBI__F_none=0, - STBI__F_sub=1, - STBI__F_up=2, - STBI__F_avg=3, - STBI__F_paeth=4, - // synthetic filters used for first scanline to avoid needing a dummy row of 0s - STBI__F_avg_first, - STBI__F_paeth_first + STBI__F_none = 0, + STBI__F_sub = 1, + STBI__F_up = 2, + STBI__F_avg = 3, + STBI__F_paeth = 4, + // synthetic filters used for first scanline to avoid needing a dummy row of + // 0s + STBI__F_avg_first, + STBI__F_paeth_first }; -static stbi_uc first_row_filter[5] = -{ - STBI__F_none, - STBI__F_sub, - STBI__F_none, - STBI__F_avg_first, - STBI__F_paeth_first -}; +static stbi_uc first_row_filter[5] = {STBI__F_none, STBI__F_sub, STBI__F_none, + STBI__F_avg_first, STBI__F_paeth_first}; -static int stbi__paeth(int a, int b, int c) -{ - int p = a + b - c; - int pa = abs(p-a); - int pb = abs(p-b); - int pc = abs(p-c); - if (pa <= pb && pa <= pc) return a; - if (pb <= pc) return b; - return c; +static int stbi__paeth(int a, int b, int c) { + int p = a + b - c; + int pa = abs(p - a); + int pb = abs(p - b); + int pc = abs(p - c); + if (pa <= pb && pa <= pc) + return a; + if (pb <= pc) + return b; + return c; } -static const stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 }; +static const stbi_uc stbi__depth_scale_table[9] = {0, 0xff, 0x55, 0, 0x11, + 0, 0, 0, 0x01}; // create the png data from post-deflated data -static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color) -{ - int bytes = (depth == 16? 2 : 1); - stbi__context *s = a->s; - stbi__uint32 i,j,stride = x*out_n*bytes; - stbi__uint32 img_len, img_width_bytes; - int k; - int img_n = s->img_n; // copy it into a local for later - - int output_bytes = out_n*bytes; - int filter_bytes = img_n*bytes; - int width = x; - - STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1); - a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into - if (!a->out) return stbi__err("outofmem", "Out of memory"); - - if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) return stbi__err("too large", "Corrupt PNG"); - img_width_bytes = (((img_n * x * depth) + 7) >> 3); - img_len = (img_width_bytes + 1) * y; - - // we used to check for exact match between raw_len and img_len on non-interlaced PNGs, - // but issue #276 reported a PNG in the wild that had extra data at the end (all zeros), - // so just check for raw_len < img_len always. - if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG"); - - for (j=0; j < y; ++j) { - stbi_uc *cur = a->out + stride*j; - stbi_uc *prior; - int filter = *raw++; - - if (filter > 4) - return stbi__err("invalid filter","Corrupt PNG"); - - if (depth < 8) { - STBI_ASSERT(img_width_bytes <= x); - cur += x*out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place - filter_bytes = 1; - width = img_width_bytes; - } - prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above - - // if first row, use special filter that doesn't sample previous row - if (j == 0) filter = first_row_filter[filter]; - - // handle first byte explicitly - for (k=0; k < filter_bytes; ++k) { - switch (filter) { - case STBI__F_none : cur[k] = raw[k]; break; - case STBI__F_sub : cur[k] = raw[k]; break; - case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; - case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break; - case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break; - case STBI__F_avg_first : cur[k] = raw[k]; break; - case STBI__F_paeth_first: cur[k] = raw[k]; break; - } +static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, + stbi__uint32 raw_len, int out_n, + stbi__uint32 x, stbi__uint32 y, int depth, + int color) { + int bytes = (depth == 16 ? 2 : 1); + stbi__context *s = a->s; + stbi__uint32 i, j, stride = x * out_n * bytes; + stbi__uint32 img_len, img_width_bytes; + int k; + int img_n = s->img_n; // copy it into a local for later + + int output_bytes = out_n * bytes; + int filter_bytes = img_n * bytes; + int width = x; + + STBI_ASSERT(out_n == s->img_n || out_n == s->img_n + 1); + a->out = (stbi_uc *)stbi__malloc_mad3( + x, y, output_bytes, 0); // extra bytes to write off the end into + if (!a->out) + return stbi__err("outofmem", "Out of memory"); + + if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) + return stbi__err("too large", "Corrupt PNG"); + img_width_bytes = (((img_n * x * depth) + 7) >> 3); + img_len = (img_width_bytes + 1) * y; + + // we used to check for exact match between raw_len and img_len on + // non-interlaced PNGs, but issue #276 reported a PNG in the wild that had + // extra data at the end (all zeros), so just check for raw_len < img_len + // always. + if (raw_len < img_len) + return stbi__err("not enough pixels", "Corrupt PNG"); + + for (j = 0; j < y; ++j) { + stbi_uc *cur = a->out + stride * j; + stbi_uc *prior; + int filter = *raw++; + + if (filter > 4) + return stbi__err("invalid filter", "Corrupt PNG"); + + if (depth < 8) { + STBI_ASSERT(img_width_bytes <= x); + cur += + x * out_n - img_width_bytes; // store output to the rightmost img_len + // bytes, so we can decode in place + filter_bytes = 1; + width = img_width_bytes; + } + prior = + cur - + stride; // bugfix: need to compute this after 'cur +=' computation above + + // if first row, use special filter that doesn't sample previous row + if (j == 0) + filter = first_row_filter[filter]; + + // handle first byte explicitly + for (k = 0; k < filter_bytes; ++k) { + switch (filter) { + case STBI__F_none: + cur[k] = raw[k]; + break; + case STBI__F_sub: + cur[k] = raw[k]; + break; + case STBI__F_up: + cur[k] = STBI__BYTECAST(raw[k] + prior[k]); + break; + case STBI__F_avg: + cur[k] = STBI__BYTECAST(raw[k] + (prior[k] >> 1)); + break; + case STBI__F_paeth: + cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0, prior[k], 0)); + break; + case STBI__F_avg_first: + cur[k] = raw[k]; + break; + case STBI__F_paeth_first: + cur[k] = raw[k]; + break; } + } - if (depth == 8) { - if (img_n != out_n) - cur[img_n] = 255; // first pixel - raw += img_n; - cur += out_n; - prior += out_n; - } else if (depth == 16) { - if (img_n != out_n) { - cur[filter_bytes] = 255; // first pixel top byte - cur[filter_bytes+1] = 255; // first pixel bottom byte - } - raw += filter_bytes; - cur += output_bytes; - prior += output_bytes; - } else { - raw += 1; - cur += 1; - prior += 1; + if (depth == 8) { + if (img_n != out_n) + cur[img_n] = 255; // first pixel + raw += img_n; + cur += out_n; + prior += out_n; + } else if (depth == 16) { + if (img_n != out_n) { + cur[filter_bytes] = 255; // first pixel top byte + cur[filter_bytes + 1] = 255; // first pixel bottom byte } + raw += filter_bytes; + cur += output_bytes; + prior += output_bytes; + } else { + raw += 1; + cur += 1; + prior += 1; + } - // this is a little gross, so that we don't switch per-pixel or per-component - if (depth < 8 || img_n == out_n) { - int nk = (width - 1)*filter_bytes; - #define STBI__CASE(f) \ - case f: \ - for (k=0; k < nk; ++k) - switch (filter) { - // "none" filter turns into a memcpy here; make that explicit. - case STBI__F_none: memcpy(cur, raw, nk); break; - STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break; - STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break; - STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break; - STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break; - STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break; - STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); } break; - } - #undef STBI__CASE - raw += nk; - } else { - STBI_ASSERT(img_n+1 == out_n); - #define STBI__CASE(f) \ - case f: \ - for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \ - for (k=0; k < filter_bytes; ++k) - switch (filter) { - STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break; - STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break; - STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break; - STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break; - STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break; - STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break; - STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); } break; - } - #undef STBI__CASE - - // the loop above sets the high byte of the pixels' alpha, but for - // 16 bit png files we also need the low byte set. we'll do that here. - if (depth == 16) { - cur = a->out + stride*j; // start at the beginning of the row again - for (i=0; i < x; ++i,cur+=output_bytes) { - cur[filter_bytes+1] = 255; - } - } + // this is a little gross, so that we don't switch per-pixel or + // per-component + if (depth < 8 || img_n == out_n) { + int nk = (width - 1) * filter_bytes; +#define STBI__CASE(f) \ + case f: \ + for (k = 0; k < nk; ++k) + switch (filter) { + // "none" filter turns into a memcpy here; make that explicit. + case STBI__F_none: + memcpy(cur, raw, nk); + break; + STBI__CASE(STBI__F_sub) { + cur[k] = STBI__BYTECAST(raw[k] + cur[k - filter_bytes]); + } + break; + STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } + break; + STBI__CASE(STBI__F_avg) { + cur[k] = STBI__BYTECAST(raw[k] + + ((prior[k] + cur[k - filter_bytes]) >> 1)); + } + break; + STBI__CASE(STBI__F_paeth) { + cur[k] = STBI__BYTECAST(raw[k] + + stbi__paeth(cur[k - filter_bytes], prior[k], + prior[k - filter_bytes])); + } + break; + STBI__CASE(STBI__F_avg_first) { + cur[k] = STBI__BYTECAST(raw[k] + (cur[k - filter_bytes] >> 1)); + } + break; + STBI__CASE(STBI__F_paeth_first) { + cur[k] = + STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - filter_bytes], 0, 0)); + } + break; } - } - - // we make a separate pass to expand bits to pixels; for performance, - // this could run two scanlines behind the above code, so it won't - // intefere with filtering but will still be in the cache. - if (depth < 8) { - for (j=0; j < y; ++j) { - stbi_uc *cur = a->out + stride*j; - stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes; - // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit - // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop - stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range - - // note that the final byte might overshoot and write more data than desired. - // we can allocate enough data that this never writes out of memory, but it - // could also overwrite the next scanline. can it overwrite non-empty data - // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel. - // so we need to explicitly clamp the final ones - - if (depth == 4) { - for (k=x*img_n; k >= 2; k-=2, ++in) { - *cur++ = scale * ((*in >> 4) ); - *cur++ = scale * ((*in ) & 0x0f); - } - if (k > 0) *cur++ = scale * ((*in >> 4) ); - } else if (depth == 2) { - for (k=x*img_n; k >= 4; k-=4, ++in) { - *cur++ = scale * ((*in >> 6) ); - *cur++ = scale * ((*in >> 4) & 0x03); - *cur++ = scale * ((*in >> 2) & 0x03); - *cur++ = scale * ((*in ) & 0x03); - } - if (k > 0) *cur++ = scale * ((*in >> 6) ); - if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03); - if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03); - } else if (depth == 1) { - for (k=x*img_n; k >= 8; k-=8, ++in) { - *cur++ = scale * ((*in >> 7) ); - *cur++ = scale * ((*in >> 6) & 0x01); - *cur++ = scale * ((*in >> 5) & 0x01); - *cur++ = scale * ((*in >> 4) & 0x01); - *cur++ = scale * ((*in >> 3) & 0x01); - *cur++ = scale * ((*in >> 2) & 0x01); - *cur++ = scale * ((*in >> 1) & 0x01); - *cur++ = scale * ((*in ) & 0x01); - } - if (k > 0) *cur++ = scale * ((*in >> 7) ); - if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01); - if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01); - if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01); - if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01); - if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01); - if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01); - } - if (img_n != out_n) { - int q; - // insert alpha = 255 - cur = a->out + stride*j; - if (img_n == 1) { - for (q=x-1; q >= 0; --q) { - cur[q*2+1] = 255; - cur[q*2+0] = cur[q]; - } - } else { - STBI_ASSERT(img_n == 3); - for (q=x-1; q >= 0; --q) { - cur[q*4+3] = 255; - cur[q*4+2] = cur[q*3+2]; - cur[q*4+1] = cur[q*3+1]; - cur[q*4+0] = cur[q*3+0]; - } - } - } +#undef STBI__CASE + raw += nk; + } else { + STBI_ASSERT(img_n + 1 == out_n); +#define STBI__CASE(f) \ + case f: \ + for (i = x - 1; i >= 1; --i, cur[filter_bytes] = 255, raw += filter_bytes, \ + cur += output_bytes, prior += output_bytes) \ + for (k = 0; k < filter_bytes; ++k) + switch (filter) { + STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } + break; + STBI__CASE(STBI__F_sub) { + cur[k] = STBI__BYTECAST(raw[k] + cur[k - output_bytes]); + } + break; + STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } + break; + STBI__CASE(STBI__F_avg) { + cur[k] = STBI__BYTECAST(raw[k] + + ((prior[k] + cur[k - output_bytes]) >> 1)); + } + break; + STBI__CASE(STBI__F_paeth) { + cur[k] = STBI__BYTECAST(raw[k] + + stbi__paeth(cur[k - output_bytes], prior[k], + prior[k - output_bytes])); + } + break; + STBI__CASE(STBI__F_avg_first) { + cur[k] = STBI__BYTECAST(raw[k] + (cur[k - output_bytes] >> 1)); + } + break; + STBI__CASE(STBI__F_paeth_first) { + cur[k] = + STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - output_bytes], 0, 0)); + } + break; } - } else if (depth == 16) { - // force the image data from big-endian to platform-native. - // this is done in a separate pass due to the decoding relying - // on the data being untouched, but could probably be done - // per-line during decode if care is taken. - stbi_uc *cur = a->out; - stbi__uint16 *cur16 = (stbi__uint16*)cur; - - for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) { - *cur16 = (cur[0] << 8) | cur[1]; +#undef STBI__CASE + + // the loop above sets the high byte of the pixels' alpha, but for + // 16 bit png files we also need the low byte set. we'll do that here. + if (depth == 16) { + cur = a->out + stride * j; // start at the beginning of the row again + for (i = 0; i < x; ++i, cur += output_bytes) { + cur[filter_bytes + 1] = 255; + } } - } + } + } + + // we make a separate pass to expand bits to pixels; for performance, + // this could run two scanlines behind the above code, so it won't + // intefere with filtering but will still be in the cache. + if (depth < 8) { + for (j = 0; j < y; ++j) { + stbi_uc *cur = a->out + stride * j; + stbi_uc *in = a->out + stride * j + x * out_n - img_width_bytes; + // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common + // 8-bit path optimal at minimal cost for 1/2/4-bit png guarante byte + // alignment, if width is not multiple of 8/4/2 we'll decode dummy + // trailing data that will be skipped in the later loop + stbi_uc scale = (color == 0) + ? stbi__depth_scale_table[depth] + : 1; // scale grayscale values to 0..255 range + + // note that the final byte might overshoot and write more data than + // desired. we can allocate enough data that this never writes out of + // memory, but it could also overwrite the next scanline. can it overwrite + // non-empty data on the next scanline? yes, consider 1-pixel-wide + // scanlines with 1-bit-per-pixel. so we need to explicitly clamp the + // final ones + + if (depth == 4) { + for (k = x * img_n; k >= 2; k -= 2, ++in) { + *cur++ = scale * ((*in >> 4)); + *cur++ = scale * ((*in) & 0x0f); + } + if (k > 0) + *cur++ = scale * ((*in >> 4)); + } else if (depth == 2) { + for (k = x * img_n; k >= 4; k -= 4, ++in) { + *cur++ = scale * ((*in >> 6)); + *cur++ = scale * ((*in >> 4) & 0x03); + *cur++ = scale * ((*in >> 2) & 0x03); + *cur++ = scale * ((*in) & 0x03); + } + if (k > 0) + *cur++ = scale * ((*in >> 6)); + if (k > 1) + *cur++ = scale * ((*in >> 4) & 0x03); + if (k > 2) + *cur++ = scale * ((*in >> 2) & 0x03); + } else if (depth == 1) { + for (k = x * img_n; k >= 8; k -= 8, ++in) { + *cur++ = scale * ((*in >> 7)); + *cur++ = scale * ((*in >> 6) & 0x01); + *cur++ = scale * ((*in >> 5) & 0x01); + *cur++ = scale * ((*in >> 4) & 0x01); + *cur++ = scale * ((*in >> 3) & 0x01); + *cur++ = scale * ((*in >> 2) & 0x01); + *cur++ = scale * ((*in >> 1) & 0x01); + *cur++ = scale * ((*in) & 0x01); + } + if (k > 0) + *cur++ = scale * ((*in >> 7)); + if (k > 1) + *cur++ = scale * ((*in >> 6) & 0x01); + if (k > 2) + *cur++ = scale * ((*in >> 5) & 0x01); + if (k > 3) + *cur++ = scale * ((*in >> 4) & 0x01); + if (k > 4) + *cur++ = scale * ((*in >> 3) & 0x01); + if (k > 5) + *cur++ = scale * ((*in >> 2) & 0x01); + if (k > 6) + *cur++ = scale * ((*in >> 1) & 0x01); + } + if (img_n != out_n) { + int q; + // insert alpha = 255 + cur = a->out + stride * j; + if (img_n == 1) { + for (q = x - 1; q >= 0; --q) { + cur[q * 2 + 1] = 255; + cur[q * 2 + 0] = cur[q]; + } + } else { + STBI_ASSERT(img_n == 3); + for (q = x - 1; q >= 0; --q) { + cur[q * 4 + 3] = 255; + cur[q * 4 + 2] = cur[q * 3 + 2]; + cur[q * 4 + 1] = cur[q * 3 + 1]; + cur[q * 4 + 0] = cur[q * 3 + 0]; + } + } + } + } + } else if (depth == 16) { + // force the image data from big-endian to platform-native. + // this is done in a separate pass due to the decoding relying + // on the data being untouched, but could probably be done + // per-line during decode if care is taken. + stbi_uc *cur = a->out; + stbi__uint16 *cur16 = (stbi__uint16 *)cur; + + for (i = 0; i < x * y * out_n; ++i, cur16++, cur += 2) { + *cur16 = (cur[0] << 8) | cur[1]; + } + } + + return 1; +} + +static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, + stbi__uint32 image_data_len, int out_n, + int depth, int color, int interlaced) { + int bytes = (depth == 16 ? 2 : 1); + int out_bytes = out_n * bytes; + stbi_uc *final; + int p; + if (!interlaced) + return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, + a->s->img_x, a->s->img_y, depth, color); + + // de-interlacing + final = (stbi_uc *)stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0); + for (p = 0; p < 7; ++p) { + int xorig[] = {0, 4, 0, 2, 0, 1, 0}; + int yorig[] = {0, 0, 4, 0, 2, 0, 1}; + int xspc[] = {8, 8, 4, 4, 2, 2, 1}; + int yspc[] = {8, 8, 8, 4, 4, 2, 2}; + int i, j, x, y; + // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 + x = (a->s->img_x - xorig[p] + xspc[p] - 1) / xspc[p]; + y = (a->s->img_y - yorig[p] + yspc[p] - 1) / yspc[p]; + if (x && y) { + stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; + if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, + y, depth, color)) { + STBI_FREE(final); + return 0; + } + for (j = 0; j < y; ++j) { + for (i = 0; i < x; ++i) { + int out_y = j * yspc[p] + yorig[p]; + int out_x = i * xspc[p] + xorig[p]; + memcpy(final + out_y * a->s->img_x * out_bytes + out_x * out_bytes, + a->out + (j * x + i) * out_bytes, out_bytes); + } + } + STBI_FREE(a->out); + image_data += img_len; + image_data_len -= img_len; + } + } + a->out = final; - return 1; + return 1; } -static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced) -{ - int bytes = (depth == 16 ? 2 : 1); - int out_bytes = out_n * bytes; - stbi_uc *final; - int p; - if (!interlaced) - return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); - - // de-interlacing - final = (stbi_uc *) stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0); - for (p=0; p < 7; ++p) { - int xorig[] = { 0,4,0,2,0,1,0 }; - int yorig[] = { 0,0,4,0,2,0,1 }; - int xspc[] = { 8,8,4,4,2,2,1 }; - int yspc[] = { 8,8,8,4,4,2,2 }; - int i,j,x,y; - // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 - x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p]; - y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p]; - if (x && y) { - stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; - if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) { - STBI_FREE(final); - return 0; - } - for (j=0; j < y; ++j) { - for (i=0; i < x; ++i) { - int out_y = j*yspc[p]+yorig[p]; - int out_x = i*xspc[p]+xorig[p]; - memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes, - a->out + (j*x+i)*out_bytes, out_bytes); - } - } - STBI_FREE(a->out); - image_data += img_len; - image_data_len -= img_len; - } - } - a->out = final; +static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) { + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi_uc *p = z->out; - return 1; -} + // compute color-based transparency, assuming we've + // already got 255 as the alpha value in the output + STBI_ASSERT(out_n == 2 || out_n == 4); -static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) -{ - stbi__context *s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi_uc *p = z->out; - - // compute color-based transparency, assuming we've - // already got 255 as the alpha value in the output - STBI_ASSERT(out_n == 2 || out_n == 4); - - if (out_n == 2) { - for (i=0; i < pixel_count; ++i) { - p[1] = (p[0] == tc[0] ? 0 : 255); - p += 2; - } - } else { - for (i=0; i < pixel_count; ++i) { - if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) - p[3] = 0; - p += 4; - } - } - return 1; + if (out_n == 2) { + for (i = 0; i < pixel_count; ++i) { + p[1] = (p[0] == tc[0] ? 0 : 255); + p += 2; + } + } else { + for (i = 0; i < pixel_count; ++i) { + if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) + p[3] = 0; + p += 4; + } + } + return 1; } -static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n) -{ - stbi__context *s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi__uint16 *p = (stbi__uint16*) z->out; +static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], + int out_n) { + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi__uint16 *p = (stbi__uint16 *)z->out; - // compute color-based transparency, assuming we've - // already got 65535 as the alpha value in the output - STBI_ASSERT(out_n == 2 || out_n == 4); + // compute color-based transparency, assuming we've + // already got 65535 as the alpha value in the output + STBI_ASSERT(out_n == 2 || out_n == 4); - if (out_n == 2) { - for (i = 0; i < pixel_count; ++i) { - p[1] = (p[0] == tc[0] ? 0 : 65535); - p += 2; - } - } else { - for (i = 0; i < pixel_count; ++i) { - if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) - p[3] = 0; - p += 4; - } - } - return 1; + if (out_n == 2) { + for (i = 0; i < pixel_count; ++i) { + p[1] = (p[0] == tc[0] ? 0 : 65535); + p += 2; + } + } else { + for (i = 0; i < pixel_count; ++i) { + if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) + p[3] = 0; + p += 4; + } + } + return 1; } -static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n) -{ - stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; - stbi_uc *p, *temp_out, *orig = a->out; - - p = (stbi_uc *) stbi__malloc_mad2(pixel_count, pal_img_n, 0); - if (p == NULL) return stbi__err("outofmem", "Out of memory"); - - // between here and free(out) below, exitting would leak - temp_out = p; - - if (pal_img_n == 3) { - for (i=0; i < pixel_count; ++i) { - int n = orig[i]*4; - p[0] = palette[n ]; - p[1] = palette[n+1]; - p[2] = palette[n+2]; - p += 3; - } - } else { - for (i=0; i < pixel_count; ++i) { - int n = orig[i]*4; - p[0] = palette[n ]; - p[1] = palette[n+1]; - p[2] = palette[n+2]; - p[3] = palette[n+3]; - p += 4; - } - } - STBI_FREE(a->out); - a->out = temp_out; +static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, + int pal_img_n) { + stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; + stbi_uc *p, *temp_out, *orig = a->out; + + p = (stbi_uc *)stbi__malloc_mad2(pixel_count, pal_img_n, 0); + if (p == NULL) + return stbi__err("outofmem", "Out of memory"); - STBI_NOTUSED(len); + // between here and free(out) below, exitting would leak + temp_out = p; + + if (pal_img_n == 3) { + for (i = 0; i < pixel_count; ++i) { + int n = orig[i] * 4; + p[0] = palette[n]; + p[1] = palette[n + 1]; + p[2] = palette[n + 2]; + p += 3; + } + } else { + for (i = 0; i < pixel_count; ++i) { + int n = orig[i] * 4; + p[0] = palette[n]; + p[1] = palette[n + 1]; + p[2] = palette[n + 2]; + p[3] = palette[n + 3]; + p += 4; + } + } + STBI_FREE(a->out); + a->out = temp_out; - return 1; + STBI_NOTUSED(len); + + return 1; } static int stbi__unpremultiply_on_load = 0; static int stbi__de_iphone_flag = 0; -STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) -{ - stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply; +STBIDEF void +stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) { + stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply; } -STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) -{ - stbi__de_iphone_flag = flag_true_if_should_convert; +STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) { + stbi__de_iphone_flag = flag_true_if_should_convert; } -static void stbi__de_iphone(stbi__png *z) -{ - stbi__context *s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi_uc *p = z->out; - - if (s->img_out_n == 3) { // convert bgr to rgb - for (i=0; i < pixel_count; ++i) { - stbi_uc t = p[0]; - p[0] = p[2]; - p[2] = t; - p += 3; +static void stbi__de_iphone(stbi__png *z) { + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi_uc *p = z->out; + + if (s->img_out_n == 3) { // convert bgr to rgb + for (i = 0; i < pixel_count; ++i) { + stbi_uc t = p[0]; + p[0] = p[2]; + p[2] = t; + p += 3; + } + } else { + STBI_ASSERT(s->img_out_n == 4); + if (stbi__unpremultiply_on_load) { + // convert bgr to rgb and unpremultiply + for (i = 0; i < pixel_count; ++i) { + stbi_uc a = p[3]; + stbi_uc t = p[0]; + if (a) { + stbi_uc half = a / 2; + p[0] = (p[2] * 255 + half) / a; + p[1] = (p[1] * 255 + half) / a; + p[2] = (t * 255 + half) / a; + } else { + p[0] = p[2]; + p[2] = t; + } + p += 4; } - } else { - STBI_ASSERT(s->img_out_n == 4); - if (stbi__unpremultiply_on_load) { - // convert bgr to rgb and unpremultiply - for (i=0; i < pixel_count; ++i) { - stbi_uc a = p[3]; - stbi_uc t = p[0]; - if (a) { - stbi_uc half = a / 2; - p[0] = (p[2] * 255 + half) / a; - p[1] = (p[1] * 255 + half) / a; - p[2] = ( t * 255 + half) / a; - } else { - p[0] = p[2]; - p[2] = t; - } - p += 4; - } + } else { + // convert bgr to rgb + for (i = 0; i < pixel_count; ++i) { + stbi_uc t = p[0]; + p[0] = p[2]; + p[2] = t; + p += 4; + } + } + } +} + +#define STBI__PNG_TYPE(a, b, c, d) \ + (((unsigned)(a) << 24) + ((unsigned)(b) << 16) + ((unsigned)(c) << 8) + \ + (unsigned)(d)) + +static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) { + stbi_uc palette[1024], pal_img_n = 0; + stbi_uc has_trans = 0, tc[3] = {0}; + stbi__uint16 tc16[3]; + stbi__uint32 ioff = 0, idata_limit = 0, i, pal_len = 0; + int first = 1, k, interlace = 0, color = 0, is_iphone = 0; + stbi__context *s = z->s; + + z->expanded = NULL; + z->idata = NULL; + z->out = NULL; + + if (!stbi__check_png_header(s)) + return 0; + + if (scan == STBI__SCAN_type) + return 1; + + for (;;) { + stbi__pngchunk c = stbi__get_chunk_header(s); + switch (c.type) { + case STBI__PNG_TYPE('C', 'g', 'B', 'I'): + is_iphone = 1; + stbi__skip(s, c.length); + break; + case STBI__PNG_TYPE('I', 'H', 'D', 'R'): { + int comp, filter; + if (!first) + return stbi__err("multiple IHDR", "Corrupt PNG"); + first = 0; + if (c.length != 13) + return stbi__err("bad IHDR len", "Corrupt PNG"); + s->img_x = stbi__get32be(s); + if (s->img_x > (1 << 24)) + return stbi__err("too large", "Very large image (corrupt?)"); + s->img_y = stbi__get32be(s); + if (s->img_y > (1 << 24)) + return stbi__err("too large", "Very large image (corrupt?)"); + z->depth = stbi__get8(s); + if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && + z->depth != 16) + return stbi__err("1/2/4/8/16-bit only", + "PNG not supported: 1/2/4/8/16-bit only"); + color = stbi__get8(s); + if (color > 6) + return stbi__err("bad ctype", "Corrupt PNG"); + if (color == 3 && z->depth == 16) + return stbi__err("bad ctype", "Corrupt PNG"); + if (color == 3) + pal_img_n = 3; + else if (color & 1) + return stbi__err("bad ctype", "Corrupt PNG"); + comp = stbi__get8(s); + if (comp) + return stbi__err("bad comp method", "Corrupt PNG"); + filter = stbi__get8(s); + if (filter) + return stbi__err("bad filter method", "Corrupt PNG"); + interlace = stbi__get8(s); + if (interlace > 1) + return stbi__err("bad interlace method", "Corrupt PNG"); + if (!s->img_x || !s->img_y) + return stbi__err("0-pixel image", "Corrupt PNG"); + if (!pal_img_n) { + s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); + if ((1 << 30) / s->img_x / s->img_n < s->img_y) + return stbi__err("too large", "Image too large to decode"); + if (scan == STBI__SCAN_header) + return 1; } else { - // convert bgr to rgb - for (i=0; i < pixel_count; ++i) { - stbi_uc t = p[0]; - p[0] = p[2]; - p[2] = t; - p += 4; - } + // if paletted, then pal_n is our final components, and + // img_n is # components to decompress/filter. + s->img_n = 1; + if ((1 << 30) / s->img_x / 4 < s->img_y) + return stbi__err("too large", "Corrupt PNG"); + // if SCAN_header, have to scan to see if we have a tRNS } - } -} - -#define STBI__PNG_TYPE(a,b,c,d) (((unsigned) (a) << 24) + ((unsigned) (b) << 16) + ((unsigned) (c) << 8) + (unsigned) (d)) + break; + } -static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) -{ - stbi_uc palette[1024], pal_img_n=0; - stbi_uc has_trans=0, tc[3]={0}; - stbi__uint16 tc16[3]; - stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0; - int first=1,k,interlace=0, color=0, is_iphone=0; - stbi__context *s = z->s; - - z->expanded = NULL; - z->idata = NULL; - z->out = NULL; - - if (!stbi__check_png_header(s)) return 0; - - if (scan == STBI__SCAN_type) return 1; - - for (;;) { - stbi__pngchunk c = stbi__get_chunk_header(s); - switch (c.type) { - case STBI__PNG_TYPE('C','g','B','I'): - is_iphone = 1; - stbi__skip(s, c.length); - break; - case STBI__PNG_TYPE('I','H','D','R'): { - int comp,filter; - if (!first) return stbi__err("multiple IHDR","Corrupt PNG"); - first = 0; - if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG"); - s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); - s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); - z->depth = stbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return stbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only"); - color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG"); - if (color == 3 && z->depth == 16) return stbi__err("bad ctype","Corrupt PNG"); - if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG"); - comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG"); - filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG"); - interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG"); - if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG"); - if (!pal_img_n) { - s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); - if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); - if (scan == STBI__SCAN_header) return 1; - } else { - // if paletted, then pal_n is our final components, and - // img_n is # components to decompress/filter. - s->img_n = 1; - if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG"); - // if SCAN_header, have to scan to see if we have a tRNS - } - break; - } - - case STBI__PNG_TYPE('P','L','T','E'): { - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG"); - pal_len = c.length / 3; - if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG"); - for (i=0; i < pal_len; ++i) { - palette[i*4+0] = stbi__get8(s); - palette[i*4+1] = stbi__get8(s); - palette[i*4+2] = stbi__get8(s); - palette[i*4+3] = 255; - } - break; - } - - case STBI__PNG_TYPE('t','R','N','S'): { - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG"); - if (pal_img_n) { - if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; } - if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG"); - if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG"); - pal_img_n = 4; - for (i=0; i < c.length; ++i) - palette[i*4+3] = stbi__get8(s); - } else { - if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG"); - if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG"); - has_trans = 1; - if (z->depth == 16) { - for (k = 0; k < s->img_n; ++k) tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is - } else { - for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger - } - } - break; - } - - case STBI__PNG_TYPE('I','D','A','T'): { - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG"); - if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; } - if ((int)(ioff + c.length) < (int)ioff) return 0; - if (ioff + c.length > idata_limit) { - stbi__uint32 idata_limit_old __attribute__((unused)) = idata_limit; - stbi_uc *p; - if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; - while (ioff + c.length > idata_limit) - idata_limit *= 2; - STBI_NOTUSED(idata_limit_old); - p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory"); - z->idata = p; - } - if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG"); - ioff += c.length; - break; - } - - case STBI__PNG_TYPE('I','E','N','D'): { - stbi__uint32 raw_len, bpl; - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if (scan != STBI__SCAN_load) return 1; - if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG"); - // initial guess for decoded data size to avoid unnecessary reallocs - bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component - raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */; - z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone); - if (z->expanded == NULL) return 0; // zlib should set error - STBI_FREE(z->idata); z->idata = NULL; - if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) - s->img_out_n = s->img_n+1; - else - s->img_out_n = s->img_n; - if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0; - if (has_trans) { - if (z->depth == 16) { - if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0; - } else { - if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0; - } - } - if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) - stbi__de_iphone(z); - if (pal_img_n) { - // pal_img_n == 3 or 4 - s->img_n = pal_img_n; // record the actual colors we had - s->img_out_n = pal_img_n; - if (req_comp >= 3) s->img_out_n = req_comp; - if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) - return 0; - } else if (has_trans) { - // non-paletted image with tRNS -> source image has (constant) alpha - ++s->img_n; - } - STBI_FREE(z->expanded); z->expanded = NULL; - return 1; - } - - default: - // if critical, fail - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if ((c.type & (1 << 29)) == 0) { - #ifndef STBI_NO_FAILURE_STRINGS - // not threadsafe - static char invalid_chunk[] = "XXXX PNG chunk not known"; - invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); - invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); - invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); - invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); - #endif - return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type"); - } - stbi__skip(s, c.length); - break; + case STBI__PNG_TYPE('P', 'L', 'T', 'E'): { + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if (c.length > 256 * 3) + return stbi__err("invalid PLTE", "Corrupt PNG"); + pal_len = c.length / 3; + if (pal_len * 3 != c.length) + return stbi__err("invalid PLTE", "Corrupt PNG"); + for (i = 0; i < pal_len; ++i) { + palette[i * 4 + 0] = stbi__get8(s); + palette[i * 4 + 1] = stbi__get8(s); + palette[i * 4 + 2] = stbi__get8(s); + palette[i * 4 + 3] = 255; } - // end of PNG chunk, read and skip CRC - stbi__get32be(s); - } -} + break; + } -static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri) -{ - void *result=NULL; - if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); - if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { - if (p->depth < 8) - ri->bits_per_channel = 8; - else - ri->bits_per_channel = p->depth; - result = p->out; - p->out = NULL; - if (req_comp && req_comp != p->s->img_out_n) { - if (ri->bits_per_channel == 8) - result = stbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); - else - result = stbi__convert_format16((stbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); - p->s->img_out_n = req_comp; - if (result == NULL) return result; + case STBI__PNG_TYPE('t', 'R', 'N', 'S'): { + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if (z->idata) + return stbi__err("tRNS after IDAT", "Corrupt PNG"); + if (pal_img_n) { + if (scan == STBI__SCAN_header) { + s->img_n = 4; + return 1; + } + if (pal_len == 0) + return stbi__err("tRNS before PLTE", "Corrupt PNG"); + if (c.length > pal_len) + return stbi__err("bad tRNS len", "Corrupt PNG"); + pal_img_n = 4; + for (i = 0; i < c.length; ++i) + palette[i * 4 + 3] = stbi__get8(s); + } else { + if (!(s->img_n & 1)) + return stbi__err("tRNS with alpha", "Corrupt PNG"); + if (c.length != (stbi__uint32)s->img_n * 2) + return stbi__err("bad tRNS len", "Corrupt PNG"); + has_trans = 1; + if (z->depth == 16) { + for (k = 0; k < s->img_n; ++k) + tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is + } else { + for (k = 0; k < s->img_n; ++k) + tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * + stbi__depth_scale_table[z->depth]; // non 8-bit images will + // be larger + } } - *x = p->s->img_x; - *y = p->s->img_y; - if (n) *n = p->s->img_n; - } - STBI_FREE(p->out); p->out = NULL; - STBI_FREE(p->expanded); p->expanded = NULL; - STBI_FREE(p->idata); p->idata = NULL; - - return result; -} - -static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - stbi__png p; - p.s = s; - return stbi__do_png(&p, x,y,comp,req_comp, ri); -} - -static int stbi__png_test(stbi__context *s) -{ - int r; - r = stbi__check_png_header(s); - stbi__rewind(s); - return r; -} + break; + } -static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) -{ - if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) { - stbi__rewind( p->s ); - return 0; - } - if (x) *x = p->s->img_x; - if (y) *y = p->s->img_y; - if (comp) *comp = p->s->img_n; - return 1; -} + case STBI__PNG_TYPE('I', 'D', 'A', 'T'): { + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if (pal_img_n && !pal_len) + return stbi__err("no PLTE", "Corrupt PNG"); + if (scan == STBI__SCAN_header) { + s->img_n = pal_img_n; + return 1; + } + if ((int)(ioff + c.length) < (int)ioff) + return 0; + if (ioff + c.length > idata_limit) { + stbi__uint32 idata_limit_old __attribute__((unused)) = idata_limit; + stbi_uc *p; + if (idata_limit == 0) + idata_limit = c.length > 4096 ? c.length : 4096; + while (ioff + c.length > idata_limit) + idata_limit *= 2; + STBI_NOTUSED(idata_limit_old); + p = (stbi_uc *)STBI_REALLOC_SIZED(z->idata, idata_limit_old, + idata_limit); + if (p == NULL) + return stbi__err("outofmem", "Out of memory"); + z->idata = p; + } + if (!stbi__getn(s, z->idata + ioff, c.length)) + return stbi__err("outofdata", "Corrupt PNG"); + ioff += c.length; + break; + } -static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) -{ - stbi__png p; - p.s = s; - return stbi__png_info_raw(&p, x, y, comp); -} + case STBI__PNG_TYPE('I', 'E', 'N', 'D'): { + stbi__uint32 raw_len, bpl; + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if (scan != STBI__SCAN_load) + return 1; + if (z->idata == NULL) + return stbi__err("no IDAT", "Corrupt PNG"); + // initial guess for decoded data size to avoid unnecessary reallocs + bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component + raw_len = bpl * s->img_y * s->img_n /* pixels */ + + s->img_y /* filter mode per row */; + z->expanded = (stbi_uc *)stbi_zlib_decode_malloc_guesssize_headerflag( + (char *)z->idata, ioff, raw_len, (int *)&raw_len, !is_iphone); + if (z->expanded == NULL) + return 0; // zlib should set error + STBI_FREE(z->idata); + z->idata = NULL; + if ((req_comp == s->img_n + 1 && req_comp != 3 && !pal_img_n) || + has_trans) + s->img_out_n = s->img_n + 1; + else + s->img_out_n = s->img_n; + if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, + z->depth, color, interlace)) + return 0; + if (has_trans) { + if (z->depth == 16) { + if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) + return 0; + } else { + if (!stbi__compute_transparency(z, tc, s->img_out_n)) + return 0; + } + } + if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) + stbi__de_iphone(z); + if (pal_img_n) { + // pal_img_n == 3 or 4 + s->img_n = pal_img_n; // record the actual colors we had + s->img_out_n = pal_img_n; + if (req_comp >= 3) + s->img_out_n = req_comp; + if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) + return 0; + } else if (has_trans) { + // non-paletted image with tRNS -> source image has (constant) alpha + ++s->img_n; + } + STBI_FREE(z->expanded); + z->expanded = NULL; + return 1; + } -static int stbi__png_is16(stbi__context *s) -{ - stbi__png p; - p.s = s; - if (!stbi__png_info_raw(&p, NULL, NULL, NULL)) - return 0; - if (p.depth != 16) { - stbi__rewind(p.s); - return 0; - } - return 1; + default: + // if critical, fail + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if ((c.type & (1 << 29)) == 0) { +#ifndef STBI_NO_FAILURE_STRINGS + // not threadsafe + static char invalid_chunk[] = "XXXX PNG chunk not known"; + invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); + invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); + invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); + invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); +#endif + return stbi__err(invalid_chunk, + "PNG not supported: unknown PNG chunk type"); + } + stbi__skip(s, c.length); + break; + } + // end of PNG chunk, read and skip CRC + stbi__get32be(s); + } +} + +static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, + stbi__result_info *ri) { + void *result = NULL; + if (req_comp < 0 || req_comp > 4) + return stbi__errpuc("bad req_comp", "Internal error"); + if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { + if (p->depth < 8) + ri->bits_per_channel = 8; + else + ri->bits_per_channel = p->depth; + result = p->out; + p->out = NULL; + if (req_comp && req_comp != p->s->img_out_n) { + if (ri->bits_per_channel == 8) + result = stbi__convert_format((unsigned char *)result, p->s->img_out_n, + req_comp, p->s->img_x, p->s->img_y); + else + result = stbi__convert_format16((stbi__uint16 *)result, p->s->img_out_n, + req_comp, p->s->img_x, p->s->img_y); + p->s->img_out_n = req_comp; + if (result == NULL) + return result; + } + *x = p->s->img_x; + *y = p->s->img_y; + if (n) + *n = p->s->img_n; + } + STBI_FREE(p->out); + p->out = NULL; + STBI_FREE(p->expanded); + p->expanded = NULL; + STBI_FREE(p->idata); + p->idata = NULL; + + return result; +} + +static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri) { + stbi__png p; + p.s = s; + return stbi__do_png(&p, x, y, comp, req_comp, ri); +} + +static int stbi__png_test(stbi__context *s) { + int r; + r = stbi__check_png_header(s); + stbi__rewind(s); + return r; +} + +static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) { + if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) { + stbi__rewind(p->s); + return 0; + } + if (x) + *x = p->s->img_x; + if (y) + *y = p->s->img_y; + if (comp) + *comp = p->s->img_n; + return 1; +} + +static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) { + stbi__png p; + p.s = s; + return stbi__png_info_raw(&p, x, y, comp); +} + +static int stbi__png_is16(stbi__context *s) { + stbi__png p; + p.s = s; + if (!stbi__png_info_raw(&p, NULL, NULL, NULL)) + return 0; + if (p.depth != 16) { + stbi__rewind(p.s); + return 0; + } + return 1; } #endif // Microsoft/Windows BMP image #ifndef STBI_NO_BMP -static int stbi__bmp_test_raw(stbi__context *s) -{ - int r; - int sz; - if (stbi__get8(s) != 'B') return 0; - if (stbi__get8(s) != 'M') return 0; - stbi__get32le(s); // discard filesize - stbi__get16le(s); // discard reserved - stbi__get16le(s); // discard reserved - stbi__get32le(s); // discard data offset - sz = stbi__get32le(s); - r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); - return r; -} - -static int stbi__bmp_test(stbi__context *s) -{ - int r = stbi__bmp_test_raw(s); - stbi__rewind(s); - return r; +static int stbi__bmp_test_raw(stbi__context *s) { + int r; + int sz; + if (stbi__get8(s) != 'B') + return 0; + if (stbi__get8(s) != 'M') + return 0; + stbi__get32le(s); // discard filesize + stbi__get16le(s); // discard reserved + stbi__get16le(s); // discard reserved + stbi__get32le(s); // discard data offset + sz = stbi__get32le(s); + r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); + return r; +} + +static int stbi__bmp_test(stbi__context *s) { + int r = stbi__bmp_test_raw(s); + stbi__rewind(s); + return r; } - // returns 0..31 for the highest set bit -static int stbi__high_bit(unsigned int z) -{ - int n=0; - if (z == 0) return -1; - if (z >= 0x10000) { n += 16; z >>= 16; } - if (z >= 0x00100) { n += 8; z >>= 8; } - if (z >= 0x00010) { n += 4; z >>= 4; } - if (z >= 0x00004) { n += 2; z >>= 2; } - if (z >= 0x00002) { n += 1;/* >>= 1;*/ } - return n; +static int stbi__high_bit(unsigned int z) { + int n = 0; + if (z == 0) + return -1; + if (z >= 0x10000) { + n += 16; + z >>= 16; + } + if (z >= 0x00100) { + n += 8; + z >>= 8; + } + if (z >= 0x00010) { + n += 4; + z >>= 4; + } + if (z >= 0x00004) { + n += 2; + z >>= 2; + } + if (z >= 0x00002) { + n += 1; /* >>= 1;*/ + } + return n; } -static int stbi__bitcount(unsigned int a) -{ - a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 - a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 - a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits - a = (a + (a >> 8)); // max 16 per 8 bits - a = (a + (a >> 16)); // max 32 per 8 bits - return a & 0xff; +static int stbi__bitcount(unsigned int a) { + a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 + a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 + a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits + a = (a + (a >> 8)); // max 16 per 8 bits + a = (a + (a >> 16)); // max 32 per 8 bits + return a & 0xff; } // extract an arbitrarily-aligned N-bit value (N=bits) // from v, and then make it 8-bits long and fractionally // extend it to full full range. -static int stbi__shiftsigned(unsigned int v, int shift, int bits) -{ - static unsigned int mul_table[9] = { +static int stbi__shiftsigned(unsigned int v, int shift, int bits) { + static unsigned int mul_table[9] = { 0, - 0xff/*0b11111111*/, 0x55/*0b01010101*/, 0x49/*0b01001001*/, 0x11/*0b00010001*/, - 0x21/*0b00100001*/, 0x41/*0b01000001*/, 0x81/*0b10000001*/, 0x01/*0b00000001*/, - }; - static unsigned int shift_table[9] = { - 0, 0,0,1,0,2,4,6,0, - }; - if (shift < 0) - v <<= -shift; - else - v >>= shift; - STBI_ASSERT(v < 256); - v >>= (8-bits); - STBI_ASSERT(bits >= 0 && bits <= 8); - return (int) ((unsigned) v * mul_table[bits]) >> shift_table[bits]; -} - -typedef struct -{ - int bpp, offset, hsz; - unsigned int mr,mg,mb,ma, all_a; + 0xff /*0b11111111*/, + 0x55 /*0b01010101*/, + 0x49 /*0b01001001*/, + 0x11 /*0b00010001*/, + 0x21 /*0b00100001*/, + 0x41 /*0b01000001*/, + 0x81 /*0b10000001*/, + 0x01 /*0b00000001*/, + }; + static unsigned int shift_table[9] = { + 0, 0, 0, 1, 0, 2, 4, 6, 0, + }; + if (shift < 0) + v <<= -shift; + else + v >>= shift; + STBI_ASSERT(v < 256); + v >>= (8 - bits); + STBI_ASSERT(bits >= 0 && bits <= 8); + return (int)((unsigned)v * mul_table[bits]) >> shift_table[bits]; +} + +typedef struct { + int bpp, offset, hsz; + unsigned int mr, mg, mb, ma, all_a; } stbi__bmp_data; -static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) -{ - int hsz; - if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP"); - stbi__get32le(s); // discard filesize - stbi__get16le(s); // discard reserved - stbi__get16le(s); // discard reserved - info->offset = stbi__get32le(s); - info->hsz = hsz = stbi__get32le(s); - info->mr = info->mg = info->mb = info->ma = 0; - - if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); - if (hsz == 12) { - s->img_x = stbi__get16le(s); - s->img_y = stbi__get16le(s); - } else { - s->img_x = stbi__get32le(s); - s->img_y = stbi__get32le(s); - } - if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP"); - info->bpp = stbi__get16le(s); - if (hsz != 12) { - int compress = stbi__get32le(s); - if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); - stbi__get32le(s); // discard sizeof - stbi__get32le(s); // discard hres - stbi__get32le(s); // discard vres - stbi__get32le(s); // discard colorsused - stbi__get32le(s); // discard max important - if (hsz == 40 || hsz == 56) { - if (hsz == 56) { - stbi__get32le(s); - stbi__get32le(s); - stbi__get32le(s); - stbi__get32le(s); - } - if (info->bpp == 16 || info->bpp == 32) { - if (compress == 0) { - if (info->bpp == 32) { - info->mr = 0xffu << 16; - info->mg = 0xffu << 8; - info->mb = 0xffu << 0; - info->ma = 0xffu << 24; - info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0 - } else { - info->mr = 31u << 10; - info->mg = 31u << 5; - info->mb = 31u << 0; - } - } else if (compress == 3) { - info->mr = stbi__get32le(s); - info->mg = stbi__get32le(s); - info->mb = stbi__get32le(s); - // not documented, but generated by photoshop and handled by mspaint - if (info->mr == info->mg && info->mg == info->mb) { - // ?!?!? - return stbi__errpuc("bad BMP", "bad BMP"); - } - } else - return stbi__errpuc("bad BMP", "bad BMP"); - } - } else { - int i; - if (hsz != 108 && hsz != 124) +static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) { + int hsz; + if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') + return stbi__errpuc("not BMP", "Corrupt BMP"); + stbi__get32le(s); // discard filesize + stbi__get16le(s); // discard reserved + stbi__get16le(s); // discard reserved + info->offset = stbi__get32le(s); + info->hsz = hsz = stbi__get32le(s); + info->mr = info->mg = info->mb = info->ma = 0; + + if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) + return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); + if (hsz == 12) { + s->img_x = stbi__get16le(s); + s->img_y = stbi__get16le(s); + } else { + s->img_x = stbi__get32le(s); + s->img_y = stbi__get32le(s); + } + if (stbi__get16le(s) != 1) + return stbi__errpuc("bad BMP", "bad BMP"); + info->bpp = stbi__get16le(s); + if (hsz != 12) { + int compress = stbi__get32le(s); + if (compress == 1 || compress == 2) + return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); + stbi__get32le(s); // discard sizeof + stbi__get32le(s); // discard hres + stbi__get32le(s); // discard vres + stbi__get32le(s); // discard colorsused + stbi__get32le(s); // discard max important + if (hsz == 40 || hsz == 56) { + if (hsz == 56) { + stbi__get32le(s); + stbi__get32le(s); + stbi__get32le(s); + stbi__get32le(s); + } + if (info->bpp == 16 || info->bpp == 32) { + if (compress == 0) { + if (info->bpp == 32) { + info->mr = 0xffu << 16; + info->mg = 0xffu << 8; + info->mb = 0xffu << 0; + info->ma = 0xffu << 24; + info->all_a = 0; // if all_a is 0 at end, then we loaded alpha + // channel but it was all 0 + } else { + info->mr = 31u << 10; + info->mg = 31u << 5; + info->mb = 31u << 0; + } + } else if (compress == 3) { + info->mr = stbi__get32le(s); + info->mg = stbi__get32le(s); + info->mb = stbi__get32le(s); + // not documented, but generated by photoshop and handled by mspaint + if (info->mr == info->mg && info->mg == info->mb) { + // ?!?!? return stbi__errpuc("bad BMP", "bad BMP"); - info->mr = stbi__get32le(s); - info->mg = stbi__get32le(s); - info->mb = stbi__get32le(s); - info->ma = stbi__get32le(s); - stbi__get32le(s); // discard color space - for (i=0; i < 12; ++i) - stbi__get32le(s); // discard color space parameters - if (hsz == 124) { - stbi__get32le(s); // discard rendering intent - stbi__get32le(s); // discard offset of profile data - stbi__get32le(s); // discard size of profile data - stbi__get32le(s); // discard reserved - } + } + } else + return stbi__errpuc("bad BMP", "bad BMP"); } - } - return (void *) 1; -} - - -static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - stbi_uc *out; - unsigned int mr=0,mg=0,mb=0,ma=0, all_a; - stbi_uc pal[256][4]; - int psize=0,i,j,width; - int flip_vertically, pad, target; - stbi__bmp_data info; - STBI_NOTUSED(ri); - - info.all_a = 255; - if (stbi__bmp_parse_header(s, &info) == NULL) - return NULL; // error code already set - - flip_vertically = ((int) s->img_y) > 0; - s->img_y = abs((int) s->img_y); - - mr = info.mr; - mg = info.mg; - mb = info.mb; - ma = info.ma; - all_a = info.all_a; - - if (info.hsz == 12) { - if (info.bpp < 24) - psize = (info.offset - 14 - 24) / 3; - } else { - if (info.bpp < 16) - psize = (info.offset - 14 - info.hsz) >> 2; - } - - if (info.bpp == 24 && ma == 0xff000000) - s->img_n = 3; - else - s->img_n = ma ? 4 : 3; - if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 - target = req_comp; - else - target = s->img_n; // if they want monochrome, we'll post-convert - - // sanity-check size - if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0)) - return stbi__errpuc("too large", "Corrupt BMP"); - - out = (stbi_uc *) stbi__malloc_mad3(target, s->img_x, s->img_y, 0); - if (!out) return stbi__errpuc("outofmem", "Out of memory"); - if (info.bpp < 16) { - int z=0; - if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); } - for (i=0; i < psize; ++i) { - pal[i][2] = stbi__get8(s); - pal[i][1] = stbi__get8(s); - pal[i][0] = stbi__get8(s); - if (info.hsz != 12) stbi__get8(s); - pal[i][3] = 255; + } else { + int i; + if (hsz != 108 && hsz != 124) + return stbi__errpuc("bad BMP", "bad BMP"); + info->mr = stbi__get32le(s); + info->mg = stbi__get32le(s); + info->mb = stbi__get32le(s); + info->ma = stbi__get32le(s); + stbi__get32le(s); // discard color space + for (i = 0; i < 12; ++i) + stbi__get32le(s); // discard color space parameters + if (hsz == 124) { + stbi__get32le(s); // discard rendering intent + stbi__get32le(s); // discard offset of profile data + stbi__get32le(s); // discard size of profile data + stbi__get32le(s); // discard reserved } - stbi__skip(s, info.offset - 14 - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); - if (info.bpp == 1) width = (s->img_x + 7) >> 3; - else if (info.bpp == 4) width = (s->img_x + 1) >> 1; - else if (info.bpp == 8) width = s->img_x; - else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); } - pad = (-width)&3; - if (info.bpp == 1) { - for (j=0; j < (int) s->img_y; ++j) { - int bit_offset = 7, v = stbi__get8(s); - for (i=0; i < (int) s->img_x; ++i) { - int color = (v>>bit_offset)&0x1; - out[z++] = pal[color][0]; - out[z++] = pal[color][1]; - out[z++] = pal[color][2]; - if (target == 4) out[z++] = 255; - if (i+1 == (int) s->img_x) break; - if((--bit_offset) < 0) { - bit_offset = 7; - v = stbi__get8(s); - } - } - stbi__skip(s, pad); - } - } else { - for (j=0; j < (int) s->img_y; ++j) { - for (i=0; i < (int) s->img_x; i += 2) { - int v=stbi__get8(s),v2=0; - if (info.bpp == 4) { - v2 = v & 15; - v >>= 4; - } - out[z++] = pal[v][0]; - out[z++] = pal[v][1]; - out[z++] = pal[v][2]; - if (target == 4) out[z++] = 255; - if (i+1 == (int) s->img_x) break; - v = (info.bpp == 8) ? stbi__get8(s) : v2; - out[z++] = pal[v][0]; - out[z++] = pal[v][1]; - out[z++] = pal[v][2]; - if (target == 4) out[z++] = 255; - } - stbi__skip(s, pad); - } + } + } + return (void *)1; +} + +static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri) { + stbi_uc *out; + unsigned int mr = 0, mg = 0, mb = 0, ma = 0, all_a; + stbi_uc pal[256][4]; + int psize = 0, i, j, width; + int flip_vertically, pad, target; + stbi__bmp_data info; + STBI_NOTUSED(ri); + + info.all_a = 255; + if (stbi__bmp_parse_header(s, &info) == NULL) + return NULL; // error code already set + + flip_vertically = ((int)s->img_y) > 0; + s->img_y = abs((int)s->img_y); + + mr = info.mr; + mg = info.mg; + mb = info.mb; + ma = info.ma; + all_a = info.all_a; + + if (info.hsz == 12) { + if (info.bpp < 24) + psize = (info.offset - 14 - 24) / 3; + } else { + if (info.bpp < 16) + psize = (info.offset - 14 - info.hsz) >> 2; + } + + if (info.bpp == 24 && ma == 0xff000000) + s->img_n = 3; + else + s->img_n = ma ? 4 : 3; + if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 + target = req_comp; + else + target = s->img_n; // if they want monochrome, we'll post-convert + + // sanity-check size + if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0)) + return stbi__errpuc("too large", "Corrupt BMP"); + + out = (stbi_uc *)stbi__malloc_mad3(target, s->img_x, s->img_y, 0); + if (!out) + return stbi__errpuc("outofmem", "Out of memory"); + if (info.bpp < 16) { + int z = 0; + if (psize == 0 || psize > 256) { + STBI_FREE(out); + return stbi__errpuc("invalid", "Corrupt BMP"); + } + for (i = 0; i < psize; ++i) { + pal[i][2] = stbi__get8(s); + pal[i][1] = stbi__get8(s); + pal[i][0] = stbi__get8(s); + if (info.hsz != 12) + stbi__get8(s); + pal[i][3] = 255; + } + stbi__skip(s, + info.offset - 14 - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); + if (info.bpp == 1) + width = (s->img_x + 7) >> 3; + else if (info.bpp == 4) + width = (s->img_x + 1) >> 1; + else if (info.bpp == 8) + width = s->img_x; + else { + STBI_FREE(out); + return stbi__errpuc("bad bpp", "Corrupt BMP"); + } + pad = (-width) & 3; + if (info.bpp == 1) { + for (j = 0; j < (int)s->img_y; ++j) { + int bit_offset = 7, v = stbi__get8(s); + for (i = 0; i < (int)s->img_x; ++i) { + int color = (v >> bit_offset) & 0x1; + out[z++] = pal[color][0]; + out[z++] = pal[color][1]; + out[z++] = pal[color][2]; + if (target == 4) + out[z++] = 255; + if (i + 1 == (int)s->img_x) + break; + if ((--bit_offset) < 0) { + bit_offset = 7; + v = stbi__get8(s); + } + } + stbi__skip(s, pad); } - } else { - int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; - int z = 0; - int easy=0; - stbi__skip(s, info.offset - 14 - info.hsz); - if (info.bpp == 24) width = 3 * s->img_x; - else if (info.bpp == 16) width = 2*s->img_x; - else /* bpp = 32 and pad = 0 */ width=0; - pad = (-width) & 3; - if (info.bpp == 24) { - easy = 1; - } else if (info.bpp == 32) { - if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) - easy = 2; + } else { + for (j = 0; j < (int)s->img_y; ++j) { + for (i = 0; i < (int)s->img_x; i += 2) { + int v = stbi__get8(s), v2 = 0; + if (info.bpp == 4) { + v2 = v & 15; + v >>= 4; + } + out[z++] = pal[v][0]; + out[z++] = pal[v][1]; + out[z++] = pal[v][2]; + if (target == 4) + out[z++] = 255; + if (i + 1 == (int)s->img_x) + break; + v = (info.bpp == 8) ? stbi__get8(s) : v2; + out[z++] = pal[v][0]; + out[z++] = pal[v][1]; + out[z++] = pal[v][2]; + if (target == 4) + out[z++] = 255; + } + stbi__skip(s, pad); } - if (!easy) { - if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); } - // right shift amt to put high bit in position #7 - rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr); - gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg); - bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb); - ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma); + } + } else { + int rshift = 0, gshift = 0, bshift = 0, ashift = 0, rcount = 0, gcount = 0, + bcount = 0, acount = 0; + int z = 0; + int easy = 0; + stbi__skip(s, info.offset - 14 - info.hsz); + if (info.bpp == 24) + width = 3 * s->img_x; + else if (info.bpp == 16) + width = 2 * s->img_x; + else /* bpp = 32 and pad = 0 */ + width = 0; + pad = (-width) & 3; + if (info.bpp == 24) { + easy = 1; + } else if (info.bpp == 32) { + if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) + easy = 2; + } + if (!easy) { + if (!mr || !mg || !mb) { + STBI_FREE(out); + return stbi__errpuc("bad masks", "Corrupt BMP"); } - for (j=0; j < (int) s->img_y; ++j) { - if (easy) { - for (i=0; i < (int) s->img_x; ++i) { - unsigned char a; - out[z+2] = stbi__get8(s); - out[z+1] = stbi__get8(s); - out[z+0] = stbi__get8(s); - z += 3; - a = (easy == 2 ? stbi__get8(s) : 255); - all_a |= a; - if (target == 4) out[z++] = a; - } - } else { - int bpp = info.bpp; - for (i=0; i < (int) s->img_x; ++i) { - stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s)); - unsigned int a; - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); - a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); - all_a |= a; - if (target == 4) out[z++] = STBI__BYTECAST(a); - } - } - stbi__skip(s, pad); + // right shift amt to put high bit in position #7 + rshift = stbi__high_bit(mr) - 7; + rcount = stbi__bitcount(mr); + gshift = stbi__high_bit(mg) - 7; + gcount = stbi__bitcount(mg); + bshift = stbi__high_bit(mb) - 7; + bcount = stbi__bitcount(mb); + ashift = stbi__high_bit(ma) - 7; + acount = stbi__bitcount(ma); + } + for (j = 0; j < (int)s->img_y; ++j) { + if (easy) { + for (i = 0; i < (int)s->img_x; ++i) { + unsigned char a; + out[z + 2] = stbi__get8(s); + out[z + 1] = stbi__get8(s); + out[z + 0] = stbi__get8(s); + z += 3; + a = (easy == 2 ? stbi__get8(s) : 255); + all_a |= a; + if (target == 4) + out[z++] = a; + } + } else { + int bpp = info.bpp; + for (i = 0; i < (int)s->img_x; ++i) { + stbi__uint32 v = + (bpp == 16 ? (stbi__uint32)stbi__get16le(s) : stbi__get32le(s)); + unsigned int a; + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); + a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); + all_a |= a; + if (target == 4) + out[z++] = STBI__BYTECAST(a); + } } - } - - // if alpha channel is all 0s, replace with all 255s - if (target == 4 && all_a == 0) - for (i=4*s->img_x*s->img_y-1; i >= 0; i -= 4) - out[i] = 255; - - if (flip_vertically) { - stbi_uc t; - for (j=0; j < (int) s->img_y>>1; ++j) { - stbi_uc *p1 = out + j *s->img_x*target; - stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; - for (i=0; i < (int) s->img_x*target; ++i) { - t = p1[i]; p1[i] = p2[i]; p2[i] = t; - } + stbi__skip(s, pad); + } + } + + // if alpha channel is all 0s, replace with all 255s + if (target == 4 && all_a == 0) + for (i = 4 * s->img_x * s->img_y - 1; i >= 0; i -= 4) + out[i] = 255; + + if (flip_vertically) { + stbi_uc t; + for (j = 0; j< ((int)s->img_y >> 1); ++j) { + stbi_uc *p1 = out + j * s->img_x * target; + stbi_uc *p2 = out + (s->img_y - 1 - j) * s->img_x * target; + for (i = 0; i < (int)s->img_x * target; ++i) { + t = p1[i]; + p1[i] = p2[i]; + p2[i] = t; } - } + } + } - if (req_comp && req_comp != target) { - out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); - if (out == NULL) return out; // stbi__convert_format frees input on failure - } + if (req_comp && req_comp != target) { + out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); + if (out == NULL) + return out; // stbi__convert_format frees input on failure + } - *x = s->img_x; - *y = s->img_y; - if (comp) *comp = s->img_n; - return out; + *x = s->img_x; + *y = s->img_y; + if (comp) + *comp = s->img_n; + return out; } #endif @@ -5392,581 +6030,610 @@ static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req // by Jonathan Dummer #ifndef STBI_NO_TGA // returns STBI_rgb or whatever, 0 on error -static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16) -{ - // only RGB or RGBA (incl. 16bit) or grey allowed - if (is_rgb16) *is_rgb16 = 0; - switch(bits_per_pixel) { - case 8: return STBI_grey; - case 16: if(is_grey) return STBI_grey_alpha; - // fallthrough - case 15: if(is_rgb16) *is_rgb16 = 1; - return STBI_rgb; - case 24: // fallthrough - case 32: return bits_per_pixel/8; - default: return 0; - } -} - -static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) -{ - int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp; - int sz, tga_colormap_type; - stbi__get8(s); // discard Offset - tga_colormap_type = stbi__get8(s); // colormap type - if( tga_colormap_type > 1 ) { - stbi__rewind(s); - return 0; // only RGB or indexed allowed - } - tga_image_type = stbi__get8(s); // image type - if ( tga_colormap_type == 1 ) { // colormapped (paletted) image - if (tga_image_type != 1 && tga_image_type != 9) { - stbi__rewind(s); - return 0; - } - stbi__skip(s,4); // skip index of first colormap entry and number of entries - sz = stbi__get8(s); // check bits per palette color entry - if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) { - stbi__rewind(s); - return 0; - } - stbi__skip(s,4); // skip image x and y origin - tga_colormap_bpp = sz; - } else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE - if ( (tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11) ) { - stbi__rewind(s); - return 0; // only RGB or grey allowed, +/- RLE - } - stbi__skip(s,9); // skip colormap specification and image x/y origin - tga_colormap_bpp = 0; - } - tga_w = stbi__get16le(s); - if( tga_w < 1 ) { - stbi__rewind(s); - return 0; // test width +static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int *is_rgb16) { + // only RGB or RGBA (incl. 16bit) or grey allowed + if (is_rgb16) + *is_rgb16 = 0; + switch (bits_per_pixel) { + case 8: + return STBI_grey; + case 16: + if (is_grey) + return STBI_grey_alpha; + // fallthrough + case 15: + if (is_rgb16) + *is_rgb16 = 1; + return STBI_rgb; + case 24: // fallthrough + case 32: + return bits_per_pixel / 8; + default: + return 0; + } +} + +static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) { + int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, + tga_colormap_bpp; + int sz, tga_colormap_type; + stbi__get8(s); // discard Offset + tga_colormap_type = stbi__get8(s); // colormap type + if (tga_colormap_type > 1) { + stbi__rewind(s); + return 0; // only RGB or indexed allowed + } + tga_image_type = stbi__get8(s); // image type + if (tga_colormap_type == 1) { // colormapped (paletted) image + if (tga_image_type != 1 && tga_image_type != 9) { + stbi__rewind(s); + return 0; } - tga_h = stbi__get16le(s); - if( tga_h < 1 ) { - stbi__rewind(s); - return 0; // test height + stbi__skip(s, + 4); // skip index of first colormap entry and number of entries + sz = stbi__get8(s); // check bits per palette color entry + if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) { + stbi__rewind(s); + return 0; } - tga_bits_per_pixel = stbi__get8(s); // bits per pixel - stbi__get8(s); // ignore alpha bits - if (tga_colormap_bpp != 0) { - if((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) { - // when using a colormap, tga_bits_per_pixel is the size of the indexes - // I don't think anything but 8 or 16bit indexes makes sense - stbi__rewind(s); - return 0; - } - tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL); - } else { - tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL); + stbi__skip(s, 4); // skip image x and y origin + tga_colormap_bpp = sz; + } else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE + if ((tga_image_type != 2) && (tga_image_type != 3) && + (tga_image_type != 10) && (tga_image_type != 11)) { + stbi__rewind(s); + return 0; // only RGB or grey allowed, +/- RLE } - if(!tga_comp) { + stbi__skip(s, 9); // skip colormap specification and image x/y origin + tga_colormap_bpp = 0; + } + tga_w = stbi__get16le(s); + if (tga_w < 1) { + stbi__rewind(s); + return 0; // test width + } + tga_h = stbi__get16le(s); + if (tga_h < 1) { + stbi__rewind(s); + return 0; // test height + } + tga_bits_per_pixel = stbi__get8(s); // bits per pixel + stbi__get8(s); // ignore alpha bits + if (tga_colormap_bpp != 0) { + if ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) { + // when using a colormap, tga_bits_per_pixel is the size of the indexes + // I don't think anything but 8 or 16bit indexes makes sense stbi__rewind(s); return 0; } - if (x) *x = tga_w; - if (y) *y = tga_h; - if (comp) *comp = tga_comp; - return 1; // seems to have passed everything -} - -static int stbi__tga_test(stbi__context *s) -{ - int res = 0; - int sz, tga_color_type; - stbi__get8(s); // discard Offset - tga_color_type = stbi__get8(s); // color type - if ( tga_color_type > 1 ) goto errorEnd; // only RGB or indexed allowed - sz = stbi__get8(s); // image type - if ( tga_color_type == 1 ) { // colormapped (paletted) image - if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9 - stbi__skip(s,4); // skip index of first colormap entry and number of entries - sz = stbi__get8(s); // check bits per palette color entry - if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; - stbi__skip(s,4); // skip image x and y origin - } else { // "normal" image w/o colormap - if ( (sz != 2) && (sz != 3) && (sz != 10) && (sz != 11) ) goto errorEnd; // only RGB or grey allowed, +/- RLE - stbi__skip(s,9); // skip colormap specification and image x/y origin - } - if ( stbi__get16le(s) < 1 ) goto errorEnd; // test width - if ( stbi__get16le(s) < 1 ) goto errorEnd; // test height - sz = stbi__get8(s); // bits per pixel - if ( (tga_color_type == 1) && (sz != 8) && (sz != 16) ) goto errorEnd; // for colormapped images, bpp is size of an index - if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; - - res = 1; // if we got this far, everything's good and we can return 1 instead of 0 + tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL); + } else { + tga_comp = stbi__tga_get_comp( + tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), + NULL); + } + if (!tga_comp) { + stbi__rewind(s); + return 0; + } + if (x) + *x = tga_w; + if (y) + *y = tga_h; + if (comp) + *comp = tga_comp; + return 1; // seems to have passed everything +} + +static int stbi__tga_test(stbi__context *s) { + int res = 0; + int sz, tga_color_type; + stbi__get8(s); // discard Offset + tga_color_type = stbi__get8(s); // color type + if (tga_color_type > 1) + goto errorEnd; // only RGB or indexed allowed + sz = stbi__get8(s); // image type + if (tga_color_type == 1) { // colormapped (paletted) image + if (sz != 1 && sz != 9) + goto errorEnd; // colortype 1 demands image type 1 or 9 + stbi__skip(s, + 4); // skip index of first colormap entry and number of entries + sz = stbi__get8(s); // check bits per palette color entry + if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) + goto errorEnd; + stbi__skip(s, 4); // skip image x and y origin + } else { // "normal" image w/o colormap + if ((sz != 2) && (sz != 3) && (sz != 10) && (sz != 11)) + goto errorEnd; // only RGB or grey allowed, +/- RLE + stbi__skip(s, 9); // skip colormap specification and image x/y origin + } + if (stbi__get16le(s) < 1) + goto errorEnd; // test width + if (stbi__get16le(s) < 1) + goto errorEnd; // test height + sz = stbi__get8(s); // bits per pixel + if ((tga_color_type == 1) && (sz != 8) && (sz != 16)) + goto errorEnd; // for colormapped images, bpp is size of an index + if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) + goto errorEnd; + + res = 1; // if we got this far, everything's good and we can return 1 instead + // of 0 errorEnd: - stbi__rewind(s); - return res; + stbi__rewind(s); + return res; } // read 16bit value and convert to 24bit RGB -static void stbi__tga_read_rgb16(stbi__context *s, stbi_uc* out) -{ - stbi__uint16 px = (stbi__uint16)stbi__get16le(s); - stbi__uint16 fiveBitMask = 31; - // we have 3 channels with 5bits each - int r = (px >> 10) & fiveBitMask; - int g = (px >> 5) & fiveBitMask; - int b = px & fiveBitMask; - // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later - out[0] = (stbi_uc)((r * 255)/31); - out[1] = (stbi_uc)((g * 255)/31); - out[2] = (stbi_uc)((b * 255)/31); - - // some people claim that the most significant bit might be used for alpha - // (possibly if an alpha-bit is set in the "image descriptor byte") - // but that only made 16bit test images completely translucent.. - // so let's treat all 15 and 16bit TGAs as RGB with no alpha. -} - -static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - // read in the TGA header stuff - int tga_offset = stbi__get8(s); - int tga_indexed = stbi__get8(s); - int tga_image_type = stbi__get8(s); - int tga_is_RLE = 0; - int tga_palette_start = stbi__get16le(s); - int tga_palette_len = stbi__get16le(s); - int tga_palette_bits = stbi__get8(s); - int tga_x_origin = stbi__get16le(s); - int tga_y_origin = stbi__get16le(s); - int tga_width = stbi__get16le(s); - int tga_height = stbi__get16le(s); - int tga_bits_per_pixel = stbi__get8(s); - int tga_comp, tga_rgb16=0; - int tga_inverted = stbi__get8(s); - // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?) - // image data - unsigned char *tga_data; - unsigned char *tga_palette = NULL; - int i, j; - unsigned char raw_data[4] = {0}; - int RLE_count = 0; - int RLE_repeating = 0; - int read_next_pixel = 1; - STBI_NOTUSED(ri); - STBI_NOTUSED(tga_x_origin); // @TODO - STBI_NOTUSED(tga_y_origin); // @TODO - - // do a tiny bit of precessing - if ( tga_image_type >= 8 ) - { - tga_image_type -= 8; - tga_is_RLE = 1; - } - tga_inverted = 1 - ((tga_inverted >> 5) & 1); - - // If I'm paletted, then I'll use the number of bits from the palette - if ( tga_indexed ) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); - else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16); - - if(!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency - return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); - - // tga info - *x = tga_width; - *y = tga_height; - if (comp) *comp = tga_comp; - - if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0)) - return stbi__errpuc("too large", "Corrupt TGA"); - - tga_data = (unsigned char*)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0); - if (!tga_data) return stbi__errpuc("outofmem", "Out of memory"); - - // skip to the data's starting position (offset usually = 0) - stbi__skip(s, tga_offset ); - - if ( !tga_indexed && !tga_is_RLE && !tga_rgb16 ) { - for (i=0; i < tga_height; ++i) { - int row = tga_inverted ? tga_height -i - 1 : i; - stbi_uc *tga_row = tga_data + row*tga_width*tga_comp; - stbi__getn(s, tga_row, tga_width * tga_comp); - } - } else { - // do I need to load a palette? - if ( tga_indexed) - { - // any data to skip? (offset usually = 0) - stbi__skip(s, tga_palette_start ); - // load the palette - tga_palette = (unsigned char*)stbi__malloc_mad2(tga_palette_len, tga_comp, 0); - if (!tga_palette) { - STBI_FREE(tga_data); - return stbi__errpuc("outofmem", "Out of memory"); - } - if (tga_rgb16) { - stbi_uc *pal_entry = tga_palette; - STBI_ASSERT(tga_comp == STBI_rgb); - for (i=0; i < tga_palette_len; ++i) { - stbi__tga_read_rgb16(s, pal_entry); - pal_entry += tga_comp; - } - } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { - STBI_FREE(tga_data); - STBI_FREE(tga_palette); - return stbi__errpuc("bad palette", "Corrupt TGA"); - } - } - // load the data - for (i=0; i < tga_width * tga_height; ++i) - { - // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? - if ( tga_is_RLE ) - { - if ( RLE_count == 0 ) - { - // yep, get the next byte as a RLE command - int RLE_cmd = stbi__get8(s); - RLE_count = 1 + (RLE_cmd & 127); - RLE_repeating = RLE_cmd >> 7; - read_next_pixel = 1; - } else if ( !RLE_repeating ) - { - read_next_pixel = 1; - } - } else - { - read_next_pixel = 1; - } - // OK, if I need to read a pixel, do it now - if ( read_next_pixel ) - { - // load however much data we did have - if ( tga_indexed ) - { - // read in index, then perform the lookup - int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); - if ( pal_idx >= tga_palette_len ) { - // invalid index - pal_idx = 0; - } - pal_idx *= tga_comp; - for (j = 0; j < tga_comp; ++j) { - raw_data[j] = tga_palette[pal_idx+j]; - } - } else if(tga_rgb16) { - STBI_ASSERT(tga_comp == STBI_rgb); - stbi__tga_read_rgb16(s, raw_data); - } else { - // read in the data raw - for (j = 0; j < tga_comp; ++j) { - raw_data[j] = stbi__get8(s); - } - } - // clear the reading flag for the next pixel - read_next_pixel = 0; - } // end of reading a pixel - - // copy data - for (j = 0; j < tga_comp; ++j) - tga_data[i*tga_comp+j] = raw_data[j]; - - // in case we're in RLE mode, keep counting down - --RLE_count; +static void stbi__tga_read_rgb16(stbi__context *s, stbi_uc *out) { + stbi__uint16 px = (stbi__uint16)stbi__get16le(s); + stbi__uint16 fiveBitMask = 31; + // we have 3 channels with 5bits each + int r = (px >> 10) & fiveBitMask; + int g = (px >> 5) & fiveBitMask; + int b = px & fiveBitMask; + // Note that this saves the data in RGB(A) order, so it doesn't need to be + // swapped later + out[0] = (stbi_uc)((r * 255) / 31); + out[1] = (stbi_uc)((g * 255) / 31); + out[2] = (stbi_uc)((b * 255) / 31); + + // some people claim that the most significant bit might be used for alpha + // (possibly if an alpha-bit is set in the "image descriptor byte") + // but that only made 16bit test images completely translucent.. + // so let's treat all 15 and 16bit TGAs as RGB with no alpha. +} + +static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri) { + // read in the TGA header stuff + int tga_offset = stbi__get8(s); + int tga_indexed = stbi__get8(s); + int tga_image_type = stbi__get8(s); + int tga_is_RLE = 0; + int tga_palette_start = stbi__get16le(s); + int tga_palette_len = stbi__get16le(s); + int tga_palette_bits = stbi__get8(s); + int tga_x_origin = stbi__get16le(s); + int tga_y_origin = stbi__get16le(s); + int tga_width = stbi__get16le(s); + int tga_height = stbi__get16le(s); + int tga_bits_per_pixel = stbi__get8(s); + int tga_comp, tga_rgb16 = 0; + int tga_inverted = stbi__get8(s); + // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused + // (useless?) + // image data + unsigned char *tga_data; + unsigned char *tga_palette = NULL; + int i, j; + unsigned char raw_data[4] = {0}; + int RLE_count = 0; + int RLE_repeating = 0; + int read_next_pixel = 1; + STBI_NOTUSED(ri); + STBI_NOTUSED(tga_x_origin); // @TODO + STBI_NOTUSED(tga_y_origin); // @TODO + + // do a tiny bit of precessing + if (tga_image_type >= 8) { + tga_image_type -= 8; + tga_is_RLE = 1; + } + tga_inverted = 1 - ((tga_inverted >> 5) & 1); + + // If I'm paletted, then I'll use the number of bits from the palette + if (tga_indexed) + tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); + else + tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), + &tga_rgb16); + + if (!tga_comp) // shouldn't really happen, stbi__tga_test() should have + // ensured basic consistency + return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); + + // tga info + *x = tga_width; + *y = tga_height; + if (comp) + *comp = tga_comp; + + if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0)) + return stbi__errpuc("too large", "Corrupt TGA"); + + tga_data = + (unsigned char *)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0); + if (!tga_data) + return stbi__errpuc("outofmem", "Out of memory"); + + // skip to the data's starting position (offset usually = 0) + stbi__skip(s, tga_offset); + + if (!tga_indexed && !tga_is_RLE && !tga_rgb16) { + for (i = 0; i < tga_height; ++i) { + int row = tga_inverted ? tga_height - i - 1 : i; + stbi_uc *tga_row = tga_data + row * tga_width * tga_comp; + stbi__getn(s, tga_row, tga_width * tga_comp); + } + } else { + // do I need to load a palette? + if (tga_indexed) { + // any data to skip? (offset usually = 0) + stbi__skip(s, tga_palette_start); + // load the palette + tga_palette = + (unsigned char *)stbi__malloc_mad2(tga_palette_len, tga_comp, 0); + if (!tga_palette) { + STBI_FREE(tga_data); + return stbi__errpuc("outofmem", "Out of memory"); } - // do I need to invert the image? - if ( tga_inverted ) - { - for (j = 0; j*2 < tga_height; ++j) - { - int index1 = j * tga_width * tga_comp; - int index2 = (tga_height - 1 - j) * tga_width * tga_comp; - for (i = tga_width * tga_comp; i > 0; --i) - { - unsigned char temp = tga_data[index1]; - tga_data[index1] = tga_data[index2]; - tga_data[index2] = temp; - ++index1; - ++index2; - } - } + if (tga_rgb16) { + stbi_uc *pal_entry = tga_palette; + STBI_ASSERT(tga_comp == STBI_rgb); + for (i = 0; i < tga_palette_len; ++i) { + stbi__tga_read_rgb16(s, pal_entry); + pal_entry += tga_comp; + } + } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { + STBI_FREE(tga_data); + STBI_FREE(tga_palette); + return stbi__errpuc("bad palette", "Corrupt TGA"); } - // clear my palette, if I had one - if ( tga_palette != NULL ) - { - STBI_FREE( tga_palette ); + } + // load the data + for (i = 0; i < tga_width * tga_height; ++i) { + // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? + if (tga_is_RLE) { + if (RLE_count == 0) { + // yep, get the next byte as a RLE command + int RLE_cmd = stbi__get8(s); + RLE_count = 1 + (RLE_cmd & 127); + RLE_repeating = RLE_cmd >> 7; + read_next_pixel = 1; + } else if (!RLE_repeating) { + read_next_pixel = 1; + } + } else { + read_next_pixel = 1; } - } + // OK, if I need to read a pixel, do it now + if (read_next_pixel) { + // load however much data we did have + if (tga_indexed) { + // read in index, then perform the lookup + int pal_idx = + (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); + if (pal_idx >= tga_palette_len) { + // invalid index + pal_idx = 0; + } + pal_idx *= tga_comp; + for (j = 0; j < tga_comp; ++j) { + raw_data[j] = tga_palette[pal_idx + j]; + } + } else if (tga_rgb16) { + STBI_ASSERT(tga_comp == STBI_rgb); + stbi__tga_read_rgb16(s, raw_data); + } else { + // read in the data raw + for (j = 0; j < tga_comp; ++j) { + raw_data[j] = stbi__get8(s); + } + } + // clear the reading flag for the next pixel + read_next_pixel = 0; + } // end of reading a pixel - // swap RGB - if the source data was RGB16, it already is in the right order - if (tga_comp >= 3 && !tga_rgb16) - { - unsigned char* tga_pixel = tga_data; - for (i=0; i < tga_width * tga_height; ++i) - { - unsigned char temp = tga_pixel[0]; - tga_pixel[0] = tga_pixel[2]; - tga_pixel[2] = temp; - tga_pixel += tga_comp; + // copy data + for (j = 0; j < tga_comp; ++j) + tga_data[i * tga_comp + j] = raw_data[j]; + + // in case we're in RLE mode, keep counting down + --RLE_count; + } + // do I need to invert the image? + if (tga_inverted) { + for (j = 0; j * 2 < tga_height; ++j) { + int index1 = j * tga_width * tga_comp; + int index2 = (tga_height - 1 - j) * tga_width * tga_comp; + for (i = tga_width * tga_comp; i > 0; --i) { + unsigned char temp = tga_data[index1]; + tga_data[index1] = tga_data[index2]; + tga_data[index2] = temp; + ++index1; + ++index2; + } } - } + } + // clear my palette, if I had one + if (tga_palette != NULL) { + STBI_FREE(tga_palette); + } + } + + // swap RGB - if the source data was RGB16, it already is in the right order + if (tga_comp >= 3 && !tga_rgb16) { + unsigned char *tga_pixel = tga_data; + for (i = 0; i < tga_width * tga_height; ++i) { + unsigned char temp = tga_pixel[0]; + tga_pixel[0] = tga_pixel[2]; + tga_pixel[2] = temp; + tga_pixel += tga_comp; + } + } - // convert to target component count - if (req_comp && req_comp != tga_comp) - tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); + // convert to target component count + if (req_comp && req_comp != tga_comp) + tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, + tga_height); - // the things I do to get rid of an error message, and yet keep - // Microsoft's C compilers happy... [8^( - tga_palette_start = tga_palette_len = tga_palette_bits = - tga_x_origin = tga_y_origin = 0; - STBI_NOTUSED(tga_palette_start); - // OK, done - return tga_data; + // the things I do to get rid of an error message, and yet keep + // Microsoft's C compilers happy... [8^( + tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = + tga_y_origin = 0; + STBI_NOTUSED(tga_palette_start); + // OK, done + return tga_data; } #endif // ************************************************************************************************* -// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB +// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, +// tweaked by STB #ifndef STBI_NO_PSD -static int stbi__psd_test(stbi__context *s) -{ - int r = (stbi__get32be(s) == 0x38425053); - stbi__rewind(s); - return r; -} - -static int stbi__psd_decode_rle(stbi__context *s, stbi_uc *p, int pixelCount) -{ - int count, nleft, len; - - count = 0; - while ((nleft = pixelCount - count) > 0) { - len = stbi__get8(s); - if (len == 128) { - // No-op. - } else if (len < 128) { - // Copy next len+1 bytes literally. - len++; - if (len > nleft) return 0; // corrupt data - count += len; - while (len) { - *p = stbi__get8(s); - p += 4; - len--; - } - } else if (len > 128) { - stbi_uc val; - // Next -len+1 bytes in the dest are replicated from next source byte. - // (Interpret len as a negative 8-bit int.) - len = 257 - len; - if (len > nleft) return 0; // corrupt data - val = stbi__get8(s); - count += len; - while (len) { - *p = val; - p += 4; - len--; - } +static int stbi__psd_test(stbi__context *s) { + int r = (stbi__get32be(s) == 0x38425053); + stbi__rewind(s); + return r; +} + +static int stbi__psd_decode_rle(stbi__context *s, stbi_uc *p, int pixelCount) { + int count, nleft, len; + + count = 0; + while ((nleft = pixelCount - count) > 0) { + len = stbi__get8(s); + if (len == 128) { + // No-op. + } else if (len < 128) { + // Copy next len+1 bytes literally. + len++; + if (len > nleft) + return 0; // corrupt data + count += len; + while (len) { + *p = stbi__get8(s); + p += 4; + len--; } - } - - return 1; -} + } else if (len > 128) { + stbi_uc val; + // Next -len+1 bytes in the dest are replicated from next source byte. + // (Interpret len as a negative 8-bit int.) + len = 257 - len; + if (len > nleft) + return 0; // corrupt data + val = stbi__get8(s); + count += len; + while (len) { + *p = val; + p += 4; + len--; + } + } + } + + return 1; +} + +static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri, int bpc) { + int pixelCount; + int channelCount, compression; + int channel, i; + int bitdepth; + int w, h; + stbi_uc *out; + STBI_NOTUSED(ri); + + // Check identifier + if (stbi__get32be(s) != 0x38425053) // "8BPS" + return stbi__errpuc("not PSD", "Corrupt PSD image"); + + // Check file type version. + if (stbi__get16be(s) != 1) + return stbi__errpuc("wrong version", "Unsupported version of PSD image"); + + // Skip 6 reserved bytes. + stbi__skip(s, 6); + + // Read the number of channels (R, G, B, A, etc). + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) + return stbi__errpuc("wrong channel count", + "Unsupported number of channels in PSD image"); + + // Read the rows and columns of the image. + h = stbi__get32be(s); + w = stbi__get32be(s); + + // Make sure the depth is 8 bits. + bitdepth = stbi__get16be(s); + if (bitdepth != 8 && bitdepth != 16) + return stbi__errpuc("unsupported bit depth", + "PSD bit depth is not 8 or 16 bit"); + + // Make sure the color mode is RGB. + // Valid options are: + // 0: Bitmap + // 1: Grayscale + // 2: Indexed color + // 3: RGB color + // 4: CMYK color + // 7: Multichannel + // 8: Duotone + // 9: Lab color + if (stbi__get16be(s) != 3) + return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); + + // Skip the Mode Data. (It's the palette for indexed color; other info for + // other modes.) + stbi__skip(s, stbi__get32be(s)); + + // Skip the image resources. (resolution, pen tool paths, etc) + stbi__skip(s, stbi__get32be(s)); + + // Skip the reserved data. + stbi__skip(s, stbi__get32be(s)); + + // Find out if the data is compressed. + // Known values: + // 0: no compression + // 1: RLE compressed + compression = stbi__get16be(s); + if (compression > 1) + return stbi__errpuc("bad compression", + "PSD has an unknown compression format"); + + // Check size + if (!stbi__mad3sizes_valid(4, w, h, 0)) + return stbi__errpuc("too large", "Corrupt PSD"); + + // Create the destination image. + + if (!compression && bitdepth == 16 && bpc == 16) { + out = (stbi_uc *)stbi__malloc_mad3(8, w, h, 0); + ri->bits_per_channel = 16; + } else + out = (stbi_uc *)stbi__malloc(4 * w * h); + + if (!out) + return stbi__errpuc("outofmem", "Out of memory"); + pixelCount = w * h; + + // Initialize the data to zero. + // memset( out, 0, pixelCount * 4 ); + + // Finally, the image data. + if (compression) { + // RLE as used by .PSD and .TIFF + // Loop until you get the number of unpacked bytes you are expecting: + // Read the next source byte into n. + // If n is between 0 and 127 inclusive, copy the next n+1 bytes + // literally. Else if n is between -127 and -1 inclusive, copy the next + // byte -n+1 times. Else if n is 128, noop. + // Endloop + + // The RLE-compressed data is preceded by a 2-byte data count for each row + // in the data, which we're going to just skip. + stbi__skip(s, h * channelCount * 2); + + // Read the RLE data by channel. + for (channel = 0; channel < 4; channel++) { + stbi_uc *p; + + p = out + channel; + if (channel >= channelCount) { + // Fill this channel with default data. + for (i = 0; i < pixelCount; i++, p += 4) + *p = (channel == 3 ? 255 : 0); + } else { + // Read the RLE data. + if (!stbi__psd_decode_rle(s, p, pixelCount)) { + STBI_FREE(out); + return stbi__errpuc("corrupt", "bad RLE data"); + } + } + } -static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) -{ - int pixelCount; - int channelCount, compression; - int channel, i; - int bitdepth; - int w,h; - stbi_uc *out; - STBI_NOTUSED(ri); - - // Check identifier - if (stbi__get32be(s) != 0x38425053) // "8BPS" - return stbi__errpuc("not PSD", "Corrupt PSD image"); - - // Check file type version. - if (stbi__get16be(s) != 1) - return stbi__errpuc("wrong version", "Unsupported version of PSD image"); - - // Skip 6 reserved bytes. - stbi__skip(s, 6 ); - - // Read the number of channels (R, G, B, A, etc). - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) - return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image"); - - // Read the rows and columns of the image. - h = stbi__get32be(s); - w = stbi__get32be(s); - - // Make sure the depth is 8 bits. - bitdepth = stbi__get16be(s); - if (bitdepth != 8 && bitdepth != 16) - return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit"); - - // Make sure the color mode is RGB. - // Valid options are: - // 0: Bitmap - // 1: Grayscale - // 2: Indexed color - // 3: RGB color - // 4: CMYK color - // 7: Multichannel - // 8: Duotone - // 9: Lab color - if (stbi__get16be(s) != 3) - return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); - - // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) - stbi__skip(s,stbi__get32be(s) ); - - // Skip the image resources. (resolution, pen tool paths, etc) - stbi__skip(s, stbi__get32be(s) ); - - // Skip the reserved data. - stbi__skip(s, stbi__get32be(s) ); - - // Find out if the data is compressed. - // Known values: - // 0: no compression - // 1: RLE compressed - compression = stbi__get16be(s); - if (compression > 1) - return stbi__errpuc("bad compression", "PSD has an unknown compression format"); - - // Check size - if (!stbi__mad3sizes_valid(4, w, h, 0)) - return stbi__errpuc("too large", "Corrupt PSD"); - - // Create the destination image. - - if (!compression && bitdepth == 16 && bpc == 16) { - out = (stbi_uc *) stbi__malloc_mad3(8, w, h, 0); - ri->bits_per_channel = 16; - } else - out = (stbi_uc *) stbi__malloc(4 * w*h); - - if (!out) return stbi__errpuc("outofmem", "Out of memory"); - pixelCount = w*h; - - // Initialize the data to zero. - //memset( out, 0, pixelCount * 4 ); - - // Finally, the image data. - if (compression) { - // RLE as used by .PSD and .TIFF - // Loop until you get the number of unpacked bytes you are expecting: - // Read the next source byte into n. - // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. - // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. - // Else if n is 128, noop. - // Endloop - - // The RLE-compressed data is preceded by a 2-byte data count for each row in the data, - // which we're going to just skip. - stbi__skip(s, h * channelCount * 2 ); - - // Read the RLE data by channel. - for (channel = 0; channel < 4; channel++) { - stbi_uc *p; - - p = out+channel; - if (channel >= channelCount) { - // Fill this channel with default data. + } else { + // We're at the raw image data. It's each channel in order (Red, Green, + // Blue, Alpha, ...) where each channel consists of an 8-bit (or 16-bit) + // value for each pixel in the image. + + // Read the data by channel. + for (channel = 0; channel < 4; channel++) { + if (channel >= channelCount) { + // Fill this channel with default data. + if (bitdepth == 16 && bpc == 16) { + stbi__uint16 *q = ((stbi__uint16 *)out) + channel; + stbi__uint16 val = channel == 3 ? 65535 : 0; + for (i = 0; i < pixelCount; i++, q += 4) + *q = val; + } else { + stbi_uc *p = out + channel; + stbi_uc val = channel == 3 ? 255 : 0; + for (i = 0; i < pixelCount; i++, p += 4) + *p = val; + } + } else { + if (ri->bits_per_channel == 16) { // output bpc + stbi__uint16 *q = ((stbi__uint16 *)out) + channel; + for (i = 0; i < pixelCount; i++, q += 4) + *q = (stbi__uint16)stbi__get16be(s); + } else { + stbi_uc *p = out + channel; + if (bitdepth == 16) { // input bpc for (i = 0; i < pixelCount; i++, p += 4) - *p = (channel == 3 ? 255 : 0); - } else { - // Read the RLE data. - if (!stbi__psd_decode_rle(s, p, pixelCount)) { - STBI_FREE(out); - return stbi__errpuc("corrupt", "bad RLE data"); - } - } + *p = (stbi_uc)(stbi__get16be(s) >> 8); + } else { + for (i = 0; i < pixelCount; i++, p += 4) + *p = stbi__get8(s); + } + } } - - } else { - // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) - // where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image. - - // Read the data by channel. - for (channel = 0; channel < 4; channel++) { - if (channel >= channelCount) { - // Fill this channel with default data. - if (bitdepth == 16 && bpc == 16) { - stbi__uint16 *q = ((stbi__uint16 *) out) + channel; - stbi__uint16 val = channel == 3 ? 65535 : 0; - for (i = 0; i < pixelCount; i++, q += 4) - *q = val; - } else { - stbi_uc *p = out+channel; - stbi_uc val = channel == 3 ? 255 : 0; - for (i = 0; i < pixelCount; i++, p += 4) - *p = val; - } - } else { - if (ri->bits_per_channel == 16) { // output bpc - stbi__uint16 *q = ((stbi__uint16 *) out) + channel; - for (i = 0; i < pixelCount; i++, q += 4) - *q = (stbi__uint16) stbi__get16be(s); - } else { - stbi_uc *p = out+channel; - if (bitdepth == 16) { // input bpc - for (i = 0; i < pixelCount; i++, p += 4) - *p = (stbi_uc) (stbi__get16be(s) >> 8); - } else { - for (i = 0; i < pixelCount; i++, p += 4) - *p = stbi__get8(s); - } - } - } + } + } + + // remove weird white matte from PSD + if (channelCount >= 4) { + if (ri->bits_per_channel == 16) { + for (i = 0; i < w * h; ++i) { + stbi__uint16 *pixel = (stbi__uint16 *)out + 4 * i; + if (pixel[3] != 0 && pixel[3] != 65535) { + float a = pixel[3] / 65535.0f; + float ra = 1.0f / a; + float inv_a = 65535.0f * (1 - ra); + pixel[0] = (stbi__uint16)(pixel[0] * ra + inv_a); + pixel[1] = (stbi__uint16)(pixel[1] * ra + inv_a); + pixel[2] = (stbi__uint16)(pixel[2] * ra + inv_a); + } } - } - - // remove weird white matte from PSD - if (channelCount >= 4) { - if (ri->bits_per_channel == 16) { - for (i=0; i < w*h; ++i) { - stbi__uint16 *pixel = (stbi__uint16 *) out + 4*i; - if (pixel[3] != 0 && pixel[3] != 65535) { - float a = pixel[3] / 65535.0f; - float ra = 1.0f / a; - float inv_a = 65535.0f * (1 - ra); - pixel[0] = (stbi__uint16) (pixel[0]*ra + inv_a); - pixel[1] = (stbi__uint16) (pixel[1]*ra + inv_a); - pixel[2] = (stbi__uint16) (pixel[2]*ra + inv_a); - } - } - } else { - for (i=0; i < w*h; ++i) { - unsigned char *pixel = out + 4*i; - if (pixel[3] != 0 && pixel[3] != 255) { - float a = pixel[3] / 255.0f; - float ra = 1.0f / a; - float inv_a = 255.0f * (1 - ra); - pixel[0] = (unsigned char) (pixel[0]*ra + inv_a); - pixel[1] = (unsigned char) (pixel[1]*ra + inv_a); - pixel[2] = (unsigned char) (pixel[2]*ra + inv_a); - } - } + } else { + for (i = 0; i < w * h; ++i) { + unsigned char *pixel = out + 4 * i; + if (pixel[3] != 0 && pixel[3] != 255) { + float a = pixel[3] / 255.0f; + float ra = 1.0f / a; + float inv_a = 255.0f * (1 - ra); + pixel[0] = (unsigned char)(pixel[0] * ra + inv_a); + pixel[1] = (unsigned char)(pixel[1] * ra + inv_a); + pixel[2] = (unsigned char)(pixel[2] * ra + inv_a); + } } - } - - // convert to desired output format - if (req_comp && req_comp != 4) { - if (ri->bits_per_channel == 16) - out = (stbi_uc *) stbi__convert_format16((stbi__uint16 *) out, 4, req_comp, w, h); - else - out = stbi__convert_format(out, 4, req_comp, w, h); - if (out == NULL) return out; // stbi__convert_format frees input on failure - } - - if (comp) *comp = 4; - *y = h; - *x = w; - - return out; + } + } + + // convert to desired output format + if (req_comp && req_comp != 4) { + if (ri->bits_per_channel == 16) + out = (stbi_uc *)stbi__convert_format16((stbi__uint16 *)out, 4, req_comp, + w, h); + else + out = stbi__convert_format(out, 4, req_comp, w, h); + if (out == NULL) + return out; // stbi__convert_format frees input on failure + } + + if (comp) + *comp = 4; + *y = h; + *x = w; + + return out; } #endif @@ -5978,211 +6645,216 @@ static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req // See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/ #ifndef STBI_NO_PIC -static int stbi__pic_is4(stbi__context *s,const char *str) -{ - int i; - for (i=0; i<4; ++i) - if (stbi__get8(s) != (stbi_uc)str[i]) - return 0; +static int stbi__pic_is4(stbi__context *s, const char *str) { + int i; + for (i = 0; i < 4; ++i) + if (stbi__get8(s) != (stbi_uc)str[i]) + return 0; - return 1; + return 1; } -static int stbi__pic_test_core(stbi__context *s) -{ - int i; +static int stbi__pic_test_core(stbi__context *s) { + int i; - if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) - return 0; + if (!stbi__pic_is4(s, "\x53\x80\xF6\x34")) + return 0; - for(i=0;i<84;++i) - stbi__get8(s); + for (i = 0; i < 84; ++i) + stbi__get8(s); - if (!stbi__pic_is4(s,"PICT")) - return 0; + if (!stbi__pic_is4(s, "PICT")) + return 0; - return 1; + return 1; } -typedef struct -{ - stbi_uc size,type,channel; +typedef struct { + stbi_uc size, type, channel; } stbi__pic_packet; -static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest) -{ - int mask=0x80, i; +static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest) { + int mask = 0x80, i; - for (i=0; i<4; ++i, mask>>=1) { - if (channel & mask) { - if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short"); - dest[i]=stbi__get8(s); - } - } + for (i = 0; i < 4; ++i, mask >>= 1) { + if (channel & mask) { + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "PIC file too short"); + dest[i] = stbi__get8(s); + } + } - return dest; + return dest; } -static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src) -{ - int mask=0x80,i; +static void stbi__copyval(int channel, stbi_uc *dest, const stbi_uc *src) { + int mask = 0x80, i; - for (i=0;i<4; ++i, mask>>=1) - if (channel&mask) - dest[i]=src[i]; + for (i = 0; i < 4; ++i, mask >>= 1) + if (channel & mask) + dest[i] = src[i]; } -static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result) -{ - int act_comp=0,num_packets=0,y,chained; - stbi__pic_packet packets[10]; +static stbi_uc *stbi__pic_load_core(stbi__context *s, int width, int height, + int *comp, stbi_uc *result) { + int act_comp = 0, num_packets = 0, y, chained; + stbi__pic_packet packets[10]; - // this will (should...) cater for even some bizarre stuff like having data - // for the same channel in multiple packets. - do { - stbi__pic_packet *packet; + // this will (should...) cater for even some bizarre stuff like having data + // for the same channel in multiple packets. + do { + stbi__pic_packet *packet; - if (num_packets==sizeof(packets)/sizeof(packets[0])) - return stbi__errpuc("bad format","too many packets"); + if (num_packets == sizeof(packets) / sizeof(packets[0])) + return stbi__errpuc("bad format", "too many packets"); - packet = &packets[num_packets++]; + packet = &packets[num_packets++]; - chained = stbi__get8(s); - packet->size = stbi__get8(s); - packet->type = stbi__get8(s); - packet->channel = stbi__get8(s); + chained = stbi__get8(s); + packet->size = stbi__get8(s); + packet->type = stbi__get8(s); + packet->channel = stbi__get8(s); - act_comp |= packet->channel; + act_comp |= packet->channel; - if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (reading packets)"); - if (packet->size != 8) return stbi__errpuc("bad format","packet isn't 8bpp"); - } while (chained); + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "file too short (reading packets)"); + if (packet->size != 8) + return stbi__errpuc("bad format", "packet isn't 8bpp"); + } while (chained); - *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? + *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? - for(y=0; y<height; ++y) { - int packet_idx; + for (y = 0; y < height; ++y) { + int packet_idx; - for(packet_idx=0; packet_idx < num_packets; ++packet_idx) { - stbi__pic_packet *packet = &packets[packet_idx]; - stbi_uc *dest = result+y*width*4; + for (packet_idx = 0; packet_idx < num_packets; ++packet_idx) { + stbi__pic_packet *packet = &packets[packet_idx]; + stbi_uc *dest = result + y * width * 4; - switch (packet->type) { - default: - return stbi__errpuc("bad format","packet has bad compression type"); + switch (packet->type) { + default: + return stbi__errpuc("bad format", "packet has bad compression type"); - case 0: {//uncompressed - int x; + case 0: { // uncompressed + int x; - for(x=0;x<width;++x, dest+=4) - if (!stbi__readval(s,packet->channel,dest)) - return 0; - break; - } + for (x = 0; x < width; ++x, dest += 4) + if (!stbi__readval(s, packet->channel, dest)) + return 0; + break; + } - case 1://Pure RLE - { - int left=width, i; - - while (left>0) { - stbi_uc count,value[4]; - - count=stbi__get8(s); - if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pure read count)"); - - if (count > left) - count = (stbi_uc) left; - - if (!stbi__readval(s,packet->channel,value)) return 0; - - for(i=0; i<count; ++i,dest+=4) - stbi__copyval(packet->channel,dest,value); - left -= count; - } - } - break; - - case 2: {//Mixed RLE - int left=width; - while (left>0) { - int count = stbi__get8(s), i; - if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (mixed read count)"); - - if (count >= 128) { // Repeated - stbi_uc value[4]; - - if (count==128) - count = stbi__get16be(s); - else - count -= 127; - if (count > left) - return stbi__errpuc("bad file","scanline overrun"); - - if (!stbi__readval(s,packet->channel,value)) - return 0; - - for(i=0;i<count;++i, dest += 4) - stbi__copyval(packet->channel,dest,value); - } else { // Raw - ++count; - if (count>left) return stbi__errpuc("bad file","scanline overrun"); - - for(i=0;i<count;++i, dest+=4) - if (!stbi__readval(s,packet->channel,dest)) - return 0; - } - left-=count; - } - break; - } - } + case 1: // Pure RLE + { + int left = width, i; + + while (left > 0) { + stbi_uc count, value[4]; + + count = stbi__get8(s); + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "file too short (pure read count)"); + + if (count > left) + count = (stbi_uc)left; + + if (!stbi__readval(s, packet->channel, value)) + return 0; + + for (i = 0; i < count; ++i, dest += 4) + stbi__copyval(packet->channel, dest, value); + left -= count; + } + } break; + + case 2: { // Mixed RLE + int left = width; + while (left > 0) { + int count = stbi__get8(s), i; + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", + "file too short (mixed read count)"); + + if (count >= 128) { // Repeated + stbi_uc value[4]; + + if (count == 128) + count = stbi__get16be(s); + else + count -= 127; + if (count > left) + return stbi__errpuc("bad file", "scanline overrun"); + + if (!stbi__readval(s, packet->channel, value)) + return 0; + + for (i = 0; i < count; ++i, dest += 4) + stbi__copyval(packet->channel, dest, value); + } else { // Raw + ++count; + if (count > left) + return stbi__errpuc("bad file", "scanline overrun"); + + for (i = 0; i < count; ++i, dest += 4) + if (!stbi__readval(s, packet->channel, dest)) + return 0; + } + left -= count; + } + break; } - } + } + } + } - return result; + return result; } -static void *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp, stbi__result_info *ri) -{ - stbi_uc *result; - int i, x,y, internal_comp; - STBI_NOTUSED(ri); +static void *stbi__pic_load(stbi__context *s, int *px, int *py, int *comp, + int req_comp, stbi__result_info *ri) { + stbi_uc *result; + int i, x, y, internal_comp; + STBI_NOTUSED(ri); - if (!comp) comp = &internal_comp; + if (!comp) + comp = &internal_comp; - for (i=0; i<92; ++i) - stbi__get8(s); + for (i = 0; i < 92; ++i) + stbi__get8(s); - x = stbi__get16be(s); - y = stbi__get16be(s); - if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pic header)"); - if (!stbi__mad3sizes_valid(x, y, 4, 0)) return stbi__errpuc("too large", "PIC image too large to decode"); + x = stbi__get16be(s); + y = stbi__get16be(s); + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "file too short (pic header)"); + if (!stbi__mad3sizes_valid(x, y, 4, 0)) + return stbi__errpuc("too large", "PIC image too large to decode"); - stbi__get32be(s); //skip `ratio' - stbi__get16be(s); //skip `fields' - stbi__get16be(s); //skip `pad' + stbi__get32be(s); // skip `ratio' + stbi__get16be(s); // skip `fields' + stbi__get16be(s); // skip `pad' - // intermediate buffer is RGBA - result = (stbi_uc *) stbi__malloc_mad3(x, y, 4, 0); - memset(result, 0xff, x*y*4); + // intermediate buffer is RGBA + result = (stbi_uc *)stbi__malloc_mad3(x, y, 4, 0); + memset(result, 0xff, x * y * 4); - if (!stbi__pic_load_core(s,x,y,comp, result)) { - STBI_FREE(result); - result=0; - } - *px = x; - *py = y; - if (req_comp == 0) req_comp = *comp; - result=stbi__convert_format(result,4,req_comp,x,y); + if (!stbi__pic_load_core(s, x, y, comp, result)) { + STBI_FREE(result); + result = 0; + } + *px = x; + *py = y; + if (req_comp == 0) + req_comp = *comp; + result = stbi__convert_format(result, 4, req_comp, x, y); - return result; + return result; } -static int stbi__pic_test(stbi__context *s) -{ - int r = stbi__pic_test_core(s); - stbi__rewind(s); - return r; +static int stbi__pic_test(stbi__context *s) { + int r = stbi__pic_test_core(s); + stbi__rewind(s); + return r; } #endif @@ -6190,495 +6862,517 @@ static int stbi__pic_test(stbi__context *s) // GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb #ifndef STBI_NO_GIF -typedef struct -{ - stbi__int16 prefix; - stbi_uc first; - stbi_uc suffix; +typedef struct { + stbi__int16 prefix; + stbi_uc first; + stbi_uc suffix; } stbi__gif_lzw; -typedef struct -{ - int w,h; - stbi_uc *out; // output buffer (always 4 components) - stbi_uc *background; // The current "background" as far as a gif is concerned - stbi_uc *history; - int flags, bgindex, ratio, transparent, eflags; - stbi_uc pal[256][4]; - stbi_uc lpal[256][4]; - stbi__gif_lzw codes[8192]; - stbi_uc *color_table; - int parse, step; - int lflags; - int start_x, start_y; - int max_x, max_y; - int cur_x, cur_y; - int line_size; - int delay; +typedef struct { + int w, h; + stbi_uc *out; // output buffer (always 4 components) + stbi_uc *background; // The current "background" as far as a gif is concerned + stbi_uc *history; + int flags, bgindex, ratio, transparent, eflags; + stbi_uc pal[256][4]; + stbi_uc lpal[256][4]; + stbi__gif_lzw codes[8192]; + stbi_uc *color_table; + int parse, step; + int lflags; + int start_x, start_y; + int max_x, max_y; + int cur_x, cur_y; + int line_size; + int delay; } stbi__gif; -static int stbi__gif_test_raw(stbi__context *s) -{ - int sz; - if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0; - sz = stbi__get8(s); - if (sz != '9' && sz != '7') return 0; - if (stbi__get8(s) != 'a') return 0; - return 1; -} - -static int stbi__gif_test(stbi__context *s) -{ - int r = stbi__gif_test_raw(s); - stbi__rewind(s); - return r; -} +static int stbi__gif_test_raw(stbi__context *s) { + int sz; + if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || + stbi__get8(s) != '8') + return 0; + sz = stbi__get8(s); + if (sz != '9' && sz != '7') + return 0; + if (stbi__get8(s) != 'a') + return 0; + return 1; +} + +static int stbi__gif_test(stbi__context *s) { + int r = stbi__gif_test_raw(s); + stbi__rewind(s); + return r; +} + +static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], + int num_entries, int transp) { + int i; + for (i = 0; i < num_entries; ++i) { + pal[i][2] = stbi__get8(s); + pal[i][1] = stbi__get8(s); + pal[i][0] = stbi__get8(s); + pal[i][3] = transp == i ? 0 : 255; + } +} + +static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, + int is_info) { + stbi_uc version; + if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || + stbi__get8(s) != '8') + return stbi__err("not GIF", "Corrupt GIF"); + + version = stbi__get8(s); + if (version != '7' && version != '9') + return stbi__err("not GIF", "Corrupt GIF"); + if (stbi__get8(s) != 'a') + return stbi__err("not GIF", "Corrupt GIF"); + + stbi__g_failure_reason = ""; + g->w = stbi__get16le(s); + g->h = stbi__get16le(s); + g->flags = stbi__get8(s); + g->bgindex = stbi__get8(s); + g->ratio = stbi__get8(s); + g->transparent = -1; + + if (comp != 0) + *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the + // comments + + if (is_info) + return 1; + + if (g->flags & 0x80) + stbi__gif_parse_colortable(s, g->pal, 2 << (g->flags & 7), -1); + + return 1; +} + +static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) { + stbi__gif *g = (stbi__gif *)stbi__malloc(sizeof(stbi__gif)); + if (!stbi__gif_header(s, g, comp, 1)) { + STBI_FREE(g); + stbi__rewind(s); + return 0; + } + if (x) + *x = g->w; + if (y) + *y = g->h; + STBI_FREE(g); + return 1; +} + +static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) { + stbi_uc *p, *c; + int idx; + + // recurse to decode the prefixes, since the linked-list is backwards, + // and working backwards through an interleaved image would be nasty + if (g->codes[code].prefix >= 0) + stbi__out_gif_code(g, g->codes[code].prefix); + + if (g->cur_y >= g->max_y) + return; + + idx = g->cur_x + g->cur_y; + p = &g->out[idx]; + g->history[idx / 4] = 1; + + c = &g->color_table[g->codes[code].suffix * 4]; + if (c[3] > 128) { // don't render transparent pixels; + p[0] = c[2]; + p[1] = c[1]; + p[2] = c[0]; + p[3] = c[3]; + } + g->cur_x += 4; + + if (g->cur_x >= g->max_x) { + g->cur_x = g->start_x; + g->cur_y += g->step; + + while (g->cur_y >= g->max_y && g->parse > 0) { + g->step = (1 << g->parse) * g->line_size; + g->cur_y = g->start_y + (g->step >> 1); + --g->parse; + } + } +} + +static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) { + stbi_uc lzw_cs; + stbi__int32 len, init_code; + stbi__uint32 first; + stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; + stbi__gif_lzw *p; + + lzw_cs = stbi__get8(s); + if (lzw_cs > 12) + return NULL; + clear = 1 << lzw_cs; + first = 1; + codesize = lzw_cs + 1; + codemask = (1 << codesize) - 1; + bits = 0; + valid_bits = 0; + for (init_code = 0; init_code < clear; init_code++) { + g->codes[init_code].prefix = -1; + g->codes[init_code].first = (stbi_uc)init_code; + g->codes[init_code].suffix = (stbi_uc)init_code; + } + + // support no starting clear code + avail = clear + 2; + oldcode = -1; + + len = 0; + for (;;) { + if (valid_bits < codesize) { + if (len == 0) { + len = stbi__get8(s); // start new block + if (len == 0) + return g->out; + } + --len; + bits |= (stbi__int32)stbi__get8(s) << valid_bits; + valid_bits += 8; + } else { + stbi__int32 code = bits & codemask; + bits >>= codesize; + valid_bits -= codesize; + // @OPTIMIZE: is there some way we can accelerate the non-clear path? + if (code == clear) { // clear code + codesize = lzw_cs + 1; + codemask = (1 << codesize) - 1; + avail = clear + 2; + oldcode = -1; + first = 0; + } else if (code == clear + 1) { // end of stream code + stbi__skip(s, len); + while ((len = stbi__get8(s)) > 0) + stbi__skip(s, len); + return g->out; + } else if (code <= avail) { + if (first) { + return stbi__errpuc("no clear code", "Corrupt GIF"); + } -static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp) -{ - int i; - for (i=0; i < num_entries; ++i) { - pal[i][2] = stbi__get8(s); - pal[i][1] = stbi__get8(s); - pal[i][0] = stbi__get8(s); - pal[i][3] = transp == i ? 0 : 255; - } -} + if (oldcode >= 0) { + p = &g->codes[avail++]; + if (avail > 8192) { + return stbi__errpuc("too many codes", "Corrupt GIF"); + } -static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info) -{ - stbi_uc version; - if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') - return stbi__err("not GIF", "Corrupt GIF"); + p->prefix = (stbi__int16)oldcode; + p->first = g->codes[oldcode].first; + p->suffix = (code == avail) ? p->first : g->codes[code].first; + } else if (code == avail) + return stbi__errpuc("illegal code in raster", "Corrupt GIF"); - version = stbi__get8(s); - if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF"); - if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF"); + stbi__out_gif_code(g, (stbi__uint16)code); - stbi__g_failure_reason = ""; - g->w = stbi__get16le(s); - g->h = stbi__get16le(s); - g->flags = stbi__get8(s); - g->bgindex = stbi__get8(s); - g->ratio = stbi__get8(s); - g->transparent = -1; + if ((avail & codemask) == 0 && avail <= 0x0FFF) { + codesize++; + codemask = (1 << codesize) - 1; + } - if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments + oldcode = code; + } else { + return stbi__errpuc("illegal code in raster", "Corrupt GIF"); + } + } + } +} + +// this function is designed to support animated gifs, although stb_image +// doesn't support it two back is the image from two frames ago, used for a very +// specific disposal format +static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, + int req_comp, stbi_uc *two_back) { + int dispose; + int first_frame; + int pi; + int pcount; + STBI_NOTUSED(req_comp); + + // on first frame, any non-written pixels get the background colour + // (non-transparent) + first_frame = 0; + if (g->out == 0) { + if (!stbi__gif_header(s, g, comp, 0)) + return 0; // stbi__g_failure_reason set by stbi__gif_header + if (!stbi__mad3sizes_valid(4, g->w, g->h, 0)) + return stbi__errpuc("too large", "GIF image is too large"); + pcount = g->w * g->h; + g->out = (stbi_uc *)stbi__malloc(4 * pcount); + g->background = (stbi_uc *)stbi__malloc(4 * pcount); + g->history = (stbi_uc *)stbi__malloc(pcount); + if (!g->out || !g->background || !g->history) + return stbi__errpuc("outofmem", "Out of memory"); - if (is_info) return 1; + // image is treated as "transparent" at the start - ie, nothing overwrites + // the current background; background colour is only used for pixels that + // are not rendered first frame, after that "background" color refers to the + // color that was there the previous frame. + memset(g->out, 0x00, 4 * pcount); + memset(g->background, 0x00, + 4 * pcount); // state of the background (starts transparent) + memset(g->history, 0x00, + pcount); // pixels that were affected previous frame + first_frame = 1; + } else { + // second frame - how do we dispoase of the previous one? + dispose = (g->eflags & 0x1C) >> 2; + pcount = g->w * g->h; + + if ((dispose == 3) && (two_back == 0)) { + dispose = 2; // if I don't have an image to revert back to, default to the + // old background + } - if (g->flags & 0x80) - stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1); + if (dispose == 3) { // use previous graphic + for (pi = 0; pi < pcount; ++pi) { + if (g->history[pi]) { + memcpy(&g->out[pi * 4], &two_back[pi * 4], 4); + } + } + } else if (dispose == 2) { + // restore what was changed last frame to background before that frame; + for (pi = 0; pi < pcount; ++pi) { + if (g->history[pi]) { + memcpy(&g->out[pi * 4], &g->background[pi * 4], 4); + } + } + } else { + // This is a non-disposal case eithe way, so just + // leave the pixels as is, and they will become the new background + // 1: do not dispose + // 0: not specified. + } - return 1; -} + // background is what out is after the undoing of the previou frame; + memcpy(g->background, g->out, 4 * g->w * g->h); + } + + // clear my history; + memset(g->history, 0x00, + g->w * g->h); // pixels that were affected previous frame + + for (;;) { + int tag = stbi__get8(s); + switch (tag) { + case 0x2C: /* Image Descriptor */ + { + stbi__int32 x, y, w, h; + stbi_uc *o; + + x = stbi__get16le(s); + y = stbi__get16le(s); + w = stbi__get16le(s); + h = stbi__get16le(s); + if (((x + w) > (g->w)) || ((y + h) > (g->h))) + return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); + + g->line_size = g->w * 4; + g->start_x = x * 4; + g->start_y = y * g->line_size; + g->max_x = g->start_x + w * 4; + g->max_y = g->start_y + h * g->line_size; + g->cur_x = g->start_x; + g->cur_y = g->start_y; -static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) -{ - stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif)); - if (!stbi__gif_header(s, g, comp, 1)) { - STBI_FREE(g); - stbi__rewind( s ); - return 0; - } - if (x) *x = g->w; - if (y) *y = g->h; - STBI_FREE(g); - return 1; -} + // if the width of the specified rectangle is 0, that means + // we may not see *any* pixels or the image is malformed; + // to make sure this is caught, move the current y down to + // max_y (which is what out_gif_code checks). + if (w == 0) + g->cur_y = g->max_y; -static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) -{ - stbi_uc *p, *c; - int idx; - - // recurse to decode the prefixes, since the linked-list is backwards, - // and working backwards through an interleaved image would be nasty - if (g->codes[code].prefix >= 0) - stbi__out_gif_code(g, g->codes[code].prefix); - - if (g->cur_y >= g->max_y) return; - - idx = g->cur_x + g->cur_y; - p = &g->out[idx]; - g->history[idx / 4] = 1; - - c = &g->color_table[g->codes[code].suffix * 4]; - if (c[3] > 128) { // don't render transparent pixels; - p[0] = c[2]; - p[1] = c[1]; - p[2] = c[0]; - p[3] = c[3]; - } - g->cur_x += 4; - - if (g->cur_x >= g->max_x) { - g->cur_x = g->start_x; - g->cur_y += g->step; + g->lflags = stbi__get8(s); - while (g->cur_y >= g->max_y && g->parse > 0) { - g->step = (1 << g->parse) * g->line_size; - g->cur_y = g->start_y + (g->step >> 1); - --g->parse; + if (g->lflags & 0x40) { + g->step = 8 * g->line_size; // first interlaced spacing + g->parse = 3; + } else { + g->step = g->line_size; + g->parse = 0; } - } -} -static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) -{ - stbi_uc lzw_cs; - stbi__int32 len, init_code; - stbi__uint32 first; - stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; - stbi__gif_lzw *p; - - lzw_cs = stbi__get8(s); - if (lzw_cs > 12) return NULL; - clear = 1 << lzw_cs; - first = 1; - codesize = lzw_cs + 1; - codemask = (1 << codesize) - 1; - bits = 0; - valid_bits = 0; - for (init_code = 0; init_code < clear; init_code++) { - g->codes[init_code].prefix = -1; - g->codes[init_code].first = (stbi_uc) init_code; - g->codes[init_code].suffix = (stbi_uc) init_code; - } - - // support no starting clear code - avail = clear+2; - oldcode = -1; - - len = 0; - for(;;) { - if (valid_bits < codesize) { - if (len == 0) { - len = stbi__get8(s); // start new block - if (len == 0) - return g->out; - } - --len; - bits |= (stbi__int32) stbi__get8(s) << valid_bits; - valid_bits += 8; - } else { - stbi__int32 code = bits & codemask; - bits >>= codesize; - valid_bits -= codesize; - // @OPTIMIZE: is there some way we can accelerate the non-clear path? - if (code == clear) { // clear code - codesize = lzw_cs + 1; - codemask = (1 << codesize) - 1; - avail = clear + 2; - oldcode = -1; - first = 0; - } else if (code == clear + 1) { // end of stream code - stbi__skip(s, len); - while ((len = stbi__get8(s)) > 0) - stbi__skip(s,len); - return g->out; - } else if (code <= avail) { - if (first) { - return stbi__errpuc("no clear code", "Corrupt GIF"); - } + if (g->lflags & 0x80) { + stbi__gif_parse_colortable(s, g->lpal, 2 << (g->lflags & 7), + g->eflags & 0x01 ? g->transparent : -1); + g->color_table = (stbi_uc *)g->lpal; + } else if (g->flags & 0x80) { + g->color_table = (stbi_uc *)g->pal; + } else + return stbi__errpuc("missing color table", "Corrupt GIF"); - if (oldcode >= 0) { - p = &g->codes[avail++]; - if (avail > 8192) { - return stbi__errpuc("too many codes", "Corrupt GIF"); - } + o = stbi__process_gif_raster(s, g); + if (!o) + return NULL; - p->prefix = (stbi__int16) oldcode; - p->first = g->codes[oldcode].first; - p->suffix = (code == avail) ? p->first : g->codes[code].first; - } else if (code == avail) - return stbi__errpuc("illegal code in raster", "Corrupt GIF"); + // if this was the first frame, + pcount = g->w * g->h; + if (first_frame && (g->bgindex > 0)) { + // if first frame, any pixel not drawn to gets the background color + for (pi = 0; pi < pcount; ++pi) { + if (g->history[pi] == 0) { + g->pal[g->bgindex][3] = + 255; // just in case it was made transparent, undo that; It will + // be reset next frame if need be; + memcpy(&g->out[pi * 4], &g->pal[g->bgindex], 4); + } + } + } - stbi__out_gif_code(g, (stbi__uint16) code); + return o; + } - if ((avail & codemask) == 0 && avail <= 0x0FFF) { - codesize++; - codemask = (1 << codesize) - 1; + case 0x21: // Comment Extension. + { + int len; + int ext = stbi__get8(s); + if (ext == 0xF9) { // Graphic Control Extension. + len = stbi__get8(s); + if (len == 4) { + g->eflags = stbi__get8(s); + g->delay = + 10 * stbi__get16le( + s); // delay - 1/100th of a second, saving as 1/1000ths. + + // unset old transparent + if (g->transparent >= 0) { + g->pal[g->transparent][3] = 255; + } + if (g->eflags & 0x01) { + g->transparent = stbi__get8(s); + if (g->transparent >= 0) { + g->pal[g->transparent][3] = 0; } - - oldcode = code; - } else { - return stbi__errpuc("illegal code in raster", "Corrupt GIF"); - } + } else { + // don't need transparent + stbi__skip(s, 1); + g->transparent = -1; + } + } else { + stbi__skip(s, len); + break; + } } - } -} - -// this function is designed to support animated gifs, although stb_image doesn't support it -// two back is the image from two frames ago, used for a very specific disposal format -static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp, stbi_uc *two_back) -{ - int dispose; - int first_frame; - int pi; - int pcount; - STBI_NOTUSED(req_comp); - - // on first frame, any non-written pixels get the background colour (non-transparent) - first_frame = 0; - if (g->out == 0) { - if (!stbi__gif_header(s, g, comp,0)) return 0; // stbi__g_failure_reason set by stbi__gif_header - if (!stbi__mad3sizes_valid(4, g->w, g->h, 0)) - return stbi__errpuc("too large", "GIF image is too large"); - pcount = g->w * g->h; - g->out = (stbi_uc *) stbi__malloc(4 * pcount); - g->background = (stbi_uc *) stbi__malloc(4 * pcount); - g->history = (stbi_uc *) stbi__malloc(pcount); - if (!g->out || !g->background || !g->history) - return stbi__errpuc("outofmem", "Out of memory"); - - // image is treated as "transparent" at the start - ie, nothing overwrites the current background; - // background colour is only used for pixels that are not rendered first frame, after that "background" - // color refers to the color that was there the previous frame. - memset(g->out, 0x00, 4 * pcount); - memset(g->background, 0x00, 4 * pcount); // state of the background (starts transparent) - memset(g->history, 0x00, pcount); // pixels that were affected previous frame - first_frame = 1; - } else { - // second frame - how do we dispoase of the previous one? - dispose = (g->eflags & 0x1C) >> 2; - pcount = g->w * g->h; - - if ((dispose == 3) && (two_back == 0)) { - dispose = 2; // if I don't have an image to revert back to, default to the old background + while ((len = stbi__get8(s)) != 0) { + stbi__skip(s, len); } + break; + } - if (dispose == 3) { // use previous graphic - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi]) { - memcpy( &g->out[pi * 4], &two_back[pi * 4], 4 ); - } - } - } else if (dispose == 2) { - // restore what was changed last frame to background before that frame; - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi]) { - memcpy( &g->out[pi * 4], &g->background[pi * 4], 4 ); - } - } - } else { - // This is a non-disposal case eithe way, so just - // leave the pixels as is, and they will become the new background - // 1: do not dispose - // 0: not specified. - } + case 0x3B: // gif stream termination code + return (stbi_uc *)s; // using '1' causes warning on some compilers - // background is what out is after the undoing of the previou frame; - memcpy( g->background, g->out, 4 * g->w * g->h ); - } - - // clear my history; - memset( g->history, 0x00, g->w * g->h ); // pixels that were affected previous frame - - for (;;) { - int tag = stbi__get8(s); - switch (tag) { - case 0x2C: /* Image Descriptor */ - { - stbi__int32 x, y, w, h; - stbi_uc *o; - - x = stbi__get16le(s); - y = stbi__get16le(s); - w = stbi__get16le(s); - h = stbi__get16le(s); - if (((x + w) > (g->w)) || ((y + h) > (g->h))) - return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); - - g->line_size = g->w * 4; - g->start_x = x * 4; - g->start_y = y * g->line_size; - g->max_x = g->start_x + w * 4; - g->max_y = g->start_y + h * g->line_size; - g->cur_x = g->start_x; - g->cur_y = g->start_y; - - // if the width of the specified rectangle is 0, that means - // we may not see *any* pixels or the image is malformed; - // to make sure this is caught, move the current y down to - // max_y (which is what out_gif_code checks). - if (w == 0) - g->cur_y = g->max_y; - - g->lflags = stbi__get8(s); - - if (g->lflags & 0x40) { - g->step = 8 * g->line_size; // first interlaced spacing - g->parse = 3; - } else { - g->step = g->line_size; - g->parse = 0; - } + default: + return stbi__errpuc("unknown code", "Corrupt GIF"); + } + } +} + +static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, + int *z, int *comp, int req_comp) { + if (stbi__gif_test(s)) { + int layers = 0; + stbi_uc *u = 0; + stbi_uc *out = 0; + stbi_uc *two_back = 0; + stbi__gif g; + int stride; + memset(&g, 0, sizeof(g)); + if (delays) { + *delays = 0; + } - if (g->lflags & 0x80) { - stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1); - g->color_table = (stbi_uc *) g->lpal; - } else if (g->flags & 0x80) { - g->color_table = (stbi_uc *) g->pal; - } else - return stbi__errpuc("missing color table", "Corrupt GIF"); - - o = stbi__process_gif_raster(s, g); - if (!o) return NULL; - - // if this was the first frame, - pcount = g->w * g->h; - if (first_frame && (g->bgindex > 0)) { - // if first frame, any pixel not drawn to gets the background color - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi] == 0) { - g->pal[g->bgindex][3] = 255; // just in case it was made transparent, undo that; It will be reset next frame if need be; - memcpy( &g->out[pi * 4], &g->pal[g->bgindex], 4 ); - } - } - } + do { + u = stbi__gif_load_next(s, &g, comp, req_comp, two_back); + if (u == (stbi_uc *)s) + u = 0; // end of animated gif marker + + if (u) { + *x = g.w; + *y = g.h; + ++layers; + stride = g.w * g.h * 4; + + if (out) { + out = (stbi_uc *)STBI_REALLOC(out, layers * stride); + if (delays) { + *delays = (int *)STBI_REALLOC(*delays, sizeof(int) * layers); + } + } else { + out = (stbi_uc *)stbi__malloc(layers * stride); + if (delays) { + *delays = (int *)stbi__malloc(layers * sizeof(int)); + } + } + memcpy(out + ((layers - 1) * stride), u, stride); + if (layers >= 2) { + two_back = out - 2 * stride; + } - return o; - } - - case 0x21: // Comment Extension. - { - int len; - int ext = stbi__get8(s); - if (ext == 0xF9) { // Graphic Control Extension. - len = stbi__get8(s); - if (len == 4) { - g->eflags = stbi__get8(s); - g->delay = 10 * stbi__get16le(s); // delay - 1/100th of a second, saving as 1/1000ths. - - // unset old transparent - if (g->transparent >= 0) { - g->pal[g->transparent][3] = 255; - } - if (g->eflags & 0x01) { - g->transparent = stbi__get8(s); - if (g->transparent >= 0) { - g->pal[g->transparent][3] = 0; - } - } else { - // don't need transparent - stbi__skip(s, 1); - g->transparent = -1; - } - } else { - stbi__skip(s, len); - break; - } - } - while ((len = stbi__get8(s)) != 0) { - stbi__skip(s, len); - } - break; - } + if (delays) { + (*delays)[layers - 1U] = g.delay; + } + } + } while (u != 0); - case 0x3B: // gif stream termination code - return (stbi_uc *) s; // using '1' causes warning on some compilers + // free temp buffer; + STBI_FREE(g.out); + STBI_FREE(g.history); + STBI_FREE(g.background); - default: - return stbi__errpuc("unknown code", "Corrupt GIF"); - } - } -} + // do the final conversion after loading everything; + if (req_comp && req_comp != 4) + out = stbi__convert_format(out, 4, req_comp, layers * g.w, g.h); -static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp) -{ - if (stbi__gif_test(s)) { - int layers = 0; - stbi_uc *u = 0; - stbi_uc *out = 0; - stbi_uc *two_back = 0; - stbi__gif g; - int stride; - memset(&g, 0, sizeof(g)); - if (delays) { - *delays = 0; - } + *z = layers; + return out; + } else { + return stbi__errpuc("not GIF", "Image was not as a gif type."); + } +} - do { - u = stbi__gif_load_next(s, &g, comp, req_comp, two_back); - if (u == (stbi_uc *) s) u = 0; // end of animated gif marker - - if (u) { - *x = g.w; - *y = g.h; - ++layers; - stride = g.w * g.h * 4; - - if (out) { - out = (stbi_uc*) STBI_REALLOC( out, layers * stride ); - if (delays) { - *delays = (int*) STBI_REALLOC( *delays, sizeof(int) * layers ); - } - } else { - out = (stbi_uc*)stbi__malloc( layers * stride ); - if (delays) { - *delays = (int*) stbi__malloc( layers * sizeof(int) ); - } - } - memcpy( out + ((layers - 1) * stride), u, stride ); - if (layers >= 2) { - two_back = out - 2 * stride; - } +static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri) { + stbi_uc *u = 0; + stbi__gif g; + memset(&g, 0, sizeof(g)); + STBI_NOTUSED(ri); - if (delays) { - (*delays)[layers - 1U] = g.delay; - } - } - } while (u != 0); + u = stbi__gif_load_next(s, &g, comp, req_comp, 0); + if (u == (stbi_uc *)s) + u = 0; // end of animated gif marker + if (u) { + *x = g.w; + *y = g.h; - // free temp buffer; - STBI_FREE(g.out); - STBI_FREE(g.history); - STBI_FREE(g.background); + // moved conversion to after successful load so that the same + // can be done for multiple frames. + if (req_comp && req_comp != 4) + u = stbi__convert_format(u, 4, req_comp, g.w, g.h); + } else if (g.out) { + // if there was an error and we allocated an image buffer, free it! + STBI_FREE(g.out); + } - // do the final conversion after loading everything; - if (req_comp && req_comp != 4) - out = stbi__convert_format(out, 4, req_comp, layers * g.w, g.h); + // free buffers needed for multiple frame loading; + STBI_FREE(g.history); + STBI_FREE(g.background); - *z = layers; - return out; - } else { - return stbi__errpuc("not GIF", "Image was not as a gif type."); - } + return u; } -static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - stbi_uc *u = 0; - stbi__gif g; - memset(&g, 0, sizeof(g)); - STBI_NOTUSED(ri); - - u = stbi__gif_load_next(s, &g, comp, req_comp, 0); - if (u == (stbi_uc *) s) u = 0; // end of animated gif marker - if (u) { - *x = g.w; - *y = g.h; - - // moved conversion to after successful load so that the same - // can be done for multiple frames. - if (req_comp && req_comp != 4) - u = stbi__convert_format(u, 4, req_comp, g.w, g.h); - } else if (g.out) { - // if there was an error and we allocated an image buffer, free it! - STBI_FREE(g.out); - } - - // free buffers needed for multiple frame loading; - STBI_FREE(g.history); - STBI_FREE(g.background); - - return u; -} - -static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) -{ - return stbi__gif_info_raw(s,x,y,comp); +static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) { + return stbi__gif_info_raw(s, x, y, comp); } #endif @@ -6686,393 +7380,429 @@ static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) // Radiance RGBE HDR loader // originally by Nicolas Schulz #ifndef STBI_NO_HDR -static int stbi__hdr_test_core(stbi__context *s, const char *signature) -{ - int i; - for (i=0; signature[i]; ++i) - if (stbi__get8(s) != signature[i]) - return 0; - stbi__rewind(s); - return 1; -} - -static int stbi__hdr_test(stbi__context* s) -{ - int r = stbi__hdr_test_core(s, "#?RADIANCE\n"); - stbi__rewind(s); - if(!r) { - r = stbi__hdr_test_core(s, "#?RGBE\n"); - stbi__rewind(s); - } - return r; -} - -#define STBI__HDR_BUFLEN 1024 -static char *stbi__hdr_gettoken(stbi__context *z, char *buffer) -{ - int len=0; - char c = '\0'; - - c = (char) stbi__get8(z); - - while (!stbi__at_eof(z) && c != '\n') { - buffer[len++] = c; - if (len == STBI__HDR_BUFLEN-1) { - // flush to end of line - while (!stbi__at_eof(z) && stbi__get8(z) != '\n') - ; - break; +static int stbi__hdr_test_core(stbi__context *s, const char *signature) { + int i; + for (i = 0; signature[i]; ++i) + if (stbi__get8(s) != signature[i]) + return 0; + stbi__rewind(s); + return 1; +} + +static int stbi__hdr_test(stbi__context *s) { + int r = stbi__hdr_test_core(s, "#?RADIANCE\n"); + stbi__rewind(s); + if (!r) { + r = stbi__hdr_test_core(s, "#?RGBE\n"); + stbi__rewind(s); + } + return r; +} + +#define STBI__HDR_BUFLEN 1024 +static char *stbi__hdr_gettoken(stbi__context *z, char *buffer) { + int len = 0; + char c = '\0'; + + c = (char)stbi__get8(z); + + while (!stbi__at_eof(z) && c != '\n') { + buffer[len++] = c; + if (len == STBI__HDR_BUFLEN - 1) { + // flush to end of line + while (!stbi__at_eof(z) && stbi__get8(z) != '\n') + ; + break; + } + c = (char)stbi__get8(z); + } + + buffer[len] = 0; + return buffer; +} + +static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) { + if (input[3] != 0) { + float f1; + // Exponent + f1 = (float)ldexp(1.0f, input[3] - (int)(128 + 8)); + if (req_comp <= 2) + output[0] = (input[0] + input[1] + input[2]) * f1 / 3; + else { + output[0] = input[0] * f1; + output[1] = input[1] * f1; + output[2] = input[2] * f1; + } + if (req_comp == 2) + output[1] = 1; + if (req_comp == 4) + output[3] = 1; + } else { + switch (req_comp) { + case 4: + output[3] = 1; /* fallthrough */ + case 3: + output[0] = output[1] = output[2] = 0; + break; + case 2: + output[1] = 1; /* fallthrough */ + case 1: + output[0] = 0; + break; + } + } +} + +static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri) { + char buffer[STBI__HDR_BUFLEN]; + char *token; + int valid = 0; + int width, height; + stbi_uc *scanline; + float *hdr_data; + int len; + unsigned char count, value; + int i, j, k, c1, c2, z; + const char *headerToken; + STBI_NOTUSED(ri); + + // Check identifier + headerToken = stbi__hdr_gettoken(s, buffer); + if (strcmp(headerToken, "#?RADIANCE") != 0 && + strcmp(headerToken, "#?RGBE") != 0) + return stbi__errpf("not HDR", "Corrupt HDR image"); + + // Parse header + for (;;) { + token = stbi__hdr_gettoken(s, buffer); + if (token[0] == 0) + break; + if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) + valid = 1; + } + + if (!valid) + return stbi__errpf("unsupported format", "Unsupported HDR format"); + + // Parse width and height + // can't use sscanf() if we're not using stdio! + token = stbi__hdr_gettoken(s, buffer); + if (strncmp(token, "-Y ", 3)) + return stbi__errpf("unsupported data layout", "Unsupported HDR format"); + token += 3; + height = (int)strtol(token, &token, 10); + while (*token == ' ') + ++token; + if (strncmp(token, "+X ", 3)) + return stbi__errpf("unsupported data layout", "Unsupported HDR format"); + token += 3; + width = (int)strtol(token, NULL, 10); + + *x = width; + *y = height; + + if (comp) + *comp = 3; + if (req_comp == 0) + req_comp = 3; + + if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0)) + return stbi__errpf("too large", "HDR image is too large"); + + // Read data + hdr_data = + (float *)stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0); + if (!hdr_data) + return stbi__errpf("outofmem", "Out of memory"); + + // Load image data + // image data is stored as some number of sca + if (width < 8 || width >= 32768) { + // Read flat data + for (j = 0; j < height; ++j) { + for (i = 0; i < width; ++i) { + stbi_uc rgbe[4]; + main_decode_loop: + stbi__getn(s, rgbe, 4); + stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, + req_comp); } - c = (char) stbi__get8(z); - } - - buffer[len] = 0; - return buffer; -} + } + } else { + // Read RLE-encoded data + scanline = NULL; -static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) -{ - if ( input[3] != 0 ) { - float f1; - // Exponent - f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); - if (req_comp <= 2) - output[0] = (input[0] + input[1] + input[2]) * f1 / 3; - else { - output[0] = input[0] * f1; - output[1] = input[1] * f1; - output[2] = input[2] * f1; + for (j = 0; j < height; ++j) { + c1 = stbi__get8(s); + c2 = stbi__get8(s); + len = stbi__get8(s); + if (c1 != 2 || c2 != 2 || (len & 0x80)) { + // not run-length encoded, so we have to actually use THIS data as a + // decoded pixel (note this can't be a valid pixel--one of RGB must be + // >= 128) + stbi_uc rgbe[4]; + rgbe[0] = (stbi_uc)c1; + rgbe[1] = (stbi_uc)c2; + rgbe[2] = (stbi_uc)len; + rgbe[3] = (stbi_uc)stbi__get8(s); + stbi__hdr_convert(hdr_data, rgbe, req_comp); + i = 1; + j = 0; + STBI_FREE(scanline); + goto main_decode_loop; // yes, this makes no sense } - if (req_comp == 2) output[1] = 1; - if (req_comp == 4) output[3] = 1; - } else { - switch (req_comp) { - case 4: output[3] = 1; /* fallthrough */ - case 3: output[0] = output[1] = output[2] = 0; - break; - case 2: output[1] = 1; /* fallthrough */ - case 1: output[0] = 0; - break; + len <<= 8; + len |= stbi__get8(s); + if (len != width) { + STBI_FREE(hdr_data); + STBI_FREE(scanline); + return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); } - } -} - -static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - char buffer[STBI__HDR_BUFLEN]; - char *token; - int valid = 0; - int width, height; - stbi_uc *scanline; - float *hdr_data; - int len; - unsigned char count, value; - int i, j, k, c1,c2, z; - const char *headerToken; - STBI_NOTUSED(ri); - - // Check identifier - headerToken = stbi__hdr_gettoken(s,buffer); - if (strcmp(headerToken, "#?RADIANCE") != 0 && strcmp(headerToken, "#?RGBE") != 0) - return stbi__errpf("not HDR", "Corrupt HDR image"); - - // Parse header - for(;;) { - token = stbi__hdr_gettoken(s,buffer); - if (token[0] == 0) break; - if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; - } - - if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format"); - - // Parse width and height - // can't use sscanf() if we're not using stdio! - token = stbi__hdr_gettoken(s,buffer); - if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); - token += 3; - height = (int) strtol(token, &token, 10); - while (*token == ' ') ++token; - if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); - token += 3; - width = (int) strtol(token, NULL, 10); - - *x = width; - *y = height; - - if (comp) *comp = 3; - if (req_comp == 0) req_comp = 3; - - if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0)) - return stbi__errpf("too large", "HDR image is too large"); - - // Read data - hdr_data = (float *) stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0); - if (!hdr_data) - return stbi__errpf("outofmem", "Out of memory"); - - // Load image data - // image data is stored as some number of sca - if ( width < 8 || width >= 32768) { - // Read flat data - for (j=0; j < height; ++j) { - for (i=0; i < width; ++i) { - stbi_uc rgbe[4]; - main_decode_loop: - stbi__getn(s, rgbe, 4); - stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); - } + if (scanline == NULL) { + scanline = (stbi_uc *)stbi__malloc_mad2(width, 4, 0); + if (!scanline) { + STBI_FREE(hdr_data); + return stbi__errpf("outofmem", "Out of memory"); + } } - } else { - // Read RLE-encoded data - scanline = NULL; - - for (j = 0; j < height; ++j) { - c1 = stbi__get8(s); - c2 = stbi__get8(s); - len = stbi__get8(s); - if (c1 != 2 || c2 != 2 || (len & 0x80)) { - // not run-length encoded, so we have to actually use THIS data as a decoded - // pixel (note this can't be a valid pixel--one of RGB must be >= 128) - stbi_uc rgbe[4]; - rgbe[0] = (stbi_uc) c1; - rgbe[1] = (stbi_uc) c2; - rgbe[2] = (stbi_uc) len; - rgbe[3] = (stbi_uc) stbi__get8(s); - stbi__hdr_convert(hdr_data, rgbe, req_comp); - i = 1; - j = 0; - STBI_FREE(scanline); - goto main_decode_loop; // yes, this makes no sense - } - len <<= 8; - len |= stbi__get8(s); - if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); } - if (scanline == NULL) { - scanline = (stbi_uc *) stbi__malloc_mad2(width, 4, 0); - if (!scanline) { - STBI_FREE(hdr_data); - return stbi__errpf("outofmem", "Out of memory"); + + for (k = 0; k < 4; ++k) { + int nleft; + i = 0; + while ((nleft = width - i) > 0) { + count = stbi__get8(s); + if (count > 128) { + // Run + value = stbi__get8(s); + count -= 128; + if (count > nleft) { + STBI_FREE(hdr_data); + STBI_FREE(scanline); + return stbi__errpf("corrupt", "bad RLE data in HDR"); } - } - - for (k = 0; k < 4; ++k) { - int nleft; - i = 0; - while ((nleft = width - i) > 0) { - count = stbi__get8(s); - if (count > 128) { - // Run - value = stbi__get8(s); - count -= 128; - if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); } - for (z = 0; z < count; ++z) - scanline[i++ * 4 + k] = value; - } else { - // Dump - if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); } - for (z = 0; z < count; ++z) - scanline[i++ * 4 + k] = stbi__get8(s); - } + for (z = 0; z < count; ++z) + scanline[i++ * 4 + k] = value; + } else { + // Dump + if (count > nleft) { + STBI_FREE(hdr_data); + STBI_FREE(scanline); + return stbi__errpf("corrupt", "bad RLE data in HDR"); } - } - for (i=0; i < width; ++i) - stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); + for (z = 0; z < count; ++z) + scanline[i++ * 4 + k] = stbi__get8(s); + } + } } - if (scanline) - STBI_FREE(scanline); - } - - return hdr_data; -} - -static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp) -{ - char buffer[STBI__HDR_BUFLEN]; - char *token; - int valid = 0; - int dummy; - - if (!x) x = &dummy; - if (!y) y = &dummy; - if (!comp) comp = &dummy; - - if (stbi__hdr_test(s) == 0) { - stbi__rewind( s ); - return 0; - } - - for(;;) { - token = stbi__hdr_gettoken(s,buffer); - if (token[0] == 0) break; - if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; - } - - if (!valid) { - stbi__rewind( s ); - return 0; - } - token = stbi__hdr_gettoken(s,buffer); - if (strncmp(token, "-Y ", 3)) { - stbi__rewind( s ); - return 0; - } - token += 3; - *y = (int) strtol(token, &token, 10); - while (*token == ' ') ++token; - if (strncmp(token, "+X ", 3)) { - stbi__rewind( s ); - return 0; - } - token += 3; - *x = (int) strtol(token, NULL, 10); - *comp = 3; - return 1; + for (i = 0; i < width; ++i) + stbi__hdr_convert(hdr_data + (j * width + i) * req_comp, + scanline + i * 4, req_comp); + } + if (scanline) + STBI_FREE(scanline); + } + + return hdr_data; +} + +static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp) { + char buffer[STBI__HDR_BUFLEN]; + char *token; + int valid = 0; + int dummy; + + if (!x) + x = &dummy; + if (!y) + y = &dummy; + if (!comp) + comp = &dummy; + + if (stbi__hdr_test(s) == 0) { + stbi__rewind(s); + return 0; + } + + for (;;) { + token = stbi__hdr_gettoken(s, buffer); + if (token[0] == 0) + break; + if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) + valid = 1; + } + + if (!valid) { + stbi__rewind(s); + return 0; + } + token = stbi__hdr_gettoken(s, buffer); + if (strncmp(token, "-Y ", 3)) { + stbi__rewind(s); + return 0; + } + token += 3; + *y = (int)strtol(token, &token, 10); + while (*token == ' ') + ++token; + if (strncmp(token, "+X ", 3)) { + stbi__rewind(s); + return 0; + } + token += 3; + *x = (int)strtol(token, NULL, 10); + *comp = 3; + return 1; } #endif // STBI_NO_HDR #ifndef STBI_NO_BMP -static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp) -{ - void *p; - stbi__bmp_data info; - - info.all_a = 255; - p = stbi__bmp_parse_header(s, &info); - stbi__rewind( s ); - if (p == NULL) - return 0; - if (x) *x = s->img_x; - if (y) *y = s->img_y; - if (comp) { - if (info.bpp == 24 && info.ma == 0xff000000) - *comp = 3; - else - *comp = info.ma ? 4 : 3; - } - return 1; +static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp) { + void *p; + stbi__bmp_data info; + + info.all_a = 255; + p = stbi__bmp_parse_header(s, &info); + stbi__rewind(s); + if (p == NULL) + return 0; + if (x) + *x = s->img_x; + if (y) + *y = s->img_y; + if (comp) { + if (info.bpp == 24 && info.ma == 0xff000000) + *comp = 3; + else + *comp = info.ma ? 4 : 3; + } + return 1; } #endif #ifndef STBI_NO_PSD -static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp) -{ - int channelCount, dummy, depth; - if (!x) x = &dummy; - if (!y) y = &dummy; - if (!comp) comp = &dummy; - if (stbi__get32be(s) != 0x38425053) { - stbi__rewind( s ); - return 0; - } - if (stbi__get16be(s) != 1) { - stbi__rewind( s ); - return 0; - } - stbi__skip(s, 6); - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) { - stbi__rewind( s ); - return 0; - } - *y = stbi__get32be(s); - *x = stbi__get32be(s); - depth = stbi__get16be(s); - if (depth != 8 && depth != 16) { - stbi__rewind( s ); - return 0; - } - if (stbi__get16be(s) != 3) { - stbi__rewind( s ); - return 0; - } - *comp = 4; - return 1; -} - -static int stbi__psd_is16(stbi__context *s) -{ - int channelCount, depth; - if (stbi__get32be(s) != 0x38425053) { - stbi__rewind( s ); - return 0; - } - if (stbi__get16be(s) != 1) { - stbi__rewind( s ); - return 0; - } - stbi__skip(s, 6); - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) { - stbi__rewind( s ); - return 0; - } - (void) stbi__get32be(s); - (void) stbi__get32be(s); - depth = stbi__get16be(s); - if (depth != 16) { - stbi__rewind( s ); - return 0; - } - return 1; +static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp) { + int channelCount, dummy, depth; + if (!x) + x = &dummy; + if (!y) + y = &dummy; + if (!comp) + comp = &dummy; + if (stbi__get32be(s) != 0x38425053) { + stbi__rewind(s); + return 0; + } + if (stbi__get16be(s) != 1) { + stbi__rewind(s); + return 0; + } + stbi__skip(s, 6); + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) { + stbi__rewind(s); + return 0; + } + *y = stbi__get32be(s); + *x = stbi__get32be(s); + depth = stbi__get16be(s); + if (depth != 8 && depth != 16) { + stbi__rewind(s); + return 0; + } + if (stbi__get16be(s) != 3) { + stbi__rewind(s); + return 0; + } + *comp = 4; + return 1; +} + +static int stbi__psd_is16(stbi__context *s) { + int channelCount, depth; + if (stbi__get32be(s) != 0x38425053) { + stbi__rewind(s); + return 0; + } + if (stbi__get16be(s) != 1) { + stbi__rewind(s); + return 0; + } + stbi__skip(s, 6); + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) { + stbi__rewind(s); + return 0; + } + (void)stbi__get32be(s); + (void)stbi__get32be(s); + depth = stbi__get16be(s); + if (depth != 16) { + stbi__rewind(s); + return 0; + } + return 1; } #endif #ifndef STBI_NO_PIC -static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) -{ - int act_comp=0,num_packets=0,chained,dummy; - stbi__pic_packet packets[10]; - - if (!x) x = &dummy; - if (!y) y = &dummy; - if (!comp) comp = &dummy; - - if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) { - stbi__rewind(s); +static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) { + int act_comp = 0, num_packets = 0, chained, dummy; + stbi__pic_packet packets[10]; + + if (!x) + x = &dummy; + if (!y) + y = &dummy; + if (!comp) + comp = &dummy; + + if (!stbi__pic_is4(s, "\x53\x80\xF6\x34")) { + stbi__rewind(s); + return 0; + } + + stbi__skip(s, 88); + + *x = stbi__get16be(s); + *y = stbi__get16be(s); + if (stbi__at_eof(s)) { + stbi__rewind(s); + return 0; + } + if ((*x) != 0 && (1 << 28) / (*x) < (*y)) { + stbi__rewind(s); + return 0; + } + + stbi__skip(s, 8); + + do { + stbi__pic_packet *packet; + + if (num_packets == sizeof(packets) / sizeof(packets[0])) return 0; - } - stbi__skip(s, 88); + packet = &packets[num_packets++]; + chained = stbi__get8(s); + packet->size = stbi__get8(s); + packet->type = stbi__get8(s); + packet->channel = stbi__get8(s); + act_comp |= packet->channel; - *x = stbi__get16be(s); - *y = stbi__get16be(s); - if (stbi__at_eof(s)) { - stbi__rewind( s); + if (stbi__at_eof(s)) { + stbi__rewind(s); return 0; - } - if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) { - stbi__rewind( s ); + } + if (packet->size != 8) { + stbi__rewind(s); return 0; - } - - stbi__skip(s, 8); - - do { - stbi__pic_packet *packet; - - if (num_packets==sizeof(packets)/sizeof(packets[0])) - return 0; - - packet = &packets[num_packets++]; - chained = stbi__get8(s); - packet->size = stbi__get8(s); - packet->type = stbi__get8(s); - packet->channel = stbi__get8(s); - act_comp |= packet->channel; - - if (stbi__at_eof(s)) { - stbi__rewind( s ); - return 0; - } - if (packet->size != 8) { - stbi__rewind( s ); - return 0; - } - } while (chained); + } + } while (chained); - *comp = (act_comp & 0x10 ? 4 : 3); + *comp = (act_comp & 0x10 ? 4 : 3); - return 1; + return 1; } #endif @@ -7090,254 +7820,259 @@ static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) #ifndef STBI_NO_PNM -static int stbi__pnm_test(stbi__context *s) -{ - char p, t; - p = (char) stbi__get8(s); - t = (char) stbi__get8(s); - if (p != 'P' || (t != '5' && t != '6')) { - stbi__rewind( s ); - return 0; - } - return 1; +static int stbi__pnm_test(stbi__context *s) { + char p, t; + p = (char)stbi__get8(s); + t = (char)stbi__get8(s); + if (p != 'P' || (t != '5' && t != '6')) { + stbi__rewind(s); + return 0; + } + return 1; } -static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - stbi_uc *out; - STBI_NOTUSED(ri); +static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, + int req_comp, stbi__result_info *ri) { + stbi_uc *out; + STBI_NOTUSED(ri); - if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n)) - return 0; + if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n)) + return 0; - *x = s->img_x; - *y = s->img_y; - if (comp) *comp = s->img_n; + *x = s->img_x; + *y = s->img_y; + if (comp) + *comp = s->img_n; - if (!stbi__mad3sizes_valid(s->img_n, s->img_x, s->img_y, 0)) - return stbi__errpuc("too large", "PNM too large"); + if (!stbi__mad3sizes_valid(s->img_n, s->img_x, s->img_y, 0)) + return stbi__errpuc("too large", "PNM too large"); - out = (stbi_uc *) stbi__malloc_mad3(s->img_n, s->img_x, s->img_y, 0); - if (!out) return stbi__errpuc("outofmem", "Out of memory"); - stbi__getn(s, out, s->img_n * s->img_x * s->img_y); + out = (stbi_uc *)stbi__malloc_mad3(s->img_n, s->img_x, s->img_y, 0); + if (!out) + return stbi__errpuc("outofmem", "Out of memory"); + stbi__getn(s, out, s->img_n * s->img_x * s->img_y); - if (req_comp && req_comp != s->img_n) { - out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); - if (out == NULL) return out; // stbi__convert_format frees input on failure - } - return out; + if (req_comp && req_comp != s->img_n) { + out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); + if (out == NULL) + return out; // stbi__convert_format frees input on failure + } + return out; } -static int stbi__pnm_isspace(char c) -{ - return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; +static int stbi__pnm_isspace(char c) { + return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || + c == '\r'; } -static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) -{ - for (;;) { - while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) - *c = (char) stbi__get8(s); +static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) { + for (;;) { + while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) + *c = (char)stbi__get8(s); - if (stbi__at_eof(s) || *c != '#') - break; + if (stbi__at_eof(s) || *c != '#') + break; - while (!stbi__at_eof(s) && *c != '\n' && *c != '\r' ) - *c = (char) stbi__get8(s); - } + while (!stbi__at_eof(s) && *c != '\n' && *c != '\r') + *c = (char)stbi__get8(s); + } } -static int stbi__pnm_isdigit(char c) -{ - return c >= '0' && c <= '9'; -} +static int stbi__pnm_isdigit(char c) { return c >= '0' && c <= '9'; } -static int stbi__pnm_getinteger(stbi__context *s, char *c) -{ - int value = 0; +static int stbi__pnm_getinteger(stbi__context *s, char *c) { + int value = 0; - while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) { - value = value*10 + (*c - '0'); - *c = (char) stbi__get8(s); - } + while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) { + value = value * 10 + (*c - '0'); + *c = (char)stbi__get8(s); + } - return value; + return value; } -static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp) -{ - int maxv, dummy; - char c, p, t; +static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp) { + int maxv, dummy; + char c, p, t; - if (!x) x = &dummy; - if (!y) y = &dummy; - if (!comp) comp = &dummy; + if (!x) + x = &dummy; + if (!y) + y = &dummy; + if (!comp) + comp = &dummy; - stbi__rewind(s); + stbi__rewind(s); - // Get identifier - p = (char) stbi__get8(s); - t = (char) stbi__get8(s); - if (p != 'P' || (t != '5' && t != '6')) { - stbi__rewind(s); - return 0; - } + // Get identifier + p = (char)stbi__get8(s); + t = (char)stbi__get8(s); + if (p != 'P' || (t != '5' && t != '6')) { + stbi__rewind(s); + return 0; + } - *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm + *comp = + (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm - c = (char) stbi__get8(s); - stbi__pnm_skip_whitespace(s, &c); + c = (char)stbi__get8(s); + stbi__pnm_skip_whitespace(s, &c); - *x = stbi__pnm_getinteger(s, &c); // read width - stbi__pnm_skip_whitespace(s, &c); + *x = stbi__pnm_getinteger(s, &c); // read width + stbi__pnm_skip_whitespace(s, &c); - *y = stbi__pnm_getinteger(s, &c); // read height - stbi__pnm_skip_whitespace(s, &c); + *y = stbi__pnm_getinteger(s, &c); // read height + stbi__pnm_skip_whitespace(s, &c); - maxv = stbi__pnm_getinteger(s, &c); // read max value + maxv = stbi__pnm_getinteger(s, &c); // read max value - if (maxv > 255) - return stbi__err("max value > 255", "PPM image not 8-bit"); - else - return 1; + if (maxv > 255) + return stbi__err("max value > 255", "PPM image not 8-bit"); + else + return 1; } #endif -static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) -{ - #ifndef STBI_NO_JPEG - if (stbi__jpeg_info(s, x, y, comp)) return 1; - #endif +static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) { +#ifndef STBI_NO_JPEG + if (stbi__jpeg_info(s, x, y, comp)) + return 1; +#endif - #ifndef STBI_NO_PNG - if (stbi__png_info(s, x, y, comp)) return 1; - #endif +#ifndef STBI_NO_PNG + if (stbi__png_info(s, x, y, comp)) + return 1; +#endif - #ifndef STBI_NO_GIF - if (stbi__gif_info(s, x, y, comp)) return 1; - #endif +#ifndef STBI_NO_GIF + if (stbi__gif_info(s, x, y, comp)) + return 1; +#endif - #ifndef STBI_NO_BMP - if (stbi__bmp_info(s, x, y, comp)) return 1; - #endif +#ifndef STBI_NO_BMP + if (stbi__bmp_info(s, x, y, comp)) + return 1; +#endif - #ifndef STBI_NO_PSD - if (stbi__psd_info(s, x, y, comp)) return 1; - #endif +#ifndef STBI_NO_PSD + if (stbi__psd_info(s, x, y, comp)) + return 1; +#endif - #ifndef STBI_NO_PIC - if (stbi__pic_info(s, x, y, comp)) return 1; - #endif +#ifndef STBI_NO_PIC + if (stbi__pic_info(s, x, y, comp)) + return 1; +#endif - #ifndef STBI_NO_PNM - if (stbi__pnm_info(s, x, y, comp)) return 1; - #endif +#ifndef STBI_NO_PNM + if (stbi__pnm_info(s, x, y, comp)) + return 1; +#endif - #ifndef STBI_NO_HDR - if (stbi__hdr_info(s, x, y, comp)) return 1; - #endif +#ifndef STBI_NO_HDR + if (stbi__hdr_info(s, x, y, comp)) + return 1; +#endif - // test tga last because it's a crappy test! - #ifndef STBI_NO_TGA - if (stbi__tga_info(s, x, y, comp)) - return 1; - #endif - return stbi__err("unknown image type", "Image not of any known type, or corrupt"); +// test tga last because it's a crappy test! +#ifndef STBI_NO_TGA + if (stbi__tga_info(s, x, y, comp)) + return 1; +#endif + return stbi__err("unknown image type", + "Image not of any known type, or corrupt"); } -static int stbi__is_16_main(stbi__context *s) -{ - #ifndef STBI_NO_PNG - if (stbi__png_is16(s)) return 1; - #endif +static int stbi__is_16_main(stbi__context *s) { +#ifndef STBI_NO_PNG + if (stbi__png_is16(s)) + return 1; +#endif - #ifndef STBI_NO_PSD - if (stbi__psd_is16(s)) return 1; - #endif +#ifndef STBI_NO_PSD + if (stbi__psd_is16(s)) + return 1; +#endif - return 0; + return 0; } #ifndef STBI_NO_STDIO -STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp) -{ - FILE *f = stbi__fopen(filename, "rb"); - int result; - if (!f) return stbi__err("can't fopen", "Unable to open file"); - result = stbi_info_from_file(f, x, y, comp); - fclose(f); - return result; -} - -STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) -{ - int r; - stbi__context s; - long pos = ftell(f); - stbi__start_file(&s, f); - r = stbi__info_main(&s,x,y,comp); - fseek(f,pos,SEEK_SET); - return r; -} - -STBIDEF int stbi_is_16_bit(char const *filename) -{ - FILE *f = stbi__fopen(filename, "rb"); - int result; - if (!f) return stbi__err("can't fopen", "Unable to open file"); - result = stbi_is_16_bit_from_file(f); - fclose(f); - return result; -} - -STBIDEF int stbi_is_16_bit_from_file(FILE *f) -{ - int r; - stbi__context s; - long pos = ftell(f); - stbi__start_file(&s, f); - r = stbi__is_16_main(&s); - fseek(f,pos,SEEK_SET); - return r; +STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp) { + FILE *f = stbi__fopen(filename, "rb"); + int result; + if (!f) + return stbi__err("can't fopen", "Unable to open file"); + result = stbi_info_from_file(f, x, y, comp); + fclose(f); + return result; +} + +STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) { + int r; + stbi__context s; + long pos = ftell(f); + stbi__start_file(&s, f); + r = stbi__info_main(&s, x, y, comp); + fseek(f, pos, SEEK_SET); + return r; +} + +STBIDEF int stbi_is_16_bit(char const *filename) { + FILE *f = stbi__fopen(filename, "rb"); + int result; + if (!f) + return stbi__err("can't fopen", "Unable to open file"); + result = stbi_is_16_bit_from_file(f); + fclose(f); + return result; +} + +STBIDEF int stbi_is_16_bit_from_file(FILE *f) { + int r; + stbi__context s; + long pos = ftell(f); + stbi__start_file(&s, f); + r = stbi__is_16_main(&s); + fseek(f, pos, SEEK_SET); + return r; } #endif // !STBI_NO_STDIO -STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__info_main(&s,x,y,comp); +STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, + int *y, int *comp) { + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__info_main(&s, x, y, comp); } -STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); - return stbi__info_main(&s,x,y,comp); +STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, + int *x, int *y, int *comp) { + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)c, user); + return stbi__info_main(&s, x, y, comp); } -STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__is_16_main(&s); +STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len) { + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__is_16_main(&s); } -STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); - return stbi__is_16_main(&s); +STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, + void *user) { + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)c, user); + return stbi__is_16_main(&s); } #endif // STB_IMAGE_IMPLEMENTATION /* revision history: - 2.20 (2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs - 2.19 (2018-02-11) fix warning - 2.18 (2018-01-30) fix warnings - 2.17 (2018-01-29) change sbti__shiftsigned to avoid clang -O2 bug + 2.20 (2019-02-07) support utf8 filenames in Windows; fix warnings and + platform ifdefs 2.19 (2018-02-11) fix warning 2.18 (2018-01-30) fix + warnings 2.17 (2018-01-29) change sbti__shiftsigned to avoid clang -O2 bug 1-bit BMP *_is_16_bit api avoid warnings @@ -7352,13 +8087,11 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user warning fixes; disable run-time SSE detection on gcc; uniform handling of optional "return" values; thread-safe initialization of zlib tables - 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs - 2.13 (2016-11-29) add 16-bit API, only supported for PNG right now - 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes - 2.11 (2016-04-02) allocate large structures on the stack - remove white matting for transparent PSD - fix reported channel count for PNG & BMP - re-enable SSE2 in non-gcc 64-bit + 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet + JPGs 2.13 (2016-11-29) add 16-bit API, only supported for PNG right now 2.12 + (2016-04-02) fix typo in 2.11 PSD fix that caused crashes 2.11 (2016-04-02) + allocate large structures on the stack remove white matting for transparent + PSD fix reported channel count for PNG & BMP re-enable SSE2 in non-gcc 64-bit support RGB-formatted JPEG read 16-bit PNGs (only as 8-bit) 2.10 (2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED @@ -7366,11 +8099,9 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user 16-bit-per-pixel TGA (not bit-per-component) info() for TGA could break due to .hdr handling info() for BMP to shares code instead of sloppy parse - can use STBI_REALLOC_SIZED if allocator doesn't support realloc - code cleanup - 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA - 2.07 (2015-09-13) fix compiler warnings - partial animated GIF support + can use STBI_REALLOC_SIZED if allocator doesn't support + realloc code cleanup 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD + as RGBA 2.07 (2015-09-13) fix compiler warnings partial animated GIF support limited 16-bpc PSD support #ifdef unused functions bug with < 92 byte PIC,PNM,HDR,TGA @@ -7381,23 +8112,18 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user stbi_set_flip_vertically_on_load (nguillemot) fix NEON support; fix mingw support 2.02 (2015-01-19) fix incorrect assert, fix warning - 2.01 (2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit without -msse2 - 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG - 2.00 (2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg) - progressive JPEG (stb) - PGM/PPM support (Ken Miller) - STBI_MALLOC,STBI_REALLOC,STBI_FREE + 2.01 (2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit + without -msse2 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG 2.00 + (2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg) progressive + JPEG (stb) PGM/PPM support (Ken Miller) STBI_MALLOC,STBI_REALLOC,STBI_FREE GIF bugfix -- seemingly never worked STBI_NO_*, STBI_ONLY_* 1.48 (2014-12-14) fix incorrectly-named assert() - 1.47 (2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar Cornut & stb) - optimize PNG (ryg) - fix bug in interlaced PNG with user-specified channel count (stb) - 1.46 (2014-08-26) - fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG - 1.45 (2014-08-16) - fix MSVC-ARM internal compiler error by wrapping malloc - 1.44 (2014-08-07) + 1.47 (2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar + Cornut & stb) optimize PNG (ryg) fix bug in interlaced PNG with + user-specified channel count (stb) 1.46 (2014-08-26) fix broken tRNS chunk + (colorkey-style transparency) in non-paletted PNG 1.45 (2014-08-16) fix + MSVC-ARM internal compiler error by wrapping malloc 1.44 (2014-08-07) various warning fixes from Ronny Chevalier 1.43 (2014-07-15) fix MSVC-only compiler problem in code changed in 1.42 @@ -7406,73 +8132,48 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user fixes to stbi__cleanup_jpeg path added STBI_ASSERT to avoid requiring assert.h 1.41 (2014-06-25) - fix search&replace from 1.36 that messed up comments/error messages - 1.40 (2014-06-22) - fix gcc struct-initialization warning - 1.39 (2014-06-15) - fix to TGA optimization when req_comp != number of components in TGA; - fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my test suite) - add support for BMP version 5 (more ignored fields) - 1.38 (2014-06-06) - suppress MSVC warnings on integer casts truncating values - fix accidental rename of 'skip' field of I/O - 1.37 (2014-06-04) - remove duplicate typedef - 1.36 (2014-06-03) - convert to header file single-file library - if de-iphone isn't set, load iphone images color-swapped instead of returning NULL - 1.35 (2014-05-27) - various warnings - fix broken STBI_SIMD path - fix bug where stbi_load_from_file no longer left file pointer in correct place - fix broken non-easy path for 32-bit BMP (possibly never used) - TGA optimization by Arseny Kapoulkine - 1.34 (unknown) - use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case - 1.33 (2011-07-14) - make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements - 1.32 (2011-07-13) - support for "info" function for all supported filetypes (SpartanJ) - 1.31 (2011-06-20) - a few more leak fixes, bug in PNG handling (SpartanJ) - 1.30 (2011-06-11) - added ability to load files via callbacks to accomidate custom input streams (Ben Wenger) + fix search&replace from 1.36 that messed up comments/error + messages 1.40 (2014-06-22) fix gcc struct-initialization warning 1.39 + (2014-06-15) fix to TGA optimization when req_comp != number of components in + TGA; fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my + test suite) add support for BMP version 5 (more ignored fields) 1.38 + (2014-06-06) suppress MSVC warnings on integer casts truncating values fix + accidental rename of 'skip' field of I/O 1.37 (2014-06-04) remove duplicate + typedef 1.36 (2014-06-03) convert to header file single-file library if + de-iphone isn't set, load iphone images color-swapped instead of returning + NULL 1.35 (2014-05-27) various warnings fix broken STBI_SIMD path fix bug + where stbi_load_from_file no longer left file pointer in correct place fix + broken non-easy path for 32-bit BMP (possibly never used) TGA optimization by + Arseny Kapoulkine 1.34 (unknown) use STBI_NOTUSED in + stbi__resample_row_generic(), fix one more leak in tga failure case 1.33 + (2011-07-14) make stbi_is_hdr work in STBI_NO_HDR (as specified), minor + compiler-friendly improvements 1.32 (2011-07-13) support for "info" function + for all supported filetypes (SpartanJ) 1.31 (2011-06-20) a few more leak + fixes, bug in PNG handling (SpartanJ) 1.30 (2011-06-11) added ability to + load files via callbacks to accomidate custom input streams (Ben Wenger) removed deprecated format-specific test/load functions - removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway - error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha) - fix inefficiency in decoding 32-bit BMP (David Woo) - 1.29 (2010-08-16) - various warning fixes from Aurelien Pocheville - 1.28 (2010-08-01) - fix bug in GIF palette transparency (SpartanJ) - 1.27 (2010-08-01) - cast-to-stbi_uc to fix warnings - 1.26 (2010-07-24) - fix bug in file buffering for PNG reported by SpartanJ - 1.25 (2010-07-17) - refix trans_data warning (Won Chun) - 1.24 (2010-07-12) - perf improvements reading from files on platforms with lock-heavy fgetc() - minor perf improvements for jpeg - deprecated type-specific functions so we'll get feedback if they're needed - attempt to fix trans_data warning (Won Chun) - 1.23 fixed bug in iPhone support - 1.22 (2010-07-10) - removed image *writing* support - stbi_info support from Jetro Lauha - GIF support from Jean-Marc Lienher + removed support for installable file formats (stbi_loader) -- + would have been broken for IO callbacks anyway error cases in bmp and tga + give messages and don't leak (Raymond Barbiero, grisha) fix inefficiency in + decoding 32-bit BMP (David Woo) 1.29 (2010-08-16) various warning fixes from + Aurelien Pocheville 1.28 (2010-08-01) fix bug in GIF palette transparency + (SpartanJ) 1.27 (2010-08-01) cast-to-stbi_uc to fix warnings 1.26 + (2010-07-24) fix bug in file buffering for PNG reported by SpartanJ 1.25 + (2010-07-17) refix trans_data warning (Won Chun) 1.24 (2010-07-12) perf + improvements reading from files on platforms with lock-heavy fgetc() minor + perf improvements for jpeg deprecated type-specific functions so we'll get + feedback if they're needed attempt to fix trans_data warning (Won Chun) 1.23 + fixed bug in iPhone support 1.22 (2010-07-10) removed image *writing* + support stbi_info support from Jetro Lauha GIF support from Jean-Marc Lienher iPhone PNG-extensions from James Brown - warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva) - 1.21 fix use of 'stbi_uc' in header (reported by jon blow) - 1.20 added support for Softimage PIC, by Tom Seddon - 1.19 bug in interlaced PNG corruption check (found by ryg) - 1.18 (2008-08-02) - fix a threading bug (local mutable static) - 1.17 support interlaced PNG - 1.16 major bugfix - stbi__convert_format converted one too many pixels - 1.15 initialize some fields for thread safety - 1.14 fix threadsafe conversion bug - header-file-only version (#define STBI_HEADER_FILE_ONLY before including) + warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. + Janez (U+017D)emva) 1.21 fix use of 'stbi_uc' in header (reported by jon + blow) 1.20 added support for Softimage PIC, by Tom Seddon 1.19 bug in + interlaced PNG corruption check (found by ryg) 1.18 (2008-08-02) fix a + threading bug (local mutable static) 1.17 support interlaced PNG 1.16 + major bugfix - stbi__convert_format converted one too many pixels 1.15 + initialize some fields for thread safety 1.14 fix threadsafe conversion + bug header-file-only version (#define STBI_HEADER_FILE_ONLY before including) 1.13 threadsafe 1.12 const qualifiers in the API 1.11 Support installable IDCT, colorspace conversion routines @@ -7482,15 +8183,14 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz 1.07 attempt to fix C++ warning/errors again 1.06 attempt to fix C++ warning/errors again - 1.05 fix TGA loading to return correct *comp and use good luminance calc - 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free - 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR - 1.02 support for (subset of) HDR files, float interface for preferred access to them - 1.01 fix bug: possible bug in handling right-side up bmps... not sure - fix bug: the stbi__bmp_load() and stbi__tga_load() functions didn't work at all - 1.00 interface to zlib that skips zlib header - 0.99 correct handling of alpha in palette - 0.98 TGA loader by lonesock; dynamically add loaders (untested) + 1.05 fix TGA loading to return correct *comp and use good luminance + calc 1.04 default float alpha is 1, not 255; use 'void *' for + stbi_image_free 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR 1.02 support + for (subset of) HDR files, float interface for preferred access to them 1.01 + fix bug: possible bug in handling right-side up bmps... not sure fix bug: the + stbi__bmp_load() and stbi__tga_load() functions didn't work at all 1.00 + interface to zlib that skips zlib header 0.99 correct handling of alpha in + palette 0.98 TGA loader by lonesock; dynamically add loaders (untested) 0.97 jpeg errors on too large a file; also catch another malloc failure 0.96 fix detection of invalid v value - particleman@mollyrocket forum 0.95 during header scan, seek to markers in case of padding @@ -7503,8 +8203,8 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user 0.60 fix compiling as c++ 0.59 fix warnings: merge Dave Moore's -Wall fixes 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian - 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available - 0.56 fix bug: zlib uncompressed mode len vs. nlen + 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but + less than 16 available 0.56 fix bug: zlib uncompressed mode len vs. nlen 0.55 fix bug: restart_interval not initialized to 0 0.54 allow NULL for 'int *comp' 0.53 fix bug in png 3->4; speedup png decoding @@ -7515,7 +8215,6 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user first released version */ - /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/image/stb_image_write.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/image/stb_image_write.h index a9bf66c14e1f783eb505c2a09a8e762a5d9694dc..84b84981b44876c35c9bb6cce1af402ec302c3eb 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/image/stb_image_write.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/image/stb_image_write.h @@ -26,11 +26,12 @@ BUILDING: You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace malloc,realloc,free. You can #define STBIW_MEMMOVE() to replace memmove() - You can #define STBIW_ZLIB_COMPRESS to use a custom zlib-style compress function - for PNG compression (instead of the builtin one), it must have the following signature: - unsigned char * my_compress(unsigned char *data, int data_len, int *out_len, int quality); - The returned data will be freed with STBIW_FREE() (free() by default), - so it must be heap allocated with STBIW_MALLOC() (malloc() by default), + You can #define STBIW_ZLIB_COMPRESS to use a custom zlib-style compress +function for PNG compression (instead of the builtin one), it must have the +following signature: unsigned char * my_compress(unsigned char *data, int +data_len, int *out_len, int quality); The returned data will be freed with +STBIW_FREE() (free() by default), so it must be heap allocated with +STBIW_MALLOC() (malloc() by default), UNICODE: @@ -44,30 +45,37 @@ USAGE: There are five functions, one for each image file format: - int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); - int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); - int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); - int stbi_write_jpg(char const *filename, int w, int h, int comp, const void *data, int quality); - int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); - - void stbi_flip_vertically_on_write(int flag); // flag is non-zero to flip data vertically - - There are also five equivalent functions that use an arbitrary write function. You are - expected to open/close your file-equivalent before and after calling these: - - int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); - int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); - int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); - int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); - int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality); + int stbi_write_png(char const *filename, int w, int h, int comp, const void +*data, int stride_in_bytes); int stbi_write_bmp(char const *filename, int w, int +h, int comp, const void *data); int stbi_write_tga(char const *filename, int w, +int h, int comp, const void *data); int stbi_write_jpg(char const *filename, int +w, int h, int comp, const void *data, int quality); int stbi_write_hdr(char +const *filename, int w, int h, int comp, const float *data); + + void stbi_flip_vertically_on_write(int flag); // flag is non-zero to flip +data vertically + + There are also five equivalent functions that use an arbitrary write +function. You are expected to open/close your file-equivalent before and after +calling these: + + int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int +h, int comp, const void *data, int stride_in_bytes); int +stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int +comp, const void *data); int stbi_write_tga_to_func(stbi_write_func *func, void +*context, int w, int h, int comp, const void *data); int +stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int +comp, const float *data); int stbi_write_jpg_to_func(stbi_write_func *func, void +*context, int x, int y, int comp, const void *data, int quality); where the callback is: void stbi_write_func(void *context, void *data, int size); You can configure it with these global variables: - int stbi_write_tga_with_rle; // defaults to true; set to 0 to disable RLE - int stbi_write_png_compression_level; // defaults to 8; set to higher for more compression - int stbi_write_force_png_filter; // defaults to -1; set to 0..5 to force a filter mode + int stbi_write_tga_with_rle; // defaults to true; set to 0 to +disable RLE int stbi_write_png_compression_level; // defaults to 8; set to +higher for more compression int stbi_write_force_png_filter; // defaults +to -1; set to 0..5 to force a filter mode You can define STBI_WRITE_NO_STDIO to disable the file variant of these @@ -105,7 +113,7 @@ USAGE: TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed data, set the global variable 'stbi_write_tga_with_rle' to 0. - + JPEG does ignore alpha channels in input data; quality is between 1 and 100. Higher quality looks better but results in a bigger image. JPEG baseline (no JPEG progressive). @@ -113,7 +121,7 @@ USAGE: CREDITS: - Sean Barrett - PNG/BMP/TGA + Sean Barrett - PNG/BMP/TGA Baldur Karlsson - HDR Jean-Sebastien Guay - TGA monochrome Tim Kelsey - misc enhancements @@ -152,135 +160,147 @@ LICENSE #include <stdlib.h> -// if STB_IMAGE_WRITE_STATIC causes problems, try defining STBIWDEF to 'inline' or 'static inline' +// if STB_IMAGE_WRITE_STATIC causes problems, try defining STBIWDEF to 'inline' +// or 'static inline' #ifndef STBIWDEF #ifdef STB_IMAGE_WRITE_STATIC -#define STBIWDEF static +#define STBIWDEF static #else #ifdef __cplusplus -#define STBIWDEF extern "C" +#define STBIWDEF extern "C" #else -#define STBIWDEF extern +#define STBIWDEF extern #endif #endif #endif -#ifndef STB_IMAGE_WRITE_STATIC // C++ forbids static forward declarations +#ifndef STB_IMAGE_WRITE_STATIC // C++ forbids static forward declarations extern int stbi_write_tga_with_rle; extern int stbi_write_png_compression_level; extern int stbi_write_force_png_filter; #endif #ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); -STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); -STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); -STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); -STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality); +STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, + const void *data, int stride_in_bytes); +STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, + const void *data); +STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, + const void *data); +STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, + const float *data); +STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, + const void *data, int quality); #ifdef STBI_WINDOWS_UTF8 -STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input); +STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, + const wchar_t *input); #endif #endif typedef void stbi_write_func(void *context, void *data, int size); -STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); -STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); -STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); -STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); -STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality); +STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, + int h, int comp, const void *data, + int stride_in_bytes); +STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, + int h, int comp, const void *data); +STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, + int h, int comp, const void *data); +STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, + int h, int comp, const float *data); +STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, + int y, int comp, const void *data, + int quality); STBIWDEF void stbi_flip_vertically_on_write(int flip_boolean); -#endif//INCLUDE_STB_IMAGE_WRITE_H +#endif // INCLUDE_STB_IMAGE_WRITE_H #ifdef STB_IMAGE_WRITE_IMPLEMENTATION #ifdef _WIN32 - #ifndef _CRT_SECURE_NO_WARNINGS - #define _CRT_SECURE_NO_WARNINGS - #endif - #ifndef _CRT_NONSTDC_NO_DEPRECATE - #define _CRT_NONSTDC_NO_DEPRECATE - #endif +#ifndef _CRT_SECURE_NO_WARNINGS +#define _CRT_SECURE_NO_WARNINGS +#endif +#ifndef _CRT_NONSTDC_NO_DEPRECATE +#define _CRT_NONSTDC_NO_DEPRECATE +#endif #endif #ifndef STBI_WRITE_NO_STDIO #include <stdio.h> #endif // STBI_WRITE_NO_STDIO +#include <math.h> #include <stdarg.h> #include <stdlib.h> #include <string.h> -#include <math.h> -#if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED)) +#if defined(STBIW_MALLOC) && defined(STBIW_FREE) && \ + (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED)) // ok -#elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED) +#elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && \ + !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED) // ok #else -#error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)." +#error \ + "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)." #endif #ifndef STBIW_MALLOC -#define STBIW_MALLOC(sz) malloc(sz) -#define STBIW_REALLOC(p,newsz) realloc(p,newsz) -#define STBIW_FREE(p) free(p) +#define STBIW_MALLOC(sz) malloc(sz) +#define STBIW_REALLOC(p, newsz) realloc(p, newsz) +#define STBIW_FREE(p) free(p) #endif #ifndef STBIW_REALLOC_SIZED -#define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz) +#define STBIW_REALLOC_SIZED(p, oldsz, newsz) STBIW_REALLOC(p, newsz) #endif - #ifndef STBIW_MEMMOVE -#define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz) +#define STBIW_MEMMOVE(a, b, sz) memmove(a, b, sz) #endif - #ifndef STBIW_ASSERT #include <assert.h> #define STBIW_ASSERT(x) assert(x) #endif -#define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff) +#define STBIW_UCHAR(x) (unsigned char)((x)&0xff) #ifdef STB_IMAGE_WRITE_STATIC -static int stbi__flip_vertically_on_write=0; +static int stbi__flip_vertically_on_write = 0; static int stbi_write_png_compression_level = 8; static int stbi_write_tga_with_rle = 1; static int stbi_write_force_png_filter = -1; #else int stbi_write_png_compression_level = 8; -int stbi__flip_vertically_on_write=0; +int stbi__flip_vertically_on_write = 0; int stbi_write_tga_with_rle = 1; int stbi_write_force_png_filter = -1; #endif -STBIWDEF void stbi_flip_vertically_on_write(int flag) -{ - stbi__flip_vertically_on_write = flag; +STBIWDEF void stbi_flip_vertically_on_write(int flag) { + stbi__flip_vertically_on_write = flag; } -typedef struct -{ - stbi_write_func *func; - void *context; +typedef struct { + stbi_write_func *func; + void *context; } stbi__write_context; // initialize a callback-based context -static void stbi__start_write_callbacks(stbi__write_context *s, stbi_write_func *c, void *context) -{ - s->func = c; - s->context = context; +static void stbi__start_write_callbacks(stbi__write_context *s, + stbi_write_func *c, void *context) { + s->func = c; + s->context = context; } #ifndef STBI_WRITE_NO_STDIO -static void stbi__stdio_write(void *context, void *data, int size) -{ - fwrite(data,1,size,(FILE*) context); +static void stbi__stdio_write(void *context, void *data, int size) { + fwrite(data, 1, size, (FILE *)context); } #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) @@ -289,306 +309,332 @@ static void stbi__stdio_write(void *context, void *data, int size) #else #define STBIW_EXTERN extern #endif -STBIW_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide); -STBIW_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default); - -STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input) -{ - return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL); +STBIW_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar( + unsigned int cp, unsigned long flags, const char *str, int cbmb, + wchar_t *widestr, int cchwide); +STBIW_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte( + unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, + char *str, int cbmb, const char *defchar, int *used_default); + +STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, + const wchar_t *input) { + return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, + (int)bufferlen, NULL, NULL); } #endif -static FILE *stbiw__fopen(char const *filename, char const *mode) -{ - FILE *f; +static FILE *stbiw__fopen(char const *filename, char const *mode) { + FILE *f; #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) - wchar_t wMode[64]; - wchar_t wFilename[1024]; - if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename))) - return 0; - - if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode))) - return 0; + wchar_t wMode[64]; + wchar_t wFilename[1024]; + if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, + sizeof(wFilename))) + return 0; + + if (0 == + MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode))) + return 0; #if _MSC_VER >= 1400 - if (0 != _wfopen_s(&f, wFilename, wMode)) - f = 0; + if (0 != _wfopen_s(&f, wFilename, wMode)) + f = 0; #else - f = _wfopen(wFilename, wMode); + f = _wfopen(wFilename, wMode); #endif #elif defined(_MSC_VER) && _MSC_VER >= 1400 - if (0 != fopen_s(&f, filename, mode)) - f=0; + if (0 != fopen_s(&f, filename, mode)) + f = 0; #else - f = fopen(filename, mode); + f = fopen(filename, mode); #endif - return f; + return f; } -static int stbi__start_write_file(stbi__write_context *s, const char *filename) -{ - FILE *f = stbiw__fopen(filename, "wb"); - stbi__start_write_callbacks(s, stbi__stdio_write, (void *) f); - return f != NULL; +static int stbi__start_write_file(stbi__write_context *s, + const char *filename) { + FILE *f = stbiw__fopen(filename, "wb"); + stbi__start_write_callbacks(s, stbi__stdio_write, (void *)f); + return f != NULL; } -static void stbi__end_write_file(stbi__write_context *s) -{ - fclose((FILE *)s->context); +static void stbi__end_write_file(stbi__write_context *s) { + fclose((FILE *)s->context); } #endif // !STBI_WRITE_NO_STDIO typedef unsigned int stbiw_uint32; -typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1]; - -static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v) -{ - while (*fmt) { - switch (*fmt++) { - case ' ': break; - case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int)); - s->func(s->context,&x,1); - break; } - case '2': { int x = va_arg(v,int); - unsigned char b[2]; - b[0] = STBIW_UCHAR(x); - b[1] = STBIW_UCHAR(x>>8); - s->func(s->context,b,2); - break; } - case '4': { stbiw_uint32 x = va_arg(v,int); - unsigned char b[4]; - b[0]=STBIW_UCHAR(x); - b[1]=STBIW_UCHAR(x>>8); - b[2]=STBIW_UCHAR(x>>16); - b[3]=STBIW_UCHAR(x>>24); - s->func(s->context,b,4); - break; } - default: - STBIW_ASSERT(0); - return; - } - } +typedef int stb_image_write_test[sizeof(stbiw_uint32) == 4 ? 1 : -1]; + +static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v) { + while (*fmt) { + switch (*fmt++) { + case ' ': + break; + case '1': { + unsigned char x = STBIW_UCHAR(va_arg(v, int)); + s->func(s->context, &x, 1); + break; + } + case '2': { + int x = va_arg(v, int); + unsigned char b[2]; + b[0] = STBIW_UCHAR(x); + b[1] = STBIW_UCHAR(x >> 8); + s->func(s->context, b, 2); + break; + } + case '4': { + stbiw_uint32 x = va_arg(v, int); + unsigned char b[4]; + b[0] = STBIW_UCHAR(x); + b[1] = STBIW_UCHAR(x >> 8); + b[2] = STBIW_UCHAR(x >> 16); + b[3] = STBIW_UCHAR(x >> 24); + s->func(s->context, b, 4); + break; + } + default: + STBIW_ASSERT(0); + return; + } + } } -static void stbiw__writef(stbi__write_context *s, const char *fmt, ...) -{ - va_list v; - va_start(v, fmt); - stbiw__writefv(s, fmt, v); - va_end(v); +static void stbiw__writef(stbi__write_context *s, const char *fmt, ...) { + va_list v; + va_start(v, fmt); + stbiw__writefv(s, fmt, v); + va_end(v); } -static void stbiw__putc(stbi__write_context *s, unsigned char c) -{ - s->func(s->context, &c, 1); +static void stbiw__putc(stbi__write_context *s, unsigned char c) { + s->func(s->context, &c, 1); } -static void stbiw__write3(stbi__write_context *s, unsigned char a, unsigned char b, unsigned char c) -{ - unsigned char arr[3]; - arr[0] = a; arr[1] = b; arr[2] = c; - s->func(s->context, arr, 3); +static void stbiw__write3(stbi__write_context *s, unsigned char a, + unsigned char b, unsigned char c) { + unsigned char arr[3]; + arr[0] = a; + arr[1] = b; + arr[2] = c; + s->func(s->context, arr, 3); } -static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char *d) -{ - unsigned char bg[3] = { 255, 0, 255}, px[3]; - int k; - - if (write_alpha < 0) - s->func(s->context, &d[comp - 1], 1); - - switch (comp) { - case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as 1-channel case - case 1: - if (expand_mono) - stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp - else - s->func(s->context, d, 1); // monochrome TGA - break; - case 4: - if (!write_alpha) { - // composite against pink background - for (k = 0; k < 3; ++k) - px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255; - stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]); - break; - } - /* FALLTHROUGH */ - case 3: - stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]); - break; - } - if (write_alpha > 0) - s->func(s->context, &d[comp - 1], 1); +static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, + int write_alpha, int expand_mono, + unsigned char *d) { + unsigned char bg[3] = {255, 0, 255}, px[3]; + int k; + + if (write_alpha < 0) + s->func(s->context, &d[comp - 1], 1); + + switch (comp) { + case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as + // 1-channel case + case 1: + if (expand_mono) + stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp + else + s->func(s->context, d, 1); // monochrome TGA + break; + case 4: + if (!write_alpha) { + // composite against pink background + for (k = 0; k < 3; ++k) + px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255; + stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]); + break; + } + /* FALLTHROUGH */ + case 3: + stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]); + break; + } + if (write_alpha > 0) + s->func(s->context, &d[comp - 1], 1); } -static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono) -{ - stbiw_uint32 zero = 0; - int i,j, j_end; - - if (y <= 0) - return; - - if (stbi__flip_vertically_on_write) - vdir *= -1; - - if (vdir < 0) { - j_end = -1; j = y-1; - } else { - j_end = y; j = 0; - } - - for (; j != j_end; j += vdir) { - for (i=0; i < x; ++i) { - unsigned char *d = (unsigned char *) data + (j*x+i)*comp; - stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d); - } - s->func(s->context, &zero, scanline_pad); - } +static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, + int x, int y, int comp, void *data, + int write_alpha, int scanline_pad, + int expand_mono) { + stbiw_uint32 zero = 0; + int i, j, j_end; + + if (y <= 0) + return; + + if (stbi__flip_vertically_on_write) + vdir *= -1; + + if (vdir < 0) { + j_end = -1; + j = y - 1; + } else { + j_end = y; + j = 0; + } + + for (; j != j_end; j += vdir) { + for (i = 0; i < x; ++i) { + unsigned char *d = (unsigned char *)data + (j * x + i) * comp; + stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d); + } + s->func(s->context, &zero, scanline_pad); + } } -static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...) -{ - if (y < 0 || x < 0) { - return 0; - } else { - va_list v; - va_start(v, fmt); - stbiw__writefv(s, fmt, v); - va_end(v); - stbiw__write_pixels(s,rgb_dir,vdir,x,y,comp,data,alpha,pad, expand_mono); - return 1; - } +static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, + int y, int comp, int expand_mono, void *data, + int alpha, int pad, const char *fmt, ...) { + if (y < 0 || x < 0) { + return 0; + } else { + va_list v; + va_start(v, fmt); + stbiw__writefv(s, fmt, v); + va_end(v); + stbiw__write_pixels(s, rgb_dir, vdir, x, y, comp, data, alpha, pad, + expand_mono); + return 1; + } } -static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, const void *data) -{ - int pad = (-x*3) & 3; - return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *) data,0,pad, - "11 4 22 4" "4 44 22 444444", - 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header - 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header +static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, + const void *data) { + int pad = (-x * 3) & 3; + return stbiw__outfile(s, -1, -1, x, y, comp, 1, (void *)data, 0, pad, + "11 4 22 4" + "4 44 22 444444", + 'B', 'M', 14 + 40 + (x * 3 + pad) * y, 0, 0, + 14 + 40, // file header + 40, x, y, 1, 24, 0, 0, 0, 0, 0, 0); // bitmap header } -STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) -{ - stbi__write_context s; - stbi__start_write_callbacks(&s, func, context); - return stbi_write_bmp_core(&s, x, y, comp, data); +STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, + int y, int comp, const void *data) { + stbi__write_context s; + stbi__start_write_callbacks(&s, func, context); + return stbi_write_bmp_core(&s, x, y, comp, data); } #ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data) -{ - stbi__write_context s; - if (stbi__start_write_file(&s,filename)) { - int r = stbi_write_bmp_core(&s, x, y, comp, data); - stbi__end_write_file(&s); - return r; - } else - return 0; +STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, + const void *data) { + stbi__write_context s; + if (stbi__start_write_file(&s, filename)) { + int r = stbi_write_bmp_core(&s, x, y, comp, data); + stbi__end_write_file(&s); + return r; + } else + return 0; } -#endif //!STBI_WRITE_NO_STDIO - -static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, void *data) -{ - int has_alpha = (comp == 2 || comp == 4); - int colorbytes = has_alpha ? comp-1 : comp; - int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3 - - if (y < 0 || x < 0) - return 0; - - if (!stbi_write_tga_with_rle) { - return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *) data, has_alpha, 0, - "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8); - } else { - int i,j,k; - int jend, jdir; - - stbiw__writef(s, "111 221 2222 11", 0,0,format+8, 0,0,0, 0,0,x,y, (colorbytes + has_alpha) * 8, has_alpha * 8); - - if (stbi__flip_vertically_on_write) { - j = 0; - jend = y; - jdir = 1; - } else { - j = y-1; - jend = -1; - jdir = -1; - } - for (; j != jend; j += jdir) { - unsigned char *row = (unsigned char *) data + j * x * comp; - int len; - - for (i = 0; i < x; i += len) { - unsigned char *begin = row + i * comp; - int diff = 1; - len = 1; - - if (i < x - 1) { - ++len; - diff = memcmp(begin, row + (i + 1) * comp, comp); - if (diff) { - const unsigned char *prev = begin; - for (k = i + 2; k < x && len < 128; ++k) { - if (memcmp(prev, row + k * comp, comp)) { - prev += comp; - ++len; - } else { - --len; - break; - } - } - } else { - for (k = i + 2; k < x && len < 128; ++k) { - if (!memcmp(begin, row + k * comp, comp)) { - ++len; - } else { - break; - } - } - } +#endif //! STBI_WRITE_NO_STDIO + +static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, + void *data) { + int has_alpha = (comp == 2 || comp == 4); + int colorbytes = has_alpha ? comp - 1 : comp; + int format = + colorbytes < 2 + ? 3 + : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3 + + if (y < 0 || x < 0) + return 0; + + if (!stbi_write_tga_with_rle) { + return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *)data, has_alpha, 0, + "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, + (colorbytes + has_alpha) * 8, has_alpha * 8); + } else { + int i, j, k; + int jend, jdir; + + stbiw__writef(s, "111 221 2222 11", 0, 0, format + 8, 0, 0, 0, 0, 0, x, y, + (colorbytes + has_alpha) * 8, has_alpha * 8); + + if (stbi__flip_vertically_on_write) { + j = 0; + jend = y; + jdir = 1; + } else { + j = y - 1; + jend = -1; + jdir = -1; + } + for (; j != jend; j += jdir) { + unsigned char *row = (unsigned char *)data + j * x * comp; + int len; + + for (i = 0; i < x; i += len) { + unsigned char *begin = row + i * comp; + int diff = 1; + len = 1; + + if (i < x - 1) { + ++len; + diff = memcmp(begin, row + (i + 1) * comp, comp); + if (diff) { + const unsigned char *prev = begin; + for (k = i + 2; k < x && len < 128; ++k) { + if (memcmp(prev, row + k * comp, comp)) { + prev += comp; + ++len; + } else { + --len; + break; + } } - - if (diff) { - unsigned char header = STBIW_UCHAR(len - 1); - s->func(s->context, &header, 1); - for (k = 0; k < len; ++k) { - stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp); - } - } else { - unsigned char header = STBIW_UCHAR(len - 129); - s->func(s->context, &header, 1); - stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin); + } else { + for (k = i + 2; k < x && len < 128; ++k) { + if (!memcmp(begin, row + k * comp, comp)) { + ++len; + } else { + break; + } } - } + } + } + + if (diff) { + unsigned char header = STBIW_UCHAR(len - 1); + s->func(s->context, &header, 1); + for (k = 0; k < len; ++k) { + stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp); + } + } else { + unsigned char header = STBIW_UCHAR(len - 129); + s->func(s->context, &header, 1); + stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin); + } } - } - return 1; + } + } + return 1; } -STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) -{ - stbi__write_context s; - stbi__start_write_callbacks(&s, func, context); - return stbi_write_tga_core(&s, x, y, comp, (void *) data); +STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, + int y, int comp, const void *data) { + stbi__write_context s; + stbi__start_write_callbacks(&s, func, context); + return stbi_write_tga_core(&s, x, y, comp, (void *)data); } #ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data) -{ - stbi__write_context s; - if (stbi__start_write_file(&s,filename)) { - int r = stbi_write_tga_core(&s, x, y, comp, (void *) data); - stbi__end_write_file(&s); - return r; - } else - return 0; +STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, + const void *data) { + stbi__write_context s; + if (stbi__start_write_file(&s, filename)) { + int r = stbi_write_tga_core(&s, x, y, comp, (void *)data); + stbi__end_write_file(&s); + return r; + } else + return 0; } #endif @@ -596,934 +642,1213 @@ STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, const // Radiance RGBE HDR writer // by Baldur Karlsson -#define stbiw__max(a, b) ((a) > (b) ? (a) : (b)) +#define stbiw__max(a, b) ((a) > (b) ? (a) : (b)) -static void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear) -{ - int exponent; - float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2])); +static void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear) { + int exponent; + float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2])); - if (maxcomp < 1e-32f) { - rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0; - } else { - float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp; + if (maxcomp < 1e-32f) { + rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0; + } else { + float normalize = (float)frexp(maxcomp, &exponent) * 256.0f / maxcomp; - rgbe[0] = (unsigned char)(linear[0] * normalize); - rgbe[1] = (unsigned char)(linear[1] * normalize); - rgbe[2] = (unsigned char)(linear[2] * normalize); - rgbe[3] = (unsigned char)(exponent + 128); - } + rgbe[0] = (unsigned char)(linear[0] * normalize); + rgbe[1] = (unsigned char)(linear[1] * normalize); + rgbe[2] = (unsigned char)(linear[2] * normalize); + rgbe[3] = (unsigned char)(exponent + 128); + } } -static void stbiw__write_run_data(stbi__write_context *s, int length, unsigned char databyte) -{ - unsigned char lengthbyte = STBIW_UCHAR(length+128); - STBIW_ASSERT(length+128 <= 255); - s->func(s->context, &lengthbyte, 1); - s->func(s->context, &databyte, 1); +static void stbiw__write_run_data(stbi__write_context *s, int length, + unsigned char databyte) { + unsigned char lengthbyte = STBIW_UCHAR(length + 128); + STBIW_ASSERT(length + 128 <= 255); + s->func(s->context, &lengthbyte, 1); + s->func(s->context, &databyte, 1); } -static void stbiw__write_dump_data(stbi__write_context *s, int length, unsigned char *data) -{ - unsigned char lengthbyte = STBIW_UCHAR(length); - STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code - s->func(s->context, &lengthbyte, 1); - s->func(s->context, data, length); +static void stbiw__write_dump_data(stbi__write_context *s, int length, + unsigned char *data) { + unsigned char lengthbyte = STBIW_UCHAR(length); + STBIW_ASSERT(length <= + 128); // inconsistent with spec but consistent with official code + s->func(s->context, &lengthbyte, 1); + s->func(s->context, data, length); } -static void stbiw__write_hdr_scanline(stbi__write_context *s, int width, int ncomp, unsigned char *scratch, float *scanline) -{ - unsigned char scanlineheader[4] = { 2, 2, 0, 0 }; - unsigned char rgbe[4]; - float linear[3]; - int x; - - scanlineheader[2] = (width&0xff00)>>8; - scanlineheader[3] = (width&0x00ff); - - /* skip RLE for images too small or large */ - if (width < 8 || width >= 32768) { - for (x=0; x < width; x++) { - switch (ncomp) { - case 4: /* fallthrough */ - case 3: linear[2] = scanline[x*ncomp + 2]; - linear[1] = scanline[x*ncomp + 1]; - linear[0] = scanline[x*ncomp + 0]; - break; - default: - linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; - break; - } - stbiw__linear_to_rgbe(rgbe, linear); - s->func(s->context, rgbe, 4); +static void stbiw__write_hdr_scanline(stbi__write_context *s, int width, + int ncomp, unsigned char *scratch, + float *scanline) { + unsigned char scanlineheader[4] = {2, 2, 0, 0}; + unsigned char rgbe[4]; + float linear[3]; + int x; + + scanlineheader[2] = (width & 0xff00) >> 8; + scanlineheader[3] = (width & 0x00ff); + + /* skip RLE for images too small or large */ + if (width < 8 || width >= 32768) { + for (x = 0; x < width; x++) { + switch (ncomp) { + case 4: /* fallthrough */ + case 3: + linear[2] = scanline[x * ncomp + 2]; + linear[1] = scanline[x * ncomp + 1]; + linear[0] = scanline[x * ncomp + 0]; + break; + default: + linear[0] = linear[1] = linear[2] = scanline[x * ncomp + 0]; + break; } - } else { - int c,r; - /* encode into scratch buffer */ - for (x=0; x < width; x++) { - switch(ncomp) { - case 4: /* fallthrough */ - case 3: linear[2] = scanline[x*ncomp + 2]; - linear[1] = scanline[x*ncomp + 1]; - linear[0] = scanline[x*ncomp + 0]; - break; - default: - linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; - break; - } - stbiw__linear_to_rgbe(rgbe, linear); - scratch[x + width*0] = rgbe[0]; - scratch[x + width*1] = rgbe[1]; - scratch[x + width*2] = rgbe[2]; - scratch[x + width*3] = rgbe[3]; + stbiw__linear_to_rgbe(rgbe, linear); + s->func(s->context, rgbe, 4); + } + } else { + int c, r; + /* encode into scratch buffer */ + for (x = 0; x < width; x++) { + switch (ncomp) { + case 4: /* fallthrough */ + case 3: + linear[2] = scanline[x * ncomp + 2]; + linear[1] = scanline[x * ncomp + 1]; + linear[0] = scanline[x * ncomp + 0]; + break; + default: + linear[0] = linear[1] = linear[2] = scanline[x * ncomp + 0]; + break; } - - s->func(s->context, scanlineheader, 4); - - /* RLE each component separately */ - for (c=0; c < 4; c++) { - unsigned char *comp = &scratch[width*c]; - - x = 0; - while (x < width) { - // find first run - r = x; - while (r+2 < width) { - if (comp[r] == comp[r+1] && comp[r] == comp[r+2]) - break; - ++r; - } - if (r+2 >= width) - r = width; - // dump up to first run - while (x < r) { - int len = r-x; - if (len > 128) len = 128; - stbiw__write_dump_data(s, len, &comp[x]); - x += len; - } - // if there's a run, output it - if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd - // find next byte after run - while (r < width && comp[r] == comp[x]) - ++r; - // output run up to r - while (x < r) { - int len = r-x; - if (len > 127) len = 127; - stbiw__write_run_data(s, len, comp[x]); - x += len; - } - } - } + stbiw__linear_to_rgbe(rgbe, linear); + scratch[x + width * 0] = rgbe[0]; + scratch[x + width * 1] = rgbe[1]; + scratch[x + width * 2] = rgbe[2]; + scratch[x + width * 3] = rgbe[3]; + } + + s->func(s->context, scanlineheader, 4); + + /* RLE each component separately */ + for (c = 0; c < 4; c++) { + unsigned char *comp = &scratch[width * c]; + + x = 0; + while (x < width) { + // find first run + r = x; + while (r + 2 < width) { + if (comp[r] == comp[r + 1] && comp[r] == comp[r + 2]) + break; + ++r; + } + if (r + 2 >= width) + r = width; + // dump up to first run + while (x < r) { + int len = r - x; + if (len > 128) + len = 128; + stbiw__write_dump_data(s, len, &comp[x]); + x += len; + } + // if there's a run, output it + if (r + 2 < width) { // same test as what we break out of in search + // loop, so only true if we break'd + // find next byte after run + while (r < width && comp[r] == comp[x]) + ++r; + // output run up to r + while (x < r) { + int len = r - x; + if (len > 127) + len = 127; + stbiw__write_run_data(s, len, comp[x]); + x += len; + } + } } - } + } + } } -static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, float *data) -{ - if (y <= 0 || x <= 0 || data == NULL) - return 0; - else { - // Each component is stored separately. Allocate scratch space for full output scanline. - unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4); - int i, len; - char buffer[128]; - char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n"; - s->func(s->context, header, sizeof(header)-1); +static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, + float *data) { + if (y <= 0 || x <= 0 || data == NULL) + return 0; + else { + // Each component is stored separately. Allocate scratch space for full + // output scanline. + unsigned char *scratch = (unsigned char *)STBIW_MALLOC(x * 4); + int i, len; + char buffer[128]; + char header[] = + "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n"; + s->func(s->context, header, sizeof(header) - 1); #ifdef __STDC_WANT_SECURE_LIB__ - len = sprintf_s(buffer, sizeof(buffer), "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); + len = + sprintf_s(buffer, sizeof(buffer), + "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); #else - len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); + len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", + y, x); #endif - s->func(s->context, buffer, len); - - for(i=0; i < y; i++) - stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp*x*(stbi__flip_vertically_on_write ? y-1-i : i)); - STBIW_FREE(scratch); - return 1; - } + s->func(s->context, buffer, len); + + for (i = 0; i < y; i++) + stbiw__write_hdr_scanline( + s, x, comp, scratch, + data + comp * x * (stbi__flip_vertically_on_write ? y - 1 - i : i)); + STBIW_FREE(scratch); + return 1; + } } -STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const float *data) -{ - stbi__write_context s; - stbi__start_write_callbacks(&s, func, context); - return stbi_write_hdr_core(&s, x, y, comp, (float *) data); +STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, + int y, int comp, const float *data) { + stbi__write_context s; + stbi__start_write_callbacks(&s, func, context); + return stbi_write_hdr_core(&s, x, y, comp, (float *)data); } #ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data) -{ - stbi__write_context s; - if (stbi__start_write_file(&s,filename)) { - int r = stbi_write_hdr_core(&s, x, y, comp, (float *) data); - stbi__end_write_file(&s); - return r; - } else - return 0; +STBIWDEF int stbi_write_hdr(char const *filename, int x, int y, int comp, + const float *data) { + stbi__write_context s; + if (stbi__start_write_file(&s, filename)) { + int r = stbi_write_hdr_core(&s, x, y, comp, (float *)data); + stbi__end_write_file(&s); + return r; + } else + return 0; } #endif // STBI_WRITE_NO_STDIO - ////////////////////////////////////////////////////////////////////////////// // // PNG writer // #ifndef STBIW_ZLIB_COMPRESS -// stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size() -#define stbiw__sbraw(a) ((int *) (a) - 2) -#define stbiw__sbm(a) stbiw__sbraw(a)[0] -#define stbiw__sbn(a) stbiw__sbraw(a)[1] - -#define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a)) -#define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0) -#define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a))) - -#define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v)) -#define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0) -#define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0) - -static void *stbiw__sbgrowf(void **arr, int increment, int itemsize) -{ - int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1; - void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2); - STBIW_ASSERT(p); - if (p) { - if (!*arr) ((int *) p)[1] = 0; - *arr = (void *) ((int *) p + 2); - stbiw__sbm(*arr) = m; - } - return *arr; +// stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() +// == vector<>::size() +#define stbiw__sbraw(a) ((int *)(a)-2) +#define stbiw__sbm(a) stbiw__sbraw(a)[0] +#define stbiw__sbn(a) stbiw__sbraw(a)[1] + +#define stbiw__sbneedgrow(a, n) ((a) == 0 || stbiw__sbn(a) + n >= stbiw__sbm(a)) +#define stbiw__sbmaybegrow(a, n) \ + (stbiw__sbneedgrow(a, (n)) ? stbiw__sbgrow(a, n) : 0) +#define stbiw__sbgrow(a, n) stbiw__sbgrowf((void **)&(a), (n), sizeof(*(a))) + +#define stbiw__sbpush(a, v) \ + (stbiw__sbmaybegrow(a, 1), (a)[stbiw__sbn(a)++] = (v)) +#define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0) +#define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)), 0 : 0) + +static void *stbiw__sbgrowf(void **arr, int increment, int itemsize) { + int m = *arr ? 2 * stbiw__sbm(*arr) + increment : increment + 1; + void *p = STBIW_REALLOC_SIZED( + *arr ? stbiw__sbraw(*arr) : 0, + *arr ? (stbiw__sbm(*arr) * itemsize + sizeof(int) * 2) : 0, + itemsize * m + sizeof(int) * 2); + STBIW_ASSERT(p); + if (p) { + if (!*arr) + ((int *)p)[1] = 0; + *arr = (void *)((int *)p + 2); + stbiw__sbm(*arr) = m; + } + return *arr; } -static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount) -{ - while (*bitcount >= 8) { - stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer)); - *bitbuffer >>= 8; - *bitcount -= 8; - } - return data; +static unsigned char *stbiw__zlib_flushf(unsigned char *data, + unsigned int *bitbuffer, + int *bitcount) { + while (*bitcount >= 8) { + stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer)); + *bitbuffer >>= 8; + *bitcount -= 8; + } + return data; } -static int stbiw__zlib_bitrev(int code, int codebits) -{ - int res=0; - while (codebits--) { - res = (res << 1) | (code & 1); - code >>= 1; - } - return res; +static int stbiw__zlib_bitrev(int code, int codebits) { + int res = 0; + while (codebits--) { + res = (res << 1) | (code & 1); + code >>= 1; + } + return res; } -static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit) -{ - int i; - for (i=0; i < limit && i < 258; ++i) - if (a[i] != b[i]) break; - return i; +static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, + int limit) { + int i; + for (i = 0; i < limit && i < 258; ++i) + if (a[i] != b[i]) + break; + return i; } -static unsigned int stbiw__zhash(unsigned char *data) -{ - stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16); - hash ^= hash << 3; - hash += hash >> 5; - hash ^= hash << 4; - hash += hash >> 17; - hash ^= hash << 25; - hash += hash >> 6; - return hash; +static unsigned int stbiw__zhash(unsigned char *data) { + stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16); + hash ^= hash << 3; + hash += hash >> 5; + hash ^= hash << 4; + hash += hash >> 17; + hash ^= hash << 25; + hash += hash >> 6; + return hash; } #define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount)) -#define stbiw__zlib_add(code,codebits) \ - (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush()) -#define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c) +#define stbiw__zlib_add(code, codebits) \ + (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush()) +#define stbiw__zlib_huffa(b, c) stbiw__zlib_add(stbiw__zlib_bitrev(b, c), c) // default huffman tables -#define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8) -#define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9) -#define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7) -#define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8) -#define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n)) -#define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n)) - -#define stbiw__ZHASH 16384 +#define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8) +#define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9) +#define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256, 7) +#define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280, 8) +#define stbiw__zlib_huff(n) \ + ((n) <= 143 ? stbiw__zlib_huff1(n) \ + : (n) <= 255 ? stbiw__zlib_huff2(n) \ + : (n) <= 279 ? stbiw__zlib_huff3(n) \ + : stbiw__zlib_huff4(n)) +#define stbiw__zlib_huffb(n) \ + ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n)) + +#define stbiw__ZHASH 16384 #endif // STBIW_ZLIB_COMPRESS -STBIWDEF unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality) -{ +STBIWDEF unsigned char *stbi_zlib_compress(unsigned char *data, int data_len, + int *out_len, int quality) { #ifdef STBIW_ZLIB_COMPRESS - // user provided a zlib compress implementation, use that - return STBIW_ZLIB_COMPRESS(data, data_len, out_len, quality); -#else // use builtin - static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 }; - static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; - static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 }; - static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 }; - unsigned int bitbuf=0; - int i,j, bitcount=0; - unsigned char *out = NULL; - unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(unsigned char**)); - if (hash_table == NULL) - return NULL; - if (quality < 5) quality = 5; - - stbiw__sbpush(out, 0x78); // DEFLATE 32K window - stbiw__sbpush(out, 0x5e); // FLEVEL = 1 - stbiw__zlib_add(1,1); // BFINAL = 1 - stbiw__zlib_add(1,2); // BTYPE = 1 -- fixed huffman - - for (i=0; i < stbiw__ZHASH; ++i) - hash_table[i] = NULL; - - i=0; - while (i < data_len-3) { - // hash next 3 bytes of data to be compressed - int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3; - unsigned char *bestloc = 0; - unsigned char **hlist = hash_table[h]; - int n = stbiw__sbcount(hlist); - for (j=0; j < n; ++j) { - if (hlist[j]-data > i-32768) { // if entry lies within window - int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i); - if (d >= best) { best=d; bestloc=hlist[j]; } - } - } - // when hash table entry is too long, delete half the entries - if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) { - STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality); - stbiw__sbn(hash_table[h]) = quality; - } - stbiw__sbpush(hash_table[h],data+i); - - if (bestloc) { - // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal - h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1); - hlist = hash_table[h]; - n = stbiw__sbcount(hlist); - for (j=0; j < n; ++j) { - if (hlist[j]-data > i-32767) { - int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1); - if (e > best) { // if next match is better, bail on current match - bestloc = NULL; - break; - } - } - } + // user provided a zlib compress implementation, use that + return STBIW_ZLIB_COMPRESS(data, data_len, out_len, quality); +#else // use builtin + static unsigned short lengthc[] = { + 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, + 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 259}; + static unsigned char lengtheb[] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, + 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, + 4, 4, 4, 4, 5, 5, 5, 5, 0}; + static unsigned short distc[] = { + 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, + 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, + 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 32768}; + static unsigned char disteb[] = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, + 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, + 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; + unsigned int bitbuf = 0; + int i, j, bitcount = 0; + unsigned char *out = NULL; + unsigned char ***hash_table = + (unsigned char ***)STBIW_MALLOC(stbiw__ZHASH * sizeof(unsigned char **)); + if (hash_table == NULL) + return NULL; + if (quality < 5) + quality = 5; + + stbiw__sbpush(out, 0x78); // DEFLATE 32K window + stbiw__sbpush(out, 0x5e); // FLEVEL = 1 + stbiw__zlib_add(1, 1); // BFINAL = 1 + stbiw__zlib_add(1, 2); // BTYPE = 1 -- fixed huffman + + for (i = 0; i < stbiw__ZHASH; ++i) + hash_table[i] = NULL; + + i = 0; + while (i < data_len - 3) { + // hash next 3 bytes of data to be compressed + int h = stbiw__zhash(data + i) & (stbiw__ZHASH - 1), best = 3; + unsigned char *bestloc = 0; + unsigned char **hlist = hash_table[h]; + int n = stbiw__sbcount(hlist); + for (j = 0; j < n; ++j) { + if (hlist[j] - data > i - 32768) { // if entry lies within window + int d = stbiw__zlib_countm(hlist[j], data + i, data_len - i); + if (d >= best) { + best = d; + bestloc = hlist[j]; + } } - - if (bestloc) { - int d = (int) (data+i - bestloc); // distance back - STBIW_ASSERT(d <= 32767 && best <= 258); - for (j=0; best > lengthc[j+1]-1; ++j); - stbiw__zlib_huff(j+257); - if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]); - for (j=0; d > distc[j+1]-1; ++j); - stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5); - if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]); - i += best; - } else { - stbiw__zlib_huffb(data[i]); - ++i; + } + // when hash table entry is too long, delete half the entries + if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2 * quality) { + STBIW_MEMMOVE(hash_table[h], hash_table[h] + quality, + sizeof(hash_table[h][0]) * quality); + stbiw__sbn(hash_table[h]) = quality; + } + stbiw__sbpush(hash_table[h], data + i); + + if (bestloc) { + // "lazy matching" - check match at *next* byte, and if it's better, do + // cur byte as literal + h = stbiw__zhash(data + i + 1) & (stbiw__ZHASH - 1); + hlist = hash_table[h]; + n = stbiw__sbcount(hlist); + for (j = 0; j < n; ++j) { + if (hlist[j] - data > i - 32767) { + int e = stbiw__zlib_countm(hlist[j], data + i + 1, data_len - i - 1); + if (e > best) { // if next match is better, bail on current match + bestloc = NULL; + break; + } + } } - } - // write out final bytes - for (;i < data_len; ++i) + } + + if (bestloc) { + int d = (int)(data + i - bestloc); // distance back + STBIW_ASSERT(d <= 32767 && best <= 258); + for (j = 0; best > lengthc[j + 1] - 1; ++j) + ; + stbiw__zlib_huff(j + 257); + if (lengtheb[j]) + stbiw__zlib_add(best - lengthc[j], lengtheb[j]); + for (j = 0; d > distc[j + 1] - 1; ++j) + ; + stbiw__zlib_add(stbiw__zlib_bitrev(j, 5), 5); + if (disteb[j]) + stbiw__zlib_add(d - distc[j], disteb[j]); + i += best; + } else { stbiw__zlib_huffb(data[i]); - stbiw__zlib_huff(256); // end of block - // pad with 0 bits to byte boundary - while (bitcount) - stbiw__zlib_add(0,1); - - for (i=0; i < stbiw__ZHASH; ++i) - (void) stbiw__sbfree(hash_table[i]); - STBIW_FREE(hash_table); - - { - // compute adler32 on input - unsigned int s1=1, s2=0; - int blocklen = (int) (data_len % 5552); - j=0; - while (j < data_len) { - for (i=0; i < blocklen; ++i) { s1 += data[j+i]; s2 += s1; } - s1 %= 65521; s2 %= 65521; - j += blocklen; - blocklen = 5552; + ++i; + } + } + // write out final bytes + for (; i < data_len; ++i) + stbiw__zlib_huffb(data[i]); + stbiw__zlib_huff(256); // end of block + // pad with 0 bits to byte boundary + while (bitcount) + stbiw__zlib_add(0, 1); + + for (i = 0; i < stbiw__ZHASH; ++i) + (void)stbiw__sbfree(hash_table[i]); + STBIW_FREE(hash_table); + + { + // compute adler32 on input + unsigned int s1 = 1, s2 = 0; + int blocklen = (int)(data_len % 5552); + j = 0; + while (j < data_len) { + for (i = 0; i < blocklen; ++i) { + s1 += data[j + i]; + s2 += s1; } - stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8)); - stbiw__sbpush(out, STBIW_UCHAR(s2)); - stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8)); - stbiw__sbpush(out, STBIW_UCHAR(s1)); - } - *out_len = stbiw__sbn(out); - // make returned pointer freeable - STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len); - return (unsigned char *) stbiw__sbraw(out); + s1 %= 65521; + s2 %= 65521; + j += blocklen; + blocklen = 5552; + } + stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8)); + stbiw__sbpush(out, STBIW_UCHAR(s2)); + stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8)); + stbiw__sbpush(out, STBIW_UCHAR(s1)); + } + *out_len = stbiw__sbn(out); + // make returned pointer freeable + STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len); + return (unsigned char *)stbiw__sbraw(out); #endif // STBIW_ZLIB_COMPRESS } -static unsigned int stbiw__crc32(unsigned char *buffer, int len) -{ +static unsigned int stbiw__crc32(unsigned char *buffer, int len) { #ifdef STBIW_CRC32 - return STBIW_CRC32(buffer, len); + return STBIW_CRC32(buffer, len); #else - static unsigned int crc_table[256] = - { - 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, - 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, - 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, - 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, - 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, - 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, - 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, - 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, - 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, - 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, - 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, - 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, - 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, - 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, - 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, - 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, - 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, - 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, - 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, - 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, - 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, - 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, - 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, - 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, - 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, - 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, - 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, - 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, - 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, - 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, - 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, - 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D - }; - - unsigned int crc = ~0u; - int i; - for (i=0; i < len; ++i) - crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)]; - return ~crc; + static unsigned int crc_table[256] = { + 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, + 0xE963A535, 0x9E6495A3, 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, + 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, + 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, + 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, + 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, + 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, + 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, + 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, + 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, + 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, + 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, + 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, + 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, + 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, + 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, + 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, + 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, + 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, + 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, + 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, + 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, + 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, + 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, + 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, + 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, + 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, + 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, + 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, + 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, + 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, + 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, + 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, + 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, + 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, + 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, + 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, + 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, + 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, + 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, + 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, + 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, + 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D}; + + unsigned int crc = ~0u; + int i; + for (i = 0; i < len; ++i) + crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)]; + return ~crc; #endif } -#define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4) -#define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v)); -#define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3]) +#define stbiw__wpng4(o, a, b, c, d) \ + ((o)[0] = STBIW_UCHAR(a), (o)[1] = STBIW_UCHAR(b), (o)[2] = STBIW_UCHAR(c), \ + (o)[3] = STBIW_UCHAR(d), (o) += 4) +#define stbiw__wp32(data, v) \ + stbiw__wpng4(data, (v) >> 24, (v) >> 16, (v) >> 8, (v)); +#define stbiw__wptag(data, s) stbiw__wpng4(data, s[0], s[1], s[2], s[3]) -static void stbiw__wpcrc(unsigned char **data, int len) -{ - unsigned int crc = stbiw__crc32(*data - len - 4, len+4); - stbiw__wp32(*data, crc); +static void stbiw__wpcrc(unsigned char **data, int len) { + unsigned int crc = stbiw__crc32(*data - len - 4, len + 4); + stbiw__wp32(*data, crc); } -static unsigned char stbiw__paeth(int a, int b, int c) -{ - int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c); - if (pa <= pb && pa <= pc) return STBIW_UCHAR(a); - if (pb <= pc) return STBIW_UCHAR(b); - return STBIW_UCHAR(c); +static unsigned char stbiw__paeth(int a, int b, int c) { + int p = a + b - c, pa = abs(p - a), pb = abs(p - b), pc = abs(p - c); + if (pa <= pb && pa <= pc) + return STBIW_UCHAR(a); + if (pb <= pc) + return STBIW_UCHAR(b); + return STBIW_UCHAR(c); } // @OPTIMIZE: provide an option that always forces left-predict or paeth predict -static void stbiw__encode_png_line(unsigned char *pixels, int stride_bytes, int width, int height, int y, int n, int filter_type, signed char *line_buffer) -{ - static int mapping[] = { 0,1,2,3,4 }; - static int firstmap[] = { 0,1,0,5,6 }; - int *mymap = (y != 0) ? mapping : firstmap; - int i; - int type = mymap[filter_type]; - unsigned char *z = pixels + stride_bytes * (stbi__flip_vertically_on_write ? height-1-y : y); - int signed_stride = stbi__flip_vertically_on_write ? -stride_bytes : stride_bytes; - - if (type==0) { - memcpy(line_buffer, z, width*n); - return; - } - - // first loop isn't optimized since it's just one pixel - for (i = 0; i < n; ++i) { - switch (type) { - case 1: line_buffer[i] = z[i]; break; - case 2: line_buffer[i] = z[i] - z[i-signed_stride]; break; - case 3: line_buffer[i] = z[i] - (z[i-signed_stride]>>1); break; - case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-signed_stride],0)); break; - case 5: line_buffer[i] = z[i]; break; - case 6: line_buffer[i] = z[i]; break; - } - } - switch (type) { - case 1: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-n]; break; - case 2: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-signed_stride]; break; - case 3: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - ((z[i-n] + z[i-signed_stride])>>1); break; - case 4: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-signed_stride], z[i-signed_stride-n]); break; - case 5: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - (z[i-n]>>1); break; - case 6: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break; - } +static void stbiw__encode_png_line(unsigned char *pixels, int stride_bytes, + int width, int height, int y, int n, + int filter_type, signed char *line_buffer) { + static int mapping[] = {0, 1, 2, 3, 4}; + static int firstmap[] = {0, 1, 0, 5, 6}; + int *mymap = (y != 0) ? mapping : firstmap; + int i; + int type = mymap[filter_type]; + unsigned char *z = + pixels + + stride_bytes * (stbi__flip_vertically_on_write ? height - 1 - y : y); + int signed_stride = + stbi__flip_vertically_on_write ? -stride_bytes : stride_bytes; + + if (type == 0) { + memcpy(line_buffer, z, width * n); + return; + } + + // first loop isn't optimized since it's just one pixel + for (i = 0; i < n; ++i) { + switch (type) { + case 1: + line_buffer[i] = z[i]; + break; + case 2: + line_buffer[i] = z[i] - z[i - signed_stride]; + break; + case 3: + line_buffer[i] = z[i] - (z[i - signed_stride] >> 1); + break; + case 4: + line_buffer[i] = + (signed char)(z[i] - stbiw__paeth(0, z[i - signed_stride], 0)); + break; + case 5: + line_buffer[i] = z[i]; + break; + case 6: + line_buffer[i] = z[i]; + break; + } + } + switch (type) { + case 1: + for (i = n; i < width * n; ++i) + line_buffer[i] = z[i] - z[i - n]; + break; + case 2: + for (i = n; i < width * n; ++i) + line_buffer[i] = z[i] - z[i - signed_stride]; + break; + case 3: + for (i = n; i < width * n; ++i) + line_buffer[i] = z[i] - ((z[i - n] + z[i - signed_stride]) >> 1); + break; + case 4: + for (i = n; i < width * n; ++i) + line_buffer[i] = z[i] - stbiw__paeth(z[i - n], z[i - signed_stride], + z[i - signed_stride - n]); + break; + case 5: + for (i = n; i < width * n; ++i) + line_buffer[i] = z[i] - (z[i - n] >> 1); + break; + case 6: + for (i = n; i < width * n; ++i) + line_buffer[i] = z[i] - stbiw__paeth(z[i - n], 0, 0); + break; + } } -STBIWDEF unsigned char *stbi_write_png_to_mem(const unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len) -{ - int force_filter = stbi_write_force_png_filter; - int ctype[5] = { -1, 0, 4, 2, 6 }; - unsigned char sig[8] = { 137,80,78,71,13,10,26,10 }; - unsigned char *out,*o, *filt, *zlib; - signed char *line_buffer; - int j,zlen; - - if (stride_bytes == 0) - stride_bytes = x * n; - - if (force_filter >= 5) { - force_filter = -1; - } - - filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0; - line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; } - for (j=0; j < y; ++j) { - int filter_type; - if (force_filter > -1) { - filter_type = force_filter; - stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, force_filter, line_buffer); - } else { // Estimate the best filter by running through all of them: - int best_filter = 0, best_filter_val = 0x7fffffff, est, i; - for (filter_type = 0; filter_type < 5; filter_type++) { - stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, filter_type, line_buffer); - - // Estimate the entropy of the line using this filter; the less, the better. - est = 0; - for (i = 0; i < x*n; ++i) { - est += abs((signed char) line_buffer[i]); - } - if (est < best_filter_val) { - best_filter_val = est; - best_filter = filter_type; - } - } - if (filter_type != best_filter) { // If the last iteration already got us the best filter, don't redo it - stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, best_filter, line_buffer); - filter_type = best_filter; - } +STBIWDEF unsigned char *stbi_write_png_to_mem(const unsigned char *pixels, + int stride_bytes, int x, int y, + int n, int *out_len) { + int force_filter = stbi_write_force_png_filter; + int ctype[5] = {-1, 0, 4, 2, 6}; + unsigned char sig[8] = {137, 80, 78, 71, 13, 10, 26, 10}; + unsigned char *out, *o, *filt, *zlib; + signed char *line_buffer; + int j, zlen; + + if (stride_bytes == 0) + stride_bytes = x * n; + + if (force_filter >= 5) { + force_filter = -1; + } + + filt = (unsigned char *)STBIW_MALLOC((x * n + 1) * y); + if (!filt) + return 0; + line_buffer = (signed char *)STBIW_MALLOC(x * n); + if (!line_buffer) { + STBIW_FREE(filt); + return 0; + } + for (j = 0; j < y; ++j) { + int filter_type; + if (force_filter > -1) { + filter_type = force_filter; + stbiw__encode_png_line((unsigned char *)(pixels), stride_bytes, x, y, j, + n, force_filter, line_buffer); + } else { // Estimate the best filter by running through all of them: + int best_filter = 0, best_filter_val = 0x7fffffff, est, i; + for (filter_type = 0; filter_type < 5; filter_type++) { + stbiw__encode_png_line((unsigned char *)(pixels), stride_bytes, x, y, j, + n, filter_type, line_buffer); + + // Estimate the entropy of the line using this filter; the less, the + // better. + est = 0; + for (i = 0; i < x * n; ++i) { + est += abs((signed char)line_buffer[i]); + } + if (est < best_filter_val) { + best_filter_val = est; + best_filter = filter_type; + } + } + if (filter_type != best_filter) { // If the last iteration already got us + // the best filter, don't redo it + stbiw__encode_png_line((unsigned char *)(pixels), stride_bytes, x, y, j, + n, best_filter, line_buffer); + filter_type = best_filter; } - // when we get here, filter_type contains the filter type, and line_buffer contains the data - filt[j*(x*n+1)] = (unsigned char) filter_type; - STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n); - } - STBIW_FREE(line_buffer); - zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, stbi_write_png_compression_level); - STBIW_FREE(filt); - if (!zlib) return 0; - - // each tag requires 12 bytes of overhead - out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12); - if (!out) return 0; - *out_len = 8 + 12+13 + 12+zlen + 12; - - o=out; - STBIW_MEMMOVE(o,sig,8); o+= 8; - stbiw__wp32(o, 13); // header length - stbiw__wptag(o, "IHDR"); - stbiw__wp32(o, x); - stbiw__wp32(o, y); - *o++ = 8; - *o++ = STBIW_UCHAR(ctype[n]); - *o++ = 0; - *o++ = 0; - *o++ = 0; - stbiw__wpcrc(&o,13); - - stbiw__wp32(o, zlen); - stbiw__wptag(o, "IDAT"); - STBIW_MEMMOVE(o, zlib, zlen); - o += zlen; - STBIW_FREE(zlib); - stbiw__wpcrc(&o, zlen); - - stbiw__wp32(o,0); - stbiw__wptag(o, "IEND"); - stbiw__wpcrc(&o,0); - - STBIW_ASSERT(o == out + *out_len); - - return out; + } + // when we get here, filter_type contains the filter type, and line_buffer + // contains the data + filt[j * (x * n + 1)] = (unsigned char)filter_type; + STBIW_MEMMOVE(filt + j * (x * n + 1) + 1, line_buffer, x * n); + } + STBIW_FREE(line_buffer); + zlib = stbi_zlib_compress(filt, y * (x * n + 1), &zlen, + stbi_write_png_compression_level); + STBIW_FREE(filt); + if (!zlib) + return 0; + + // each tag requires 12 bytes of overhead + out = (unsigned char *)STBIW_MALLOC(8 + 12 + 13 + 12 + zlen + 12); + if (!out) + return 0; + *out_len = 8 + 12 + 13 + 12 + zlen + 12; + + o = out; + STBIW_MEMMOVE(o, sig, 8); + o += 8; + stbiw__wp32(o, 13); // header length + stbiw__wptag(o, "IHDR"); + stbiw__wp32(o, x); + stbiw__wp32(o, y); + *o++ = 8; + *o++ = STBIW_UCHAR(ctype[n]); + *o++ = 0; + *o++ = 0; + *o++ = 0; + stbiw__wpcrc(&o, 13); + + stbiw__wp32(o, zlen); + stbiw__wptag(o, "IDAT"); + STBIW_MEMMOVE(o, zlib, zlen); + o += zlen; + STBIW_FREE(zlib); + stbiw__wpcrc(&o, zlen); + + stbiw__wp32(o, 0); + stbiw__wptag(o, "IEND"); + stbiw__wpcrc(&o, 0); + + STBIW_ASSERT(o == out + *out_len); + + return out; } #ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes) -{ - FILE *f; - int len; - unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len); - if (png == NULL) return 0; - - f = stbiw__fopen(filename, "wb"); - if (!f) { STBIW_FREE(png); return 0; } - fwrite(png, 1, len, f); - fclose(f); - STBIW_FREE(png); - return 1; +STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, + const void *data, int stride_bytes) { + FILE *f; + int len; + unsigned char *png = stbi_write_png_to_mem((const unsigned char *)data, + stride_bytes, x, y, comp, &len); + if (png == NULL) + return 0; + + f = stbiw__fopen(filename, "wb"); + if (!f) { + STBIW_FREE(png); + return 0; + } + fwrite(png, 1, len, f); + fclose(f); + STBIW_FREE(png); + return 1; } #endif -STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int stride_bytes) -{ - int len; - unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len); - if (png == NULL) return 0; - func(context, png, len); - STBIW_FREE(png); - return 1; +STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, + int y, int comp, const void *data, + int stride_bytes) { + int len; + unsigned char *png = stbi_write_png_to_mem((const unsigned char *)data, + stride_bytes, x, y, comp, &len); + if (png == NULL) + return 0; + func(context, png, len); + STBIW_FREE(png); + return 1; } - /* *************************************************************************** * * JPEG writer * * This is based on Jon Olick's jo_jpeg.cpp: - * public domain Simple, Minimalistic JPEG writer - http://www.jonolick.com/code.html + * public domain Simple, Minimalistic JPEG writer - + * http://www.jonolick.com/code.html */ -static const unsigned char stbiw__jpg_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18, - 24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 }; - -static void stbiw__jpg_writeBits(stbi__write_context *s, int *bitBufP, int *bitCntP, const unsigned short *bs) { - int bitBuf = *bitBufP, bitCnt = *bitCntP; - bitCnt += bs[1]; - bitBuf |= bs[0] << (24 - bitCnt); - while(bitCnt >= 8) { - unsigned char c = (bitBuf >> 16) & 255; - stbiw__putc(s, c); - if(c == 255) { - stbiw__putc(s, 0); - } - bitBuf <<= 8; - bitCnt -= 8; - } - *bitBufP = bitBuf; - *bitCntP = bitCnt; +static const unsigned char stbiw__jpg_ZigZag[] = { + 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, + 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, + 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, + 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63}; + +static void stbiw__jpg_writeBits(stbi__write_context *s, int *bitBufP, + int *bitCntP, const unsigned short *bs) { + int bitBuf = *bitBufP, bitCnt = *bitCntP; + bitCnt += bs[1]; + bitBuf |= bs[0] << (24 - bitCnt); + while (bitCnt >= 8) { + unsigned char c = (bitBuf >> 16) & 255; + stbiw__putc(s, c); + if (c == 255) { + stbiw__putc(s, 0); + } + bitBuf <<= 8; + bitCnt -= 8; + } + *bitBufP = bitBuf; + *bitCntP = bitCnt; } -static void stbiw__jpg_DCT(float *d0p, float *d1p, float *d2p, float *d3p, float *d4p, float *d5p, float *d6p, float *d7p) { - float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, d6 = *d6p, d7 = *d7p; - float z1, z2, z3, z4, z5, z11, z13; - - float tmp0 = d0 + d7; - float tmp7 = d0 - d7; - float tmp1 = d1 + d6; - float tmp6 = d1 - d6; - float tmp2 = d2 + d5; - float tmp5 = d2 - d5; - float tmp3 = d3 + d4; - float tmp4 = d3 - d4; - - // Even part - float tmp10 = tmp0 + tmp3; // phase 2 - float tmp13 = tmp0 - tmp3; - float tmp11 = tmp1 + tmp2; - float tmp12 = tmp1 - tmp2; - - d0 = tmp10 + tmp11; // phase 3 - d4 = tmp10 - tmp11; - - z1 = (tmp12 + tmp13) * 0.707106781f; // c4 - d2 = tmp13 + z1; // phase 5 - d6 = tmp13 - z1; - - // Odd part - tmp10 = tmp4 + tmp5; // phase 2 - tmp11 = tmp5 + tmp6; - tmp12 = tmp6 + tmp7; - - // The rotator is modified from fig 4-8 to avoid extra negations. - z5 = (tmp10 - tmp12) * 0.382683433f; // c6 - z2 = tmp10 * 0.541196100f + z5; // c2-c6 - z4 = tmp12 * 1.306562965f + z5; // c2+c6 - z3 = tmp11 * 0.707106781f; // c4 - - z11 = tmp7 + z3; // phase 5 - z13 = tmp7 - z3; - - *d5p = z13 + z2; // phase 6 - *d3p = z13 - z2; - *d1p = z11 + z4; - *d7p = z11 - z4; - - *d0p = d0; *d2p = d2; *d4p = d4; *d6p = d6; +static void stbiw__jpg_DCT(float *d0p, float *d1p, float *d2p, float *d3p, + float *d4p, float *d5p, float *d6p, float *d7p) { + float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, + d6 = *d6p, d7 = *d7p; + float z1, z2, z3, z4, z5, z11, z13; + + float tmp0 = d0 + d7; + float tmp7 = d0 - d7; + float tmp1 = d1 + d6; + float tmp6 = d1 - d6; + float tmp2 = d2 + d5; + float tmp5 = d2 - d5; + float tmp3 = d3 + d4; + float tmp4 = d3 - d4; + + // Even part + float tmp10 = tmp0 + tmp3; // phase 2 + float tmp13 = tmp0 - tmp3; + float tmp11 = tmp1 + tmp2; + float tmp12 = tmp1 - tmp2; + + d0 = tmp10 + tmp11; // phase 3 + d4 = tmp10 - tmp11; + + z1 = (tmp12 + tmp13) * 0.707106781f; // c4 + d2 = tmp13 + z1; // phase 5 + d6 = tmp13 - z1; + + // Odd part + tmp10 = tmp4 + tmp5; // phase 2 + tmp11 = tmp5 + tmp6; + tmp12 = tmp6 + tmp7; + + // The rotator is modified from fig 4-8 to avoid extra negations. + z5 = (tmp10 - tmp12) * 0.382683433f; // c6 + z2 = tmp10 * 0.541196100f + z5; // c2-c6 + z4 = tmp12 * 1.306562965f + z5; // c2+c6 + z3 = tmp11 * 0.707106781f; // c4 + + z11 = tmp7 + z3; // phase 5 + z13 = tmp7 - z3; + + *d5p = z13 + z2; // phase 6 + *d3p = z13 - z2; + *d1p = z11 + z4; + *d7p = z11 - z4; + + *d0p = d0; + *d2p = d2; + *d4p = d4; + *d6p = d6; } static void stbiw__jpg_calcBits(int val, unsigned short bits[2]) { - int tmp1 = val < 0 ? -val : val; - val = val < 0 ? val-1 : val; - bits[1] = 1; - while(tmp1 >>= 1) { - ++bits[1]; - } - bits[0] = val & ((1<<bits[1])-1); + int tmp1 = val < 0 ? -val : val; + val = val < 0 ? val - 1 : val; + bits[1] = 1; + while (tmp1 >>= 1) { + ++bits[1]; + } + bits[0] = val & ((1 << bits[1]) - 1); } -static int stbiw__jpg_processDU(stbi__write_context *s, int *bitBuf, int *bitCnt, float *CDU, float *fdtbl, int DC, const unsigned short HTDC[256][2], const unsigned short HTAC[256][2]) { - const unsigned short EOB[2] = { HTAC[0x00][0], HTAC[0x00][1] }; - const unsigned short M16zeroes[2] = { HTAC[0xF0][0], HTAC[0xF0][1] }; - int dataOff, i, diff, end0pos; - int DU[64]; - - // DCT rows - for(dataOff=0; dataOff<64; dataOff+=8) { - stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff+1], &CDU[dataOff+2], &CDU[dataOff+3], &CDU[dataOff+4], &CDU[dataOff+5], &CDU[dataOff+6], &CDU[dataOff+7]); - } - // DCT columns - for(dataOff=0; dataOff<8; ++dataOff) { - stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff+8], &CDU[dataOff+16], &CDU[dataOff+24], &CDU[dataOff+32], &CDU[dataOff+40], &CDU[dataOff+48], &CDU[dataOff+56]); - } - // Quantize/descale/zigzag the coefficients - for(i=0; i<64; ++i) { - float v = CDU[i]*fdtbl[i]; - // DU[stbiw__jpg_ZigZag[i]] = (int)(v < 0 ? ceilf(v - 0.5f) : floorf(v + 0.5f)); - // ceilf() and floorf() are C99, not C89, but I /think/ they're not needed here anyway? - DU[stbiw__jpg_ZigZag[i]] = (int)(v < 0 ? v - 0.5f : v + 0.5f); - } - - // Encode DC - diff = DU[0] - DC; - if (diff == 0) { - stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[0]); - } else { - unsigned short bits[2]; - stbiw__jpg_calcBits(diff, bits); - stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[bits[1]]); - stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits); - } - // Encode ACs - end0pos = 63; - for(; (end0pos>0)&&(DU[end0pos]==0); --end0pos) { - } - // end0pos = first element in reverse order !=0 - if(end0pos == 0) { - stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); - return DU[0]; - } - for(i = 1; i <= end0pos; ++i) { - int startpos = i; - int nrzeroes; - unsigned short bits[2]; - for (; DU[i]==0 && i<=end0pos; ++i) { - } - nrzeroes = i-startpos; - if ( nrzeroes >= 16 ) { - int lng = nrzeroes>>4; - int nrmarker; - for (nrmarker=1; nrmarker <= lng; ++nrmarker) - stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes); - nrzeroes &= 15; - } - stbiw__jpg_calcBits(DU[i], bits); - stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes<<4)+bits[1]]); - stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits); - } - if(end0pos != 63) { - stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); - } - return DU[0]; +static int stbiw__jpg_processDU(stbi__write_context *s, int *bitBuf, + int *bitCnt, float *CDU, float *fdtbl, int DC, + const unsigned short HTDC[256][2], + const unsigned short HTAC[256][2]) { + const unsigned short EOB[2] = {HTAC[0x00][0], HTAC[0x00][1]}; + const unsigned short M16zeroes[2] = {HTAC[0xF0][0], HTAC[0xF0][1]}; + int dataOff, i, diff, end0pos; + int DU[64]; + + // DCT rows + for (dataOff = 0; dataOff < 64; dataOff += 8) { + stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff + 1], &CDU[dataOff + 2], + &CDU[dataOff + 3], &CDU[dataOff + 4], &CDU[dataOff + 5], + &CDU[dataOff + 6], &CDU[dataOff + 7]); + } + // DCT columns + for (dataOff = 0; dataOff < 8; ++dataOff) { + stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff + 8], &CDU[dataOff + 16], + &CDU[dataOff + 24], &CDU[dataOff + 32], &CDU[dataOff + 40], + &CDU[dataOff + 48], &CDU[dataOff + 56]); + } + // Quantize/descale/zigzag the coefficients + for (i = 0; i < 64; ++i) { + float v = CDU[i] * fdtbl[i]; + // DU[stbiw__jpg_ZigZag[i]] = (int)(v < 0 ? ceilf(v - 0.5f) : floorf(v + + // 0.5f)); ceilf() and floorf() are C99, not C89, but I /think/ they're not + // needed here anyway? + DU[stbiw__jpg_ZigZag[i]] = (int)(v < 0 ? v - 0.5f : v + 0.5f); + } + + // Encode DC + diff = DU[0] - DC; + if (diff == 0) { + stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[0]); + } else { + unsigned short bits[2]; + stbiw__jpg_calcBits(diff, bits); + stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[bits[1]]); + stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits); + } + // Encode ACs + end0pos = 63; + for (; (end0pos > 0) && (DU[end0pos] == 0); --end0pos) { + } + // end0pos = first element in reverse order !=0 + if (end0pos == 0) { + stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); + return DU[0]; + } + for (i = 1; i <= end0pos; ++i) { + int startpos = i; + int nrzeroes; + unsigned short bits[2]; + for (; DU[i] == 0 && i <= end0pos; ++i) { + } + nrzeroes = i - startpos; + if (nrzeroes >= 16) { + int lng = nrzeroes >> 4; + int nrmarker; + for (nrmarker = 1; nrmarker <= lng; ++nrmarker) + stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes); + nrzeroes &= 15; + } + stbiw__jpg_calcBits(DU[i], bits); + stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes << 4) + bits[1]]); + stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits); + } + if (end0pos != 63) { + stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); + } + return DU[0]; } -static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality) { - // Constants that don't pollute global namespace - static const unsigned char std_dc_luminance_nrcodes[] = {0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0}; - static const unsigned char std_dc_luminance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11}; - static const unsigned char std_ac_luminance_nrcodes[] = {0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d}; - static const unsigned char std_ac_luminance_values[] = { - 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08, - 0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28, - 0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59, - 0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, - 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6, - 0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2, - 0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa - }; - static const unsigned char std_dc_chrominance_nrcodes[] = {0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0}; - static const unsigned char std_dc_chrominance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11}; - static const unsigned char std_ac_chrominance_nrcodes[] = {0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77}; - static const unsigned char std_ac_chrominance_values[] = { - 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91, - 0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26, - 0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58, - 0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, - 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4, - 0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda, - 0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa - }; - // Huffman tables - static const unsigned short YDC_HT[256][2] = { {0,2},{2,3},{3,3},{4,3},{5,3},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9}}; - static const unsigned short UVDC_HT[256][2] = { {0,2},{1,2},{2,2},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9},{1022,10},{2046,11}}; - static const unsigned short YAC_HT[256][2] = { - {10,4},{0,2},{1,2},{4,3},{11,4},{26,5},{120,7},{248,8},{1014,10},{65410,16},{65411,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {12,4},{27,5},{121,7},{502,9},{2038,11},{65412,16},{65413,16},{65414,16},{65415,16},{65416,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {28,5},{249,8},{1015,10},{4084,12},{65417,16},{65418,16},{65419,16},{65420,16},{65421,16},{65422,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {58,6},{503,9},{4085,12},{65423,16},{65424,16},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {59,6},{1016,10},{65430,16},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {122,7},{2039,11},{65438,16},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {123,7},{4086,12},{65446,16},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {250,8},{4087,12},{65454,16},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {504,9},{32704,15},{65462,16},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {505,9},{65470,16},{65471,16},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {506,9},{65479,16},{65480,16},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {1017,10},{65488,16},{65489,16},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {1018,10},{65497,16},{65498,16},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {2040,11},{65506,16},{65507,16},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {65515,16},{65516,16},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{0,0},{0,0},{0,0},{0,0},{0,0}, - {2041,11},{65525,16},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0} - }; - static const unsigned short UVAC_HT[256][2] = { - {0,2},{1,2},{4,3},{10,4},{24,5},{25,5},{56,6},{120,7},{500,9},{1014,10},{4084,12},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {11,4},{57,6},{246,8},{501,9},{2038,11},{4085,12},{65416,16},{65417,16},{65418,16},{65419,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {26,5},{247,8},{1015,10},{4086,12},{32706,15},{65420,16},{65421,16},{65422,16},{65423,16},{65424,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {27,5},{248,8},{1016,10},{4087,12},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{65430,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {58,6},{502,9},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{65438,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {59,6},{1017,10},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{65446,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {121,7},{2039,11},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{65454,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {122,7},{2040,11},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{65462,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {249,8},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{65470,16},{65471,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {503,9},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{65479,16},{65480,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {504,9},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{65488,16},{65489,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {505,9},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{65497,16},{65498,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {506,9},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{65506,16},{65507,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {2041,11},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{65515,16},{65516,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {16352,14},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{65525,16},{0,0},{0,0},{0,0},{0,0},{0,0}, - {1018,10},{32707,15},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0} - }; - static const int YQT[] = {16,11,10,16,24,40,51,61,12,12,14,19,26,58,60,55,14,13,16,24,40,57,69,56,14,17,22,29,51,87,80,62,18,22, - 37,56,68,109,103,77,24,35,55,64,81,104,113,92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103,99}; - static const int UVQT[] = {17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99, - 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99}; - static const float aasf[] = { 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f, - 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f }; - - int row, col, i, k; - float fdtbl_Y[64], fdtbl_UV[64]; - unsigned char YTable[64], UVTable[64]; - - if(!data || !width || !height || comp > 4 || comp < 1) { - return 0; - } - - quality = quality ? quality : 90; - quality = quality < 1 ? 1 : quality > 100 ? 100 : quality; - quality = quality < 50 ? 5000 / quality : 200 - quality * 2; - - for(i = 0; i < 64; ++i) { - int uvti, yti = (YQT[i]*quality+50)/100; - YTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (yti < 1 ? 1 : yti > 255 ? 255 : yti); - uvti = (UVQT[i]*quality+50)/100; - UVTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (uvti < 1 ? 1 : uvti > 255 ? 255 : uvti); - } - - for(row = 0, k = 0; row < 8; ++row) { - for(col = 0; col < 8; ++col, ++k) { - fdtbl_Y[k] = 1 / (YTable [stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); - fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); - } - } - - // Write Headers - { - static const unsigned char head0[] = { 0xFF,0xD8,0xFF,0xE0,0,0x10,'J','F','I','F',0,1,1,0,0,1,0,1,0,0,0xFF,0xDB,0,0x84,0 }; - static const unsigned char head2[] = { 0xFF,0xDA,0,0xC,3,1,0,2,0x11,3,0x11,0,0x3F,0 }; - const unsigned char head1[] = { 0xFF,0xC0,0,0x11,8,(unsigned char)(height>>8),STBIW_UCHAR(height),(unsigned char)(width>>8),STBIW_UCHAR(width), - 3,1,0x11,0,2,0x11,1,3,0x11,1,0xFF,0xC4,0x01,0xA2,0 }; - s->func(s->context, (void*)head0, sizeof(head0)); - s->func(s->context, (void*)YTable, sizeof(YTable)); - stbiw__putc(s, 1); - s->func(s->context, UVTable, sizeof(UVTable)); - s->func(s->context, (void*)head1, sizeof(head1)); - s->func(s->context, (void*)(std_dc_luminance_nrcodes+1), sizeof(std_dc_luminance_nrcodes)-1); - s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values)); - stbiw__putc(s, 0x10); // HTYACinfo - s->func(s->context, (void*)(std_ac_luminance_nrcodes+1), sizeof(std_ac_luminance_nrcodes)-1); - s->func(s->context, (void*)std_ac_luminance_values, sizeof(std_ac_luminance_values)); - stbiw__putc(s, 1); // HTUDCinfo - s->func(s->context, (void*)(std_dc_chrominance_nrcodes+1), sizeof(std_dc_chrominance_nrcodes)-1); - s->func(s->context, (void*)std_dc_chrominance_values, sizeof(std_dc_chrominance_values)); - stbiw__putc(s, 0x11); // HTUACinfo - s->func(s->context, (void*)(std_ac_chrominance_nrcodes+1), sizeof(std_ac_chrominance_nrcodes)-1); - s->func(s->context, (void*)std_ac_chrominance_values, sizeof(std_ac_chrominance_values)); - s->func(s->context, (void*)head2, sizeof(head2)); - } - - // Encode 8x8 macroblocks - { - static const unsigned short fillBits[] = {0x7F, 7}; - const unsigned char *imageData = (const unsigned char *)data; - int DCY=0, DCU=0, DCV=0; - int bitBuf=0, bitCnt=0; - // comp == 2 is grey+alpha (alpha is ignored) - int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0; - int x, y, pos; - for(y = 0; y < height; y += 8) { - for(x = 0; x < width; x += 8) { - float YDU[64], UDU[64], VDU[64]; - for(row = y, pos = 0; row < y+8; ++row) { - // row >= height => use last input row - int clamped_row = (row < height) ? row : height - 1; - int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp; - for(col = x; col < x+8; ++col, ++pos) { - float r, g, b; - // if col >= width => use pixel from last input column - int p = base_p + ((col < width) ? col : (width-1))*comp; - - r = imageData[p+0]; - g = imageData[p+ofsG]; - b = imageData[p+ofsB]; - YDU[pos]=+0.29900f*r+0.58700f*g+0.11400f*b-128; - UDU[pos]=-0.16874f*r-0.33126f*g+0.50000f*b; - VDU[pos]=+0.50000f*r-0.41869f*g-0.08131f*b; - } - } - - DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, YDU, fdtbl_Y, DCY, YDC_HT, YAC_HT); - DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, UDU, fdtbl_UV, DCU, UVDC_HT, UVAC_HT); - DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, VDU, fdtbl_UV, DCV, UVDC_HT, UVAC_HT); - } +static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, + int comp, const void *data, int quality) { + // Constants that don't pollute global namespace + static const unsigned char std_dc_luminance_nrcodes[] = { + 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}; + static const unsigned char std_dc_luminance_values[] = {0, 1, 2, 3, 4, 5, + 6, 7, 8, 9, 10, 11}; + static const unsigned char std_ac_luminance_nrcodes[] = { + 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d}; + static const unsigned char std_ac_luminance_values[] = { + 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, + 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, + 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, + 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, + 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, + 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, + 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, + 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, + 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, + 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, + 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, + 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, + 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, + 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa}; + static const unsigned char std_dc_chrominance_nrcodes[] = { + 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}; + static const unsigned char std_dc_chrominance_values[] = {0, 1, 2, 3, 4, 5, + 6, 7, 8, 9, 10, 11}; + static const unsigned char std_ac_chrominance_nrcodes[] = { + 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77}; + static const unsigned char std_ac_chrominance_values[] = { + 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, + 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, + 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, + 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, + 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, + 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, + 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, + 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, + 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, + 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, + 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, + 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, + 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, + 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa}; + // Huffman tables + static const unsigned short YDC_HT[256][2] = { + {0, 2}, {2, 3}, {3, 3}, {4, 3}, {5, 3}, {6, 3}, + {14, 4}, {30, 5}, {62, 6}, {126, 7}, {254, 8}, {510, 9}}; + static const unsigned short UVDC_HT[256][2] = { + {0, 2}, {1, 2}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, + {62, 6}, {126, 7}, {254, 8}, {510, 9}, {1022, 10}, {2046, 11}}; + static const unsigned short YAC_HT[256][2] = { + {10, 4}, {0, 2}, {1, 2}, {4, 3}, {11, 4}, + {26, 5}, {120, 7}, {248, 8}, {1014, 10}, {65410, 16}, + {65411, 16}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {12, 4}, {27, 5}, {121, 7}, + {502, 9}, {2038, 11}, {65412, 16}, {65413, 16}, {65414, 16}, + {65415, 16}, {65416, 16}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {28, 5}, {249, 8}, + {1015, 10}, {4084, 12}, {65417, 16}, {65418, 16}, {65419, 16}, + {65420, 16}, {65421, 16}, {65422, 16}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {58, 6}, + {503, 9}, {4085, 12}, {65423, 16}, {65424, 16}, {65425, 16}, + {65426, 16}, {65427, 16}, {65428, 16}, {65429, 16}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {59, 6}, {1016, 10}, {65430, 16}, {65431, 16}, {65432, 16}, + {65433, 16}, {65434, 16}, {65435, 16}, {65436, 16}, {65437, 16}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {122, 7}, {2039, 11}, {65438, 16}, {65439, 16}, + {65440, 16}, {65441, 16}, {65442, 16}, {65443, 16}, {65444, 16}, + {65445, 16}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {123, 7}, {4086, 12}, {65446, 16}, + {65447, 16}, {65448, 16}, {65449, 16}, {65450, 16}, {65451, 16}, + {65452, 16}, {65453, 16}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {250, 8}, {4087, 12}, + {65454, 16}, {65455, 16}, {65456, 16}, {65457, 16}, {65458, 16}, + {65459, 16}, {65460, 16}, {65461, 16}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {504, 9}, + {32704, 15}, {65462, 16}, {65463, 16}, {65464, 16}, {65465, 16}, + {65466, 16}, {65467, 16}, {65468, 16}, {65469, 16}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {505, 9}, {65470, 16}, {65471, 16}, {65472, 16}, {65473, 16}, + {65474, 16}, {65475, 16}, {65476, 16}, {65477, 16}, {65478, 16}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {506, 9}, {65479, 16}, {65480, 16}, {65481, 16}, + {65482, 16}, {65483, 16}, {65484, 16}, {65485, 16}, {65486, 16}, + {65487, 16}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {1017, 10}, {65488, 16}, {65489, 16}, + {65490, 16}, {65491, 16}, {65492, 16}, {65493, 16}, {65494, 16}, + {65495, 16}, {65496, 16}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {1018, 10}, {65497, 16}, + {65498, 16}, {65499, 16}, {65500, 16}, {65501, 16}, {65502, 16}, + {65503, 16}, {65504, 16}, {65505, 16}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {2040, 11}, + {65506, 16}, {65507, 16}, {65508, 16}, {65509, 16}, {65510, 16}, + {65511, 16}, {65512, 16}, {65513, 16}, {65514, 16}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {65515, 16}, {65516, 16}, {65517, 16}, {65518, 16}, {65519, 16}, + {65520, 16}, {65521, 16}, {65522, 16}, {65523, 16}, {65524, 16}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {2041, 11}, {65525, 16}, {65526, 16}, {65527, 16}, {65528, 16}, + {65529, 16}, {65530, 16}, {65531, 16}, {65532, 16}, {65533, 16}, + {65534, 16}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}}; + static const unsigned short UVAC_HT[256][2] = { + {0, 2}, {1, 2}, {4, 3}, {10, 4}, {24, 5}, + {25, 5}, {56, 6}, {120, 7}, {500, 9}, {1014, 10}, + {4084, 12}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {11, 4}, {57, 6}, {246, 8}, + {501, 9}, {2038, 11}, {4085, 12}, {65416, 16}, {65417, 16}, + {65418, 16}, {65419, 16}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {26, 5}, {247, 8}, + {1015, 10}, {4086, 12}, {32706, 15}, {65420, 16}, {65421, 16}, + {65422, 16}, {65423, 16}, {65424, 16}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {27, 5}, + {248, 8}, {1016, 10}, {4087, 12}, {65425, 16}, {65426, 16}, + {65427, 16}, {65428, 16}, {65429, 16}, {65430, 16}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {58, 6}, {502, 9}, {65431, 16}, {65432, 16}, {65433, 16}, + {65434, 16}, {65435, 16}, {65436, 16}, {65437, 16}, {65438, 16}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {59, 6}, {1017, 10}, {65439, 16}, {65440, 16}, + {65441, 16}, {65442, 16}, {65443, 16}, {65444, 16}, {65445, 16}, + {65446, 16}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {121, 7}, {2039, 11}, {65447, 16}, + {65448, 16}, {65449, 16}, {65450, 16}, {65451, 16}, {65452, 16}, + {65453, 16}, {65454, 16}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {122, 7}, {2040, 11}, + {65455, 16}, {65456, 16}, {65457, 16}, {65458, 16}, {65459, 16}, + {65460, 16}, {65461, 16}, {65462, 16}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {249, 8}, + {65463, 16}, {65464, 16}, {65465, 16}, {65466, 16}, {65467, 16}, + {65468, 16}, {65469, 16}, {65470, 16}, {65471, 16}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {503, 9}, {65472, 16}, {65473, 16}, {65474, 16}, {65475, 16}, + {65476, 16}, {65477, 16}, {65478, 16}, {65479, 16}, {65480, 16}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {504, 9}, {65481, 16}, {65482, 16}, {65483, 16}, + {65484, 16}, {65485, 16}, {65486, 16}, {65487, 16}, {65488, 16}, + {65489, 16}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {505, 9}, {65490, 16}, {65491, 16}, + {65492, 16}, {65493, 16}, {65494, 16}, {65495, 16}, {65496, 16}, + {65497, 16}, {65498, 16}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {506, 9}, {65499, 16}, + {65500, 16}, {65501, 16}, {65502, 16}, {65503, 16}, {65504, 16}, + {65505, 16}, {65506, 16}, {65507, 16}, {0, 0}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {2041, 11}, + {65508, 16}, {65509, 16}, {65510, 16}, {65511, 16}, {65512, 16}, + {65513, 16}, {65514, 16}, {65515, 16}, {65516, 16}, {0, 0}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {16352, 14}, {65517, 16}, {65518, 16}, {65519, 16}, {65520, 16}, + {65521, 16}, {65522, 16}, {65523, 16}, {65524, 16}, {65525, 16}, + {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {1018, 10}, {32707, 15}, {65526, 16}, {65527, 16}, {65528, 16}, + {65529, 16}, {65530, 16}, {65531, 16}, {65532, 16}, {65533, 16}, + {65534, 16}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, + {0, 0}}; + static const int YQT[] = { + 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, + 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, + 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, + 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99}; + static const int UVQT[] = {17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66, 99, + 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99, 47, 66, + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}; + static const float aasf[] = { + 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, + 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f, + 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, + 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f}; + + int row, col, i, k; + float fdtbl_Y[64], fdtbl_UV[64]; + unsigned char YTable[64], UVTable[64]; + + if (!data || !width || !height || comp > 4 || comp < 1) { + return 0; + } + + quality = quality ? quality : 90; + quality = quality < 1 ? 1 : quality > 100 ? 100 : quality; + quality = quality < 50 ? 5000 / quality : 200 - quality * 2; + + for (i = 0; i < 64; ++i) { + int uvti, yti = (YQT[i] * quality + 50) / 100; + YTable[stbiw__jpg_ZigZag[i]] = + (unsigned char)(yti < 1 ? 1 : yti > 255 ? 255 : yti); + uvti = (UVQT[i] * quality + 50) / 100; + UVTable[stbiw__jpg_ZigZag[i]] = + (unsigned char)(uvti < 1 ? 1 : uvti > 255 ? 255 : uvti); + } + + for (row = 0, k = 0; row < 8; ++row) { + for (col = 0; col < 8; ++col, ++k) { + fdtbl_Y[k] = 1 / (YTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); + fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); + } + } + + // Write Headers + { + static const unsigned char head0[] = { + 0xFF, 0xD8, 0xFF, 0xE0, 0, 0x10, 'J', 'F', 'I', 'F', 0, 1, 1, + 0, 0, 1, 0, 1, 0, 0, 0xFF, 0xDB, 0, 0x84, 0}; + static const unsigned char head2[] = {0xFF, 0xDA, 0, 0xC, 3, 1, 0, + 2, 0x11, 3, 0x11, 0, 0x3F, 0}; + const unsigned char head1[] = {0xFF, + 0xC0, + 0, + 0x11, + 8, + (unsigned char)(height >> 8), + STBIW_UCHAR(height), + (unsigned char)(width >> 8), + STBIW_UCHAR(width), + 3, + 1, + 0x11, + 0, + 2, + 0x11, + 1, + 3, + 0x11, + 1, + 0xFF, + 0xC4, + 0x01, + 0xA2, + 0}; + s->func(s->context, (void *)head0, sizeof(head0)); + s->func(s->context, (void *)YTable, sizeof(YTable)); + stbiw__putc(s, 1); + s->func(s->context, UVTable, sizeof(UVTable)); + s->func(s->context, (void *)head1, sizeof(head1)); + s->func(s->context, (void *)(std_dc_luminance_nrcodes + 1), + sizeof(std_dc_luminance_nrcodes) - 1); + s->func(s->context, (void *)std_dc_luminance_values, + sizeof(std_dc_luminance_values)); + stbiw__putc(s, 0x10); // HTYACinfo + s->func(s->context, (void *)(std_ac_luminance_nrcodes + 1), + sizeof(std_ac_luminance_nrcodes) - 1); + s->func(s->context, (void *)std_ac_luminance_values, + sizeof(std_ac_luminance_values)); + stbiw__putc(s, 1); // HTUDCinfo + s->func(s->context, (void *)(std_dc_chrominance_nrcodes + 1), + sizeof(std_dc_chrominance_nrcodes) - 1); + s->func(s->context, (void *)std_dc_chrominance_values, + sizeof(std_dc_chrominance_values)); + stbiw__putc(s, 0x11); // HTUACinfo + s->func(s->context, (void *)(std_ac_chrominance_nrcodes + 1), + sizeof(std_ac_chrominance_nrcodes) - 1); + s->func(s->context, (void *)std_ac_chrominance_values, + sizeof(std_ac_chrominance_values)); + s->func(s->context, (void *)head2, sizeof(head2)); + } + + // Encode 8x8 macroblocks + { + static const unsigned short fillBits[] = {0x7F, 7}; + const unsigned char *imageData = (const unsigned char *)data; + int DCY = 0, DCU = 0, DCV = 0; + int bitBuf = 0, bitCnt = 0; + // comp == 2 is grey+alpha (alpha is ignored) + int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0; + int x, y, pos; + for (y = 0; y < height; y += 8) { + for (x = 0; x < width; x += 8) { + float YDU[64], UDU[64], VDU[64]; + for (row = y, pos = 0; row < y + 8; ++row) { + // row >= height => use last input row + int clamped_row = (row < height) ? row : height - 1; + int base_p = + (stbi__flip_vertically_on_write ? (height - 1 - clamped_row) + : clamped_row) * + width * comp; + for (col = x; col < x + 8; ++col, ++pos) { + float r, g, b; + // if col >= width => use pixel from last input column + int p = base_p + ((col < width) ? col : (width - 1)) * comp; + + r = imageData[p + 0]; + g = imageData[p + ofsG]; + b = imageData[p + ofsB]; + YDU[pos] = +0.29900f * r + 0.58700f * g + 0.11400f * b - 128; + UDU[pos] = -0.16874f * r - 0.33126f * g + 0.50000f * b; + VDU[pos] = +0.50000f * r - 0.41869f * g - 0.08131f * b; + } + } + + DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, YDU, fdtbl_Y, DCY, + YDC_HT, YAC_HT); + DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, UDU, fdtbl_UV, DCU, + UVDC_HT, UVAC_HT); + DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, VDU, fdtbl_UV, DCV, + UVDC_HT, UVAC_HT); } + } - // Do the bit alignment of the EOI marker - stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits); - } + // Do the bit alignment of the EOI marker + stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits); + } - // EOI - stbiw__putc(s, 0xFF); - stbiw__putc(s, 0xD9); + // EOI + stbiw__putc(s, 0xFF); + stbiw__putc(s, 0xD9); - return 1; + return 1; } -STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality) -{ - stbi__write_context s; - stbi__start_write_callbacks(&s, func, context); - return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality); +STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, + int y, int comp, const void *data, + int quality) { + stbi__write_context s; + stbi__start_write_callbacks(&s, func, context); + return stbi_write_jpg_core(&s, x, y, comp, (void *)data, quality); } - #ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality) -{ - stbi__write_context s; - if (stbi__start_write_file(&s,filename)) { - int r = stbi_write_jpg_core(&s, x, y, comp, data, quality); - stbi__end_write_file(&s); - return r; - } else - return 0; +STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, + const void *data, int quality) { + stbi__write_context s; + if (stbi__start_write_file(&s, filename)) { + int r = stbi_write_jpg_core(&s, x, y, comp, data, quality); + stbi__end_write_file(&s); + return r; + } else + return 0; } #endif @@ -1531,30 +1856,19 @@ STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const /* Revision history 1.11 (2019-08-11) - + 1.10 (2019-02-07) - support utf8 filenames in Windows; fix warnings and platform ifdefs + support utf8 filenames in Windows; fix warnings and platform ifdefs 1.09 (2018-02-11) fix typo in zlib quality API, improve STB_I_W_STATIC in C++ 1.08 (2018-01-29) - add stbi__flip_vertically_on_write, external zlib, zlib quality, choose PNG filter - 1.07 (2017-07-24) - doc fix - 1.06 (2017-07-23) - writing JPEG (using Jon Olick's code) - 1.05 ??? - 1.04 (2017-03-03) - monochrome BMP expansion - 1.03 ??? - 1.02 (2016-04-02) - avoid allocating large structures on the stack - 1.01 (2016-01-16) - STBIW_REALLOC_SIZED: support allocators with no realloc support - avoid race-condition in crc initialization - minor compile issues - 1.00 (2015-09-14) - installable file IO function - 0.99 (2015-09-13) + add stbi__flip_vertically_on_write, external zlib, zlib quality, + choose PNG filter 1.07 (2017-07-24) doc fix 1.06 (2017-07-23) writing JPEG + (using Jon Olick's code) 1.05 ??? 1.04 (2017-03-03) monochrome BMP + expansion 1.03 ??? 1.02 (2016-04-02) avoid allocating large structures on + the stack 1.01 (2016-01-16) STBIW_REALLOC_SIZED: support allocators with no + realloc support avoid race-condition in crc initialization minor compile + issues 1.00 (2015-09-14) installable file IO function 0.99 (2015-09-13) warning fixes; TGA rle support 0.98 (2015-04-08) added STBIW_MALLOC, STBIW_ASSERT etc @@ -1564,7 +1878,7 @@ STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const add HDR output fix monochrome BMP 0.95 (2014-08-17) - add monochrome TGA output + add monochrome TGA output 0.94 (2014-05-31) rename private functions to avoid conflicts with stb_image.h 0.93 (2014-05-27) @@ -1582,38 +1896,38 @@ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett -Permission is hereby granted, free of charge, to any person obtaining a copy of -this software and associated documentation files (the "Software"), to deal in -the Software without restriction, including without limitation the rights to -use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies -of the Software, and to permit persons to whom the Software is furnished to do +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: -The above copyright notice and this permission notice shall be included in all +The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. -Anyone is free to copy, modify, publish, use, compile, sell, or distribute this -software, either in source code form or as a compiled binary, for any purpose, +Anyone is free to copy, modify, publish, use, compile, sell, or distribute this +software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. -In jurisdictions that recognize copyright laws, the author or authors of this -software dedicate any and all copyright interest in the software to the public -domain. We make this dedication for the benefit of the public at large and to -the detriment of our heirs and successors. We intend this dedication to be an -overt act of relinquishment in perpetuity of all present and future rights to +In jurisdictions that recognize copyright laws, the author or authors of this +software dedicate any and all copyright interest in the software to the public +domain. We make this dedication for the benefit of the public at large and to +the detriment of our heirs and successors. We intend this dedication to be an +overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN -ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/img_tensor_runtime.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/img_tensor_runtime.h index 608107e1dfb39bb268899227dc21f45d969de1f7..52f08730620945d3559c58d26051e81437996eac 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/img_tensor_runtime.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/img_tensor_runtime.h @@ -8,10 +8,10 @@ // *** Runtime declaration *** // void *tensorFft(void *input, bool inverse); void *tensorFftHalf(void *input, bool inverse); -void * -tensorReduce(void *input, size_t axis, MathOp func, float skip_ratio = 0.0f); -void *tensorReduceHalf( - void *input, size_t axis, MathOp func, float skip_ratio = 0.0f); +void *tensorReduce(void *input, size_t axis, MathOp func, + float skip_ratio = 0.0f); +void *tensorReduceHalf(void *input, size_t axis, MathOp func, + float skip_ratio = 0.0f); void *tensorProjectiveT(void *input, void *transformation); void *tensorMap1(MathOp f, void *i); void *tensorMap2(MathOp f2, void *i1, void *i2); @@ -23,16 +23,15 @@ void *tensorMap3Half(MathOp f3, void *i1, void *i2, void *i3); // *** Wrapper API declaration *** // extern "C" { void *wrapper_tensorFft(const char *hpvm_node_id, void *input, bool inverse); -void * -wrapper_tensorReduce(const char *hpvm_node_id, void *input, int axis, int func); -void *wrapper_tensorProjectiveT( - const char *hpvm_node_id, void *input, void *transformation); +void *wrapper_tensorReduce(const char *hpvm_node_id, void *input, int axis, + int func); +void *wrapper_tensorProjectiveT(const char *hpvm_node_id, void *input, + void *transformation); void *wrapper_tensorMap1(const char *hpvm_node_id, int func, void *input); -void *wrapper_tensorMap2( - const char *hpvm_node_id, int func, void *input1, void *input2); -void *wrapper_tensorMap3( - const char *hpvm_node_id, int func, void *input1, void *input2, - void *input3); +void *wrapper_tensorMap2(const char *hpvm_node_id, int func, void *input1, + void *input2); +void *wrapper_tensorMap3(const char *hpvm_node_id, int func, void *input1, + void *input2, void *input3); // Tentative void *wrapper_tensorStencil(const char *hpvm_node_id, void *input); diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/img_tensor_utils.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/img_tensor_utils.h index bf6664b0e87ce7fb68d0a8c0b992ba12e045c4d1..5dc3fe3dbc3cec9ea81fa33bc56471e2d6daaae5 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/img_tensor_utils.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/img_tensor_utils.h @@ -17,22 +17,21 @@ void *loadAsImage(const char *filename, size_t n_color = N_RGB_CHAN); void saveToImage(const char *filename, Tensor *tensor); -Tensor *readDataSet( - const char *path, size_t start = 0, size_t count = std::string::npos, - size_t n_color = N_RGB_CHAN); +Tensor *readDataSet(const char *path, size_t start = 0, + size_t count = std::string::npos, + size_t n_color = N_RGB_CHAN); -void saveDataSet( - const char *path, Tensor *batch, size_t start_idx = 0, size_t write_n = 0); +void saveDataSet(const char *path, Tensor *batch, size_t start_idx = 0, + size_t write_n = 0); // Kernel constructor -void *createFilterFromData( - int data_type, void *data, size_t w, size_t h, size_t n_chan); +void *createFilterFromData(int data_type, void *data, size_t w, size_t h, + size_t n_chan); std::vector<float> PSNR(void *gold_ptr, void *approx_ptr); -float violationRate( - const std::vector<float> &values, float threshold, - bool higher_better = true); +float violationRate(const std::vector<float> &values, float threshold, + bool higher_better = true); float mean(const std::vector<float> &values); diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/init_api.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/init_api.h index ac742876b054c88d50634ecae306b25d471f5c06..962f3e726513f265b8e1fbb27084e48b76a386bf 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/init_api.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/init_api.h @@ -1,32 +1,29 @@ - -#include <stdio.h> -#include <stdarg.h> #include <cstdio> #include <cstdlib> +#include <cublas_api.h> +#include <cublas_v2.h> +#include <cuda_fp16.h> +#include <cuda_runtime.h> +#include <cudnn.h> #include <iostream> #include <map> #include <sstream> +#include <stdarg.h> +#include <stdio.h> #include <string> -#include <cuda_runtime.h> -#include <cublas_v2.h> -#include <cudnn.h> -#include <cublas_api.h> -#include <cuda_fp16.h> // Tensor runtime header files -#include "tensor_runtime.h" -#include "tensor_utils.h" +#include "approx_simulation.h" #include "debug.h" -#include "profiling.h" -#include "global_data.h" #include "error.h" -#include "tensor.h" +#include "global_data.h" #include "op_overheads.h" -#include "approx_simulation.h" - - +#include "profiling.h" +#include "tensor.h" +#include "tensor_runtime.h" +#include "tensor_utils.h" void llvm_hpvm_initTensorRt(int gpuid); @@ -50,4 +47,3 @@ void freeOutputTensors(); void clearOpCounter(); void freeBatchMemory(); - diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/op_overheads.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/op_overheads.h index efa5c5e92ee8eeca3c1dc7644c4894451d7c24eb..aed7102fe621e09ab61ade91c402d36ae995af76 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/op_overheads.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/op_overheads.h @@ -3,54 +3,43 @@ #ifndef OP_OVERHEADS_HEADER #define OP_OVERHEADS_HEADER - +#include "tensor.h" #include <math.h> #include <sstream> -#include "tensor.h" - - extern float scale_down_factor; extern std::string result_str; +extern "C" { -extern "C"{ - - - static float scaleDownComps(double total_comps); - - // private function - static float getScaledComps(double total_comps, int error_scale, int factor_type); - - static void addNormToResult(float comps); - - static void addCompsToResult(float total_comps, - float opt_comps1, - float opt_comps2, - float opt_comps3); - - void dumpCompOverheads(double total_comps, int error_scale); +static float scaleDownComps(double total_comps); +// private function +static float getScaledComps(double total_comps, int error_scale, + int factor_type); - void add_conv_overheads(void* input_ptr, void* filter_ptr, - int vertical_stride, int horizontal_stride, - int error_scale); +static void addNormToResult(float comps); - void add_gemm_overheads(void* lhs_ptr, void* rhs_ptr, int error_scale); +static void addCompsToResult(float total_comps, float opt_comps1, + float opt_comps2, float opt_comps3); +void dumpCompOverheads(double total_comps, int error_scale); - void add_bias_overheads(void* input_ptr, int error_scale); +void add_conv_overheads(void *input_ptr, void *filter_ptr, int vertical_stride, + int horizontal_stride, int error_scale); +void add_gemm_overheads(void *lhs_ptr, void *rhs_ptr, int error_scale); - void add_relu_overheads(void* input_ptr, int error_scale); +void add_bias_overheads(void *input_ptr, int error_scale); - void add_pool_overheads(void* input_ptr, int kernel_size, - int stride_size, int error_scale); +void add_relu_overheads(void *input_ptr, int error_scale); - void add_norms(void* norms_ptr, char* op_name, int error_value); +void add_pool_overheads(void *input_ptr, int kernel_size, int stride_size, + int error_scale); - void dump_result(const char* file_name); +void add_norms(void *norms_ptr, char *op_name, int error_value); +void dump_result(const char *file_name); } #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/profiling.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/profiling.h index 84e15e266ae7e4b9b812b394fc71f2b91c1fd8f4..db802079711b48c08ccf2203f91c04fb0ade59ef 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/profiling.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/profiling.h @@ -2,17 +2,15 @@ #ifndef PROFILING_HEADER #define PROFILING_HEADER - - /***** Profiling routines ***/ -extern "C"{ +extern "C" { + +void startProfiling(); - void startProfiling(); +void stopProfiling(); - void stopProfiling(); - - void profileEvent(const char* event_name, bool compare_previous = false); +void profileEvent(const char *event_name, bool compare_previous = false); } #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/rt-controller-api.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/rt-controller-api.h index 6dd06cb10a189b0a55eff854ec689b51c815a994..28dbf715e7350b496a2cfb6f550e8e3a83865671 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/rt-controller-api.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/rt-controller-api.h @@ -2,7 +2,7 @@ extern "C" { // Functions to be inserted with initializeTensorRT and clearTensorRT void llvm_hpvm_initializeRuntimeController(const char *, const char *); void llvm_hpvm_clearRuntimeController(); -void llvm_hpvm_invokeRtControl( - void *result, const char *str, int start, int end); +void llvm_hpvm_invokeRtControl(void *result, const char *str, int start, + int end); void llvm_hpvm_imgInvokeRtControl(void *result, void *gold, int start, int end); } diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor.h index a5461d1884c7d21fb124a8b4882f04a50a1b2fe3..6e81c7a3fbfbe4cae3cd1c40f43a4c7d5ea2d7c8 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor.h @@ -5,15 +5,14 @@ #include <cuda_runtime.h> #include <device_launch_parameters.h> -#include <cublas_v2.h> #include <cudnn.h> +#include <cublas_v2.h> +// Must come after cublas_v2.h #include <cublas_api.h> #include <cuda_fp16.h> #include <driver_types.h> - - -struct Norm_t{ +struct Norm_t { float mean_l1; float mean_l2; float orig_inf_norm; @@ -23,48 +22,40 @@ struct Norm_t{ float inf_norm; }; - -struct Dimension{ +struct Dimension { int num_dims; - size_t* dim_sizes; + size_t *dim_sizes; }; -enum data_location_t{ - HOST, - DEVICE -}; +enum data_location_t { HOST, DEVICE }; - -struct Tensor{ +struct Tensor { int data_type; int cur_type; int data_format; - data_location_t data_placement; // Maintains the location of the tensor {host, device...} + data_location_t + data_placement; // Maintains the location of the tensor {host, device...} cudnnTensorDescriptor_t tensor_desc; - cudnnFilterDescriptor_t filter_desc; // FIXIT: Rethink if this should be in tensor struct + cudnnFilterDescriptor_t + filter_desc; // FIXIT: Rethink if this should be in tensor struct cudnnTensorDescriptor_t tensor_half_desc; - cudnnFilterDescriptor_t filter_half_desc; // FIXIT: Rethink if this should be in tensor struct - void* host_data; - void* gpu_data; // Pointer to GPU FP32 data - void* gpu_half_data; // Pointer to GPU FP16 data - size_t num_elems; // Total elements + cudnnFilterDescriptor_t + filter_half_desc; // FIXIT: Rethink if this should be in tensor struct + void *host_data; + void *gpu_data; // Pointer to GPU FP32 data + void *gpu_half_data; // Pointer to GPU FP16 data + size_t num_elems; // Total elements size_t size_in_bytes; // Total size in bytes struct Dimension dims; }; - - -struct Range{ +struct Range { float min; float max; }; - // NOTE: Currently only NCHW is supported due to limited cuDNN support -enum Tensor_format_t{ - nchw, - nhwc -}; +enum Tensor_format_t { nchw, nhwc }; enum Tensor_type_t { float_type = CUDNN_DATA_FLOAT, @@ -72,7 +63,7 @@ enum Tensor_type_t { half_type = CUDNN_DATA_HALF, int_type = CUDNN_DATA_INT8, float2_type, // complex<float>, for fft, - half2_type // complex<half> + half2_type // complex<half> }; #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_cpu.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_cpu.h index 07fb766493a8ddeccc90db60c4345dda7889e193..19b655465d6e9d9c5c2a64b130e506b71f46f4b7 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_cpu.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_cpu.h @@ -3,37 +3,24 @@ #ifndef TENSOR_HEADER #define TENSOR_HEADER - -struct Dimension{ +struct Dimension { int num_dims; - size_t* dim_sizes; + size_t *dim_sizes; }; - -struct Tensor{ +struct Tensor { int data_type; int data_format; - void* host_data; - void* gpu_data; // Pointers should not be device specific - Think: Better design - size_t num_elems; // Total elements + void *host_data; + void * + gpu_data; // Pointers should not be device specific - Think: Better design + size_t num_elems; // Total elements size_t size_in_bytes; // Total size in bytes struct Dimension dims; }; +enum Tensor_format_t { nchw, nhwc }; -enum Tensor_format_t{ - nchw, - nhwc -}; - -enum Tensor_type_t{ - float_type, - double_type, - half_type, - int_type -}; - - +enum Tensor_type_t { float_type, double_type, half_type, int_type }; #endif - diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_cpu_runtime.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_cpu_runtime.h index 05cb1e5cb931e5cc824697df30b2066e41d99e79..24f69c03903faf29b074284482f172efa334549f 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_cpu_runtime.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_cpu_runtime.h @@ -1,67 +1,63 @@ -#include <stdio.h> -#include <cstdlib> #include <cmath> +#include <cstdlib> #include <memory> +#include <stdio.h> #include <string> - #ifndef CUDNN_HEADER #define CUDNN_HEADER +extern "C" { +/**** Initialization Routine - Must be inserted at program start (in the + * backend) ****/ +void llvm_hpvm_initTensorRt(int gpuid = 0); +void llvm_hpvm_cleanupTensorRt(); -extern "C"{ - /**** Initialization Routine - Must be inserted at program start (in the backend) ****/ - void llvm_hpvm_initTensorRt(int gpuid = 0); - void llvm_hpvm_cleanupTensorRt(); - - // Routine to moving tensor data (from and to GPU,CPU) - void hpvm_request_tensor(void* tensor, int destination); - - - // NOTE: Currently only using 4-D tensors - 2D and 3D tensors not supported for cuDNN operations - // NOTE: The only data format supported as of now is: NCHW (batch_dimension, channels, Height, Width) - void* create4DTensor(int data_type, int data_format, size_t dim1_size, size_t dim2_size, - size_t dim3_size, size_t dim4_size, bool freeMemory = true); - - void initTensorData(void* tensor, void* data_ptr, size_t size_in_bytes); - - /********** Tensor Operation API ******/ - - // NOTE: For conv_mode, only value '1' is supported -void* tensorConvolutionCPU(void *input_ptr, void *filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int compute_precision, - int row, int col, int skip_every, int start); - -void* tensorConvCutlassCPU(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups); - - void *tensorBatchNormCPU(void* input_ptr, void* gamma_ptr, void* beta_ptr, - void* mean_ptr, void* variance_ptr, double epsilon); - - void* tensorPoolingCPU(void* input, - int poolFunction, - int window_height, int window_width, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride); - - void* tensorGemmCPU(void* lhs, void* rhs); - - void* tensorAddCPU(void* x, void* bias); - - void* tensorReluCPU(void* input); - - void* tensorRelu2CPU(void* input, float min, float max); - - void* tensorTanhCPU(void* input); - - void* tensorSoftmaxCPU(void* input); - -} +// Routine to moving tensor data (from and to GPU,CPU) +void hpvm_request_tensor(void *tensor, int destination); + +// NOTE: Currently only using 4-D tensors - 2D and 3D tensors not supported for +// cuDNN operations NOTE: The only data format supported as of now is: NCHW +// (batch_dimension, channels, Height, Width) +void *create4DTensor(int data_type, int data_format, size_t dim1_size, + size_t dim2_size, size_t dim3_size, size_t dim4_size, + bool freeMemory = true); + +void initTensorData(void *tensor, void *data_ptr, size_t size_in_bytes); + +/********** Tensor Operation API ******/ + +// NOTE: For conv_mode, only value '1' is supported +void *tensorConvolutionCPU(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int compute_precision, int row, int col, + int skip_every, int start); +void *tensorConvCutlassCPU(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups); + +void *tensorBatchNormCPU(void *input_ptr, void *gamma_ptr, void *beta_ptr, + void *mean_ptr, void *variance_ptr, double epsilon); + +void *tensorPoolingCPU(void *input, int poolFunction, int window_height, + int window_width, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride); + +void *tensorGemmCPU(void *lhs, void *rhs); + +void *tensorAddCPU(void *x, void *bias); + +void *tensorReluCPU(void *input); + +void *tensorRelu2CPU(void *input, float min, float max); + +void *tensorTanhCPU(void *input); + +void *tensorSoftmaxCPU(void *input); +} /* void dummyFunction(){ @@ -96,9 +92,8 @@ void dummyFunction(){ void* tensorTanhPtr = (void*) &tensorTanh; void* tensorHalfTanhPtr = (void*) &tensorHalfTanh; void* tensorSoftmaxPtr = (void*) &tensorSoftmax; - void* tensorAddErrorPtr = (void*) &tensorAddError; + void* tensorAddErrorPtr = (void*) &tensorAddError; } */ - #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_custom_ops_cpu.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_custom_ops_cpu.h index b9128c1a24ca5bd95a7e6fb9e962d56501558f8f..080b84c6017bd6153c7feaf9c5efc22114de1913 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_custom_ops_cpu.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_custom_ops_cpu.h @@ -4,175 +4,157 @@ #include <stdlib.h> #include <vector> +void *tensorArgMax(void *input_ptr) { -void* tensorArgMax(void* input_ptr){ - - Tensor* input = (Tensor*) input_ptr; - float* host_ptr = (float*) input->host_data; + Tensor *input = (Tensor *)input_ptr; + float *host_ptr = (float *)input->host_data; int batch_size = input->dims.dim_sizes[0]; int channels = input->dims.dim_sizes[1]; - Tensor* output = (Tensor *) create4DTensor(0, 0, batch_size, 1, 1, 1); + Tensor *output = (Tensor *)create4DTensor(0, 0, batch_size, 1, 1, 1); changeTensorPlacement(output, HOST); - - float* out_ptr = (float*) output->host_data; - - for(int i = 0; i < batch_size; i++){ + + float *out_ptr = (float *)output->host_data; + + for (int i = 0; i < batch_size; i++) { int start = i * channels; float max_index = 0; float max_val = host_ptr[start]; - for(int j = 0; j < channels; j++){ - + for (int j = 0; j < channels; j++) { + int index = start + j; - //printf ("index = %d \n", index); + // printf ("index = %d \n", index); float val = host_ptr[index]; - if (val > max_val){ - max_val = val; - max_index = j; - } + if (val > max_val) { + max_val = val; + max_index = j; + } } out_ptr[i] = max_index; } - return output; - } +void *tensorSelect(void *input_ptr, float target_value) { - - - -void* tensorSelect(void* input_ptr, float target_value){ - - Tensor* input = (Tensor*) input_ptr; - float* host_ptr = (float*) input->host_data; + Tensor *input = (Tensor *)input_ptr; + float *host_ptr = (float *)input->host_data; int batch_size = input->dims.dim_sizes[0]; int channels = input->dims.dim_sizes[1]; - if (channels != 1){ + if (channels != 1) { printf("* Channels dimension must be 1 \n"); abort(); } - Tensor* output = (Tensor *) create4DTensor(0, 0, batch_size, 1, 1, 1); - changeTensorPlacement(output, HOST); - float* out_ptr = (float*) output->host_data; + Tensor *output = (Tensor *)create4DTensor(0, 0, batch_size, 1, 1, 1); + changeTensorPlacement(output, HOST); + float *out_ptr = (float *)output->host_data; - for(int i = 0; i < batch_size; i++){ - if (host_ptr[i] == target_value){ + for (int i = 0; i < batch_size; i++) { + if (host_ptr[i] == target_value) { out_ptr[i] = 1; - } - else{ + } else { out_ptr[i] = 0; - } + } } - + return output; } +void *tensorSelect2(void *input_ptr, std::vector<int> index_vector) { - - -void* tensorSelect2(void* input_ptr, std::vector<int> index_vector){ - - Tensor* input = (Tensor*) input_ptr; - float* host_ptr = (float*) input->host_data; + Tensor *input = (Tensor *)input_ptr; + float *host_ptr = (float *)input->host_data; int batch_size = input->dims.dim_sizes[0]; int channels = input->dims.dim_sizes[1]; - if (channels != 1){ + if (channels != 1) { printf("* Channels dimension must be 1 \n"); abort(); } - Tensor* output = (Tensor *) create4DTensor(0, 0, batch_size, 1, 1, 1); - changeTensorPlacement(output, HOST); - float* out_ptr = (float*) output->host_data; + Tensor *output = (Tensor *)create4DTensor(0, 0, batch_size, 1, 1, 1); + changeTensorPlacement(output, HOST); + float *out_ptr = (float *)output->host_data; - for(int i = 0; i < batch_size; i++){ + for (int i = 0; i < batch_size; i++) { - for(int j = 0; j < index_vector.size(); j++){ + for (int j = 0; j < index_vector.size(); j++) { int target_value = index_vector[j]; - if (host_ptr[i] == target_value){ - out_ptr[i] = 1; - break; - } - else{ - out_ptr[i] = 0; + if (host_ptr[i] == target_value) { + out_ptr[i] = 1; + break; + } else { + out_ptr[i] = 0; } } - } - + return output; } - - - - - -long getOnesInVector(float* vector_host_ptr, long vector_length){ +long getOnesInVector(float *vector_host_ptr, long vector_length) { long ones_count = 0; - for(int i = 0; i < vector_length; i++){ + for (int i = 0; i < vector_length; i++) { - if(vector_host_ptr[i] == 1) + if (vector_host_ptr[i] == 1) ones_count += 1; } return ones_count; } +void *tensorContract(void *input_ptr, void *bitvector_ptr) { -void* tensorContract(void* input_ptr, void* bitvector_ptr){ + Tensor *input = (Tensor *)input_ptr; + float *host_ptr = (float *)input->host_data; - Tensor* input = (Tensor*) input_ptr; - float* host_ptr = (float*) input->host_data; - - Tensor* bitvector = (Tensor*) bitvector_ptr; - float* vector_host_ptr = (float*) bitvector->host_data; + Tensor *bitvector = (Tensor *)bitvector_ptr; + float *vector_host_ptr = (float *)bitvector->host_data; long vector_length = bitvector->dims.dim_sizes[0]; - - long reduced_batch_size = getOnesInVector(vector_host_ptr, vector_length); - - long batch_size = input->dims.dim_sizes[0]; + + long reduced_batch_size = getOnesInVector(vector_host_ptr, vector_length); + + long batch_size = input->dims.dim_sizes[0]; long channels = input->dims.dim_sizes[1]; long height = input->dims.dim_sizes[2]; long width = input->dims.dim_sizes[3]; long image_size = channels * height * width; // Computing size of each image - - if (batch_size != vector_length){ + + if (batch_size != vector_length) { printf("ERROR: bitvector length has to match input batch size \n"); abort(); } - Tensor* output = (Tensor *) create4DTensor(0, 0, reduced_batch_size, channels, height, width); - changeTensorPlacement(output, HOST); - float* out_ptr = (float*) output->host_data; + Tensor *output = (Tensor *)create4DTensor(0, 0, reduced_batch_size, channels, + height, width); + changeTensorPlacement(output, HOST); + float *out_ptr = (float *)output->host_data; long out_index = 0; - for(int i = 0; i < batch_size; i++){ + for (int i = 0; i < batch_size; i++) { // Include image if corresponding index in bitvector is '1' - if (vector_host_ptr[i] == 1){ + if (vector_host_ptr[i] == 1) { - for(int j = 0; j < image_size; j++){ + for (int j = 0; j < image_size; j++) { - out_ptr[j] = host_ptr[i * image_size + j]; + out_ptr[j] = host_ptr[i * image_size + j]; } - out_ptr += image_size; // Update the output pointer to the next image boundary - } + out_ptr += + image_size; // Update the output pointer to the next image boundary + } } - + return output; } - diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_runtime.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_runtime.cc index 2216172eab78414b46814e0d457908f5584c606a..0de2808221adfb122860a031eea4ed8c89d6e2ba 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_runtime.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_runtime.cc @@ -1,114 +1,105 @@ -#include <stdio.h> -#include <cstdlib> #include <cmath> +#include <cstdlib> #include <memory> +#include <stdio.h> #include <string> - #ifndef CUDNN_HEADER #define CUDNN_HEADER - -extern "C"{ - /**** Initialization Routine - Must be inserted at program start (in the backend) ****/ - void llvm_hpvm_initTensorRt(int gpuid = 0); - void llvm_hpvm_cleanupTensorRt(); - - // Routine to moving tensor data (from and to GPU,CPU) - void hpvm_request_tensor(void* tensor, int destination); - - /****** Profiling API - defines profiling scope */ - void startProfiling(); - void stopProfiling(); - - /****** Routines for tensor creation and initialization *******/ - void* create2DTensor(int data_type, size_t dim1_size, size_t dim2_size); - void* create3DTensor(int data_type, size_t dim1_size, size_t dim2_size, - size_t dim3_size); - - // NOTE: Currently only using 4-D tensors - 2D and 3D tensors not supported for cuDNN operations - // NOTE: The only data format supported as of now is: CUDNN_NCHW - void* create4DTensor(int data_type, int data_format, size_t dim1_size, size_t dim2_size, - size_t dim3_size, size_t dim4_size); - void initTensorData(void* tensor, void* data_ptr, size_t size_in_bytes); - - /********** Tensor Operation API ******/ - - void** tensorSplit(void* tensor, int num_splits, int split_dim); - void* tensorConcat(void** tensors, int num_splits, int split_dim); - - // NOTE: For conv_mode, only value '1' is supported - void* tensorConvolution(void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int compute_precision); - void* tensorHConvolution(void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int compute_precision); - - void* tensorPooling(void* input, - int poolFunction, - int window_height, int window_width, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride); - - void* tensorLRN(void* input, unsigned int LRN_window, - double LRN_alpha, double LRN_beta, double LRN_k); - - - /* 4 different Gemm versions */ - void* tensorGemm(void* lhs, void* rhs); - void* tensorGemmCPU(void* lhs, void* rhs); - void* tensorGemmGPU(void* lhs, void* rhs); - void* tensorHgemm(void* lhs, void* rhs); - - - // NOTE: In-place operation - void* tensorGemmBias(void* input, void* bias); - // NOTE: In place operation - void* tensorAdd(void* x, void* bias); - // NOTE: In-place operation - void* tensorRelu(void* input); - // NOTE: In-place operation - void* tensorSoftmax(void* input); - - /* Error injection API - used for accuracy tuning */ - void* tensorAddError(void* x_ptr); +extern "C" { +/**** Initialization Routine - Must be inserted at program start (in the + * backend) ****/ +void llvm_hpvm_initTensorRt(int gpuid = 0); +void llvm_hpvm_cleanupTensorRt(); + +// Routine to moving tensor data (from and to GPU,CPU) +void hpvm_request_tensor(void *tensor, int destination); + +/****** Profiling API - defines profiling scope */ +void startProfiling(); +void stopProfiling(); + +/****** Routines for tensor creation and initialization *******/ +void *create2DTensor(int data_type, size_t dim1_size, size_t dim2_size); +void *create3DTensor(int data_type, size_t dim1_size, size_t dim2_size, + size_t dim3_size); + +// NOTE: Currently only using 4-D tensors - 2D and 3D tensors not supported for +// cuDNN operations NOTE: The only data format supported as of now is: +// CUDNN_NCHW +void *create4DTensor(int data_type, int data_format, size_t dim1_size, + size_t dim2_size, size_t dim3_size, size_t dim4_size); +void initTensorData(void *tensor, void *data_ptr, size_t size_in_bytes); + +/********** Tensor Operation API ******/ + +void **tensorSplit(void *tensor, int num_splits, int split_dim); +void *tensorConcat(void **tensors, int num_splits, int split_dim); + +// NOTE: For conv_mode, only value '1' is supported +void *tensorConvolution(void *input, void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int compute_precision); +void *tensorHConvolution(void *input, void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int compute_precision); + +void *tensorPooling(void *input, int poolFunction, int window_height, + int window_width, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride); + +void *tensorLRN(void *input, unsigned int LRN_window, double LRN_alpha, + double LRN_beta, double LRN_k); + +/* 4 different Gemm versions */ +void *tensorGemm(void *lhs, void *rhs); +void *tensorGemmCPU(void *lhs, void *rhs); +void *tensorGemmGPU(void *lhs, void *rhs); +void *tensorHgemm(void *lhs, void *rhs); + +// NOTE: In-place operation +void *tensorGemmBias(void *input, void *bias); +// NOTE: In place operation +void *tensorAdd(void *x, void *bias); +// NOTE: In-place operation +void *tensorRelu(void *input); +// NOTE: In-place operation +void *tensorSoftmax(void *input); + +/* Error injection API - used for accuracy tuning */ +void *tensorAddError(void *x_ptr); } - - -void emptyFunction(){ - - void* initRT = (void*) &llvm_hpvm_initTensorRt; - void* cleanRT = (void*) &llvm_hpvm_cleanupTensorRt; - void* request_tensorPtr = (void*) &hpvm_request_tensor; - void* startProf = (void*) &startProfiling; - void* stopProf = (void*) &stopProfiling; - void* create2Dptr = (void*) &create2DTensor; - void* create3Dptr = (void*) &create3DTensor; - void* create4Dptr = (void*) &create4DTensor; - void* initTensorPtr = (void*) &initTensorData; - void* tensorSplitPtr = (void*) &tensorSplit; - void* tensorConcatPtr = (void*) &tensorConcat; - void* tensorConvPtr = (void*) &tensorConvolution; - void* tensorHConvPtr = (void*) &tensorHConvolution; - void* tensorPoolPtr = (void*) &tensorPooling; - void* tensorLRNPtr = (void*) &tensorLRN; - void* tensorGemmPr = (void*) &tensorGemm; - void* tensorGemmCPUPtr = (void*) &tensorGemmCPU; - void* tensorGemmGPUPtr = (void*) &tensorGemmGPU; - void* tensorHgemmPtr = (void*) &tensorHgemm; - void* tensorGemmBiasPtr = (void*) &tensorGemmBias; - void* tensorAddPtr = (void*) &tensorAdd; - void* tensorReluPtr = (void*) &tensorRelu; - void* tensorSoftmaxPtr = (void*) &tensorSoftmax; - void* tensorAddErrorPtr = (void*) &tensorAddError; - +void emptyFunction() { + + void *initRT = (void *)&llvm_hpvm_initTensorRt; + void *cleanRT = (void *)&llvm_hpvm_cleanupTensorRt; + void *request_tensorPtr = (void *)&hpvm_request_tensor; + void *startProf = (void *)&startProfiling; + void *stopProf = (void *)&stopProfiling; + void *create2Dptr = (void *)&create2DTensor; + void *create3Dptr = (void *)&create3DTensor; + void *create4Dptr = (void *)&create4DTensor; + void *initTensorPtr = (void *)&initTensorData; + void *tensorSplitPtr = (void *)&tensorSplit; + void *tensorConcatPtr = (void *)&tensorConcat; + void *tensorConvPtr = (void *)&tensorConvolution; + void *tensorHConvPtr = (void *)&tensorHConvolution; + void *tensorPoolPtr = (void *)&tensorPooling; + void *tensorLRNPtr = (void *)&tensorLRN; + void *tensorGemmPr = (void *)&tensorGemm; + void *tensorGemmCPUPtr = (void *)&tensorGemmCPU; + void *tensorGemmGPUPtr = (void *)&tensorGemmGPU; + void *tensorHgemmPtr = (void *)&tensorHgemm; + void *tensorGemmBiasPtr = (void *)&tensorGemmBias; + void *tensorAddPtr = (void *)&tensorAdd; + void *tensorReluPtr = (void *)&tensorRelu; + void *tensorSoftmaxPtr = (void *)&tensorSoftmax; + void *tensorAddErrorPtr = (void *)&tensorAddError; } - - #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_runtime.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_runtime.h index 8deddc88264bc4327bec8dad1709eac0d1a40322..abd89cc1ad76bab202d73db2e9cc576b98417564 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_runtime.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_runtime.h @@ -3,244 +3,213 @@ #ifndef CUDNN_HEADER #define CUDNN_HEADER - -#include <stdio.h> -#include <cstdlib> +#include "approx_api.h" +#include "rt-controller-api.h" +#include "tensor.h" #include <cmath> +#include <cstdlib> #include <memory> +#include <stdio.h> #include <string> -#include "approx_api.h" -#include "tensor.h" -#include "rt-controller-api.h" #include "img_tensor_runtime.h" +extern "C" { +/**** Initialization Routine - Must be inserted at program start (in the + * backend) ****/ +void llvm_hpvm_initTensorRt(int gpuid = 0); +void llvm_hpvm_cleanupTensorRt(); +void llvm_hpvm_initApproxhpvmRt(int gpuid = 0); +void llvm_hpvm_cleanupApproxhpvmRt(); -extern "C"{ - /**** Initialization Routine - Must be inserted at program start (in the backend) ****/ - void llvm_hpvm_initTensorRt(int gpuid = 0); - void llvm_hpvm_cleanupTensorRt(); - - void llvm_hpvm_initApproxhpvmRt(int gpuid = 0); - void llvm_hpvm_cleanupApproxhpvmRt(); - - // Routine to moving tensor data (from and to GPU,CPU) - void hpvm_request_tensor(void* tensor, int destination); - - /****** Profiling API - defines profiling scope */ - void startProfiling(); - void stopProfiling(); - - /****** Routines for tensor creation and initialization *******/ - void* create2DTensor(int data_type, size_t dim1_size, size_t dim2_size); - void* create3DTensor(int data_type, size_t dim1_size, size_t dim2_size, - size_t dim3_size); - - // NOTE: Currently only using 4-D tensors - 2D and 3D tensors not supported for cuDNN operations - // NOTE: The only data format supported as of now is: CUDNN_NCHW - void* create4DTensor(int data_type, int data_format, size_t dim1_size, size_t dim2_size, - size_t dim3_size, size_t dim4_size); - void initTensorData(void* tensor, void* data_ptr, size_t size_in_bytes); - - void changeTensorPlacement(struct Tensor* tensor, - data_location_t data_placement); - - void tensorCopy(void* srcTensor, void* dstTensor); - - void freeTensor(void*); - - /********** Tensor Operation API ******/ - - void** tensorSplit(void* tensor, int num_splits, int split_dim); - void* tensorConcat(void** tensors, int num_splits, int split_dim); - - // NOTE: For conv_mode, only value '1' is supported - void* tensorConvolution(void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups); - void* tensorHalfConvolution(void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups); - - void* tensorPooling(void* input, - int poolFunction, - int window_height, int window_width, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride); - - void* tensorHalfPooling(void* input, - int poolFunction, - int window_height, int window_width, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride); - - - void* tensorLRN(void* input, unsigned int LRN_window, - double LRN_alpha, double LRN_beta, double LRN_k); - - - /* 4 different Gemm versions */ - void* tensorGemm(void* lhs, void* rhs); - void* tensorGemmCPU(void* lhs, void* rhs); - void* tensorGemmGPU(void* lhs, void* rhs); // , void* result_tensor = NULL); - void* tensorHalfGemmGPU(void* lhs, void* rhs); - void* tensorHalfGemm(void* lhs, void* rhs); - - - // NOTE: In-place operation - void* tensorGemmBias(void* input, void* bias); - // NOTE: In place operation - void* tensorAdd(void* x, void* bias); - // NOTE: In place operation - void* tensorHalfAdd(void* x, void* bias); - // NOTE: In-place operation - void* tensorRelu(void* input); - // NOTE: In-place operation - void* tensorHalfRelu(void* input); - // NOTE: In-place operation - - void* tensorTanh(void* input); - // NOTE: In-place operation - void* tensorHalfTanh(void* input); - - // NOTE: In-place operation - void* tensorRelu2(void* input, float min, float max); - // NOTE: In-place operation - void* tensorHalfRelu2(void* input, float min, float max); - // NOTE: In-place operation - void* tensorSoftmax(void* input); - - // NOTE: In-place operation - void* tensorBatchNorm(void* input_ptr, void* gamma_ptr, void* beta_ptr, - void* mean_ptr, void* variance_ptr, double epsilon); - - void* tensorHalfBatchNorm(void* input_ptr, void* gamma_ptr, void* beta_ptr, - void* mean_ptr, void* variance_ptr, double epsilon); - - - /* Error injection API - used for accuracy tuning */ - void* tensorAddError(void* x_ptr, int error_scale); - - void* tensorGemmModel(void* lhs, void* rhs); - - /*** Error Injection API End **/ - - - /**** PROMISE API *****/ - - /************* - --- Synopsys: - - input: input activation tensor - filter: filter tensor - bias: bias tensor - conv_pad_h, conv_pad_w: convolution padding in height and width - conv_stride_h, conv_stride_w: convolution stride - vertical and horizontal - pool_id: {0, 1} 0: max_pooling , 1: avg_pooling - pool_size: Size of pooling window. Note: Pass '0' for *NO* Pooling - activation_id: {-1,0,1,2} -1: NO Activation, 0: Tanh, 1: Relu, 2: ClippedRelu - Swing: PROMISE swing level - - *************/ - - void* ConvLayer_PROMISE(void* input, float i_min, float i_max, - void* filter, float w_min, float w_max, - void* bias, float b_min, float b_max, - int conv_pad_h, int conv_pad_w, int conv_stride_h, int conv_stride_w, - int pool_id, int pool_size, - int activation_id, // Relu, Tanh, ClipRelu - float out_min, float out_max, int swing); // NOTE: min_val, max_val apply to 'ClippedRelu' - - - void* ConvLayer_PROMISE2(void* input, float i_min, float i_max, - void* filter, float w_min, float w_max, - void* bias, float b_min, float b_max, - int conv_pad_h, int conv_pad_w, - int conv_stride_h, int conv_stride_w, - int pool_id, int pool_size, int pool_stride, - int activation_id, // Relu, Tanh, ClipRelu - float out_min, float out_max, int swing); - - - - void* FCLayer_PROMISE(void* input, float i_min, float i_max, - void* weights, float w_min, float w_max, - void* bias, float b_min, float b_max, - int activation_id, - float out_min, float out_max, int swing); // NOTE: min_val, max_val apply to 'ClippedRelu' - - - /**** Wrapper Runtime API ***/ - - void* wrapper_ConvLayer(const char* hpvm_node_id, - void* input, - void* filter, - void* bias, - int conv_pad_h, int conv_pad_w, - int conv_stride_h, int conv_stride_w, - int pool_id, int pool_size, - int activation_id, // Relu, Tanh, ClipRelu - float out_min, float out_max); - - - void* wrapper_FCLayer(const char* hpvm_node_id, - void* input, - void* weights, - void* bias, - int activation_id, - float out_min, float out_max); - - - void* wrapper_tensorGroupConvolution(const char* hpvm_node_id, void* input, void* filter, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups); - - - void* wrapper_tensorRelu(const char* hpvm_node_id, void* input_ptr); - - void* wrapper_tensorTanh(const char* hpvm_node_id, void* input_ptr); - - void* wrapper_tensorBatchNorm(const char* hpvm_node_id, - void* input_ptr, void* gamma_ptr, void* beta_ptr, - void* mean_ptr, void* variance_ptr, double epsilon); - - void* wrapper_tensorAdd(const char* hpvm_node_id, void* input_ptr, void* bias_ptr); - - - void* wrapper_tensorPooling(const char* hpvm_node_id, - void* input_ptr, - int poolFunction, - int window_height, int window_width, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride); - - - void* wrapper_tensorSoftmax(const char* hpvm_node_id, void* input_ptr); - - - - - // Utilities - // TODO: separate utils in separate header - void dumpAccuracyNorms(); - void readOpenTunerFlags(const char* file_name); - void clearOpCounter(); - void clearTensorMap(); - void startMemTracking(); - void freeOutputTensors(); - void freeBatchMemory(); - void* quantizeTensorPromise(void* input_ptr, float min, float max); - void* addPromiseError(void* x_ptr, int error_scale); - void readSkipTensors(int* skip_tensor_ids, int op_count); - void convertToFP32(struct Tensor* tensor); - +// Routine to moving tensor data (from and to GPU,CPU) +void hpvm_request_tensor(void *tensor, int destination); + +/****** Profiling API - defines profiling scope */ +void startProfiling(); +void stopProfiling(); + +/****** Routines for tensor creation and initialization *******/ +void *create2DTensor(int data_type, size_t dim1_size, size_t dim2_size); +void *create3DTensor(int data_type, size_t dim1_size, size_t dim2_size, + size_t dim3_size); + +// NOTE: Currently only using 4-D tensors - 2D and 3D tensors not supported for +// cuDNN operations NOTE: The only data format supported as of now is: +// CUDNN_NCHW +void *create4DTensor(int data_type, int data_format, size_t dim1_size, + size_t dim2_size, size_t dim3_size, size_t dim4_size); +void initTensorData(void *tensor, void *data_ptr, size_t size_in_bytes); + +void changeTensorPlacement(struct Tensor *tensor, + data_location_t data_placement); + +void tensorCopy(void *srcTensor, void *dstTensor); + +void freeTensor(void *); + +/********** Tensor Operation API ******/ + +void **tensorSplit(void *tensor, int num_splits, int split_dim); +void *tensorConcat(void **tensors, int num_splits, int split_dim); + +// NOTE: For conv_mode, only value '1' is supported +void *tensorConvolution(void *input, void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, int conv_groups); +void *tensorHalfConvolution(void *input, void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups); + +void *tensorPooling(void *input, int poolFunction, int window_height, + int window_width, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride); + +void *tensorHalfPooling(void *input, int poolFunction, int window_height, + int window_width, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride); + +void *tensorLRN(void *input, unsigned int LRN_window, double LRN_alpha, + double LRN_beta, double LRN_k); + +/* 4 different Gemm versions */ +void *tensorGemm(void *lhs, void *rhs); +void *tensorGemmCPU(void *lhs, void *rhs); +void *tensorGemmGPU(void *lhs, void *rhs); // , void* result_tensor = NULL); +void *tensorHalfGemmGPU(void *lhs, void *rhs); +void *tensorHalfGemm(void *lhs, void *rhs); + +// NOTE: In-place operation +void *tensorGemmBias(void *input, void *bias); +// NOTE: In place operation +void *tensorAdd(void *x, void *bias); +// NOTE: In place operation +void *tensorHalfAdd(void *x, void *bias); +// NOTE: In-place operation +void *tensorRelu(void *input); +// NOTE: In-place operation +void *tensorHalfRelu(void *input); +// NOTE: In-place operation + +void *tensorTanh(void *input); +// NOTE: In-place operation +void *tensorHalfTanh(void *input); + +// NOTE: In-place operation +void *tensorRelu2(void *input, float min, float max); +// NOTE: In-place operation +void *tensorHalfRelu2(void *input, float min, float max); +// NOTE: In-place operation +void *tensorSoftmax(void *input); + +// NOTE: In-place operation +void *tensorBatchNorm(void *input_ptr, void *gamma_ptr, void *beta_ptr, + void *mean_ptr, void *variance_ptr, double epsilon); + +void *tensorHalfBatchNorm(void *input_ptr, void *gamma_ptr, void *beta_ptr, + void *mean_ptr, void *variance_ptr, double epsilon); + +/* Error injection API - used for accuracy tuning */ +void *tensorAddError(void *x_ptr, int error_scale); + +void *tensorGemmModel(void *lhs, void *rhs); + +/*** Error Injection API End **/ + +/**** PROMISE API *****/ + +/************* +--- Synopsys: + +input: input activation tensor +filter: filter tensor +bias: bias tensor +conv_pad_h, conv_pad_w: convolution padding in height and width +conv_stride_h, conv_stride_w: convolution stride - vertical and horizontal +pool_id: {0, 1} 0: max_pooling , 1: avg_pooling +pool_size: Size of pooling window. Note: Pass '0' for *NO* Pooling +activation_id: {-1,0,1,2} -1: NO Activation, 0: Tanh, 1: Relu, 2: ClippedRelu +Swing: PROMISE swing level + +*************/ + +void * +ConvLayer_PROMISE(void *input, float i_min, float i_max, void *filter, + float w_min, float w_max, void *bias, float b_min, + float b_max, int conv_pad_h, int conv_pad_w, + int conv_stride_h, int conv_stride_w, int pool_id, + int pool_size, + int activation_id, // Relu, Tanh, ClipRelu + float out_min, float out_max, + int swing); // NOTE: min_val, max_val apply to 'ClippedRelu' + +void *ConvLayer_PROMISE2(void *input, float i_min, float i_max, void *filter, + float w_min, float w_max, void *bias, float b_min, + float b_max, int conv_pad_h, int conv_pad_w, + int conv_stride_h, int conv_stride_w, int pool_id, + int pool_size, int pool_stride, + int activation_id, // Relu, Tanh, ClipRelu + float out_min, float out_max, int swing); + +void * +FCLayer_PROMISE(void *input, float i_min, float i_max, void *weights, + float w_min, float w_max, void *bias, float b_min, float b_max, + int activation_id, float out_min, float out_max, + int swing); // NOTE: min_val, max_val apply to 'ClippedRelu' + +/**** Wrapper Runtime API ***/ + +void *wrapper_ConvLayer(const char *hpvm_node_id, void *input, void *filter, + void *bias, int conv_pad_h, int conv_pad_w, + int conv_stride_h, int conv_stride_w, int pool_id, + int pool_size, + int activation_id, // Relu, Tanh, ClipRelu + float out_min, float out_max); + +void *wrapper_FCLayer(const char *hpvm_node_id, void *input, void *weights, + void *bias, int activation_id, float out_min, + float out_max); + +void *wrapper_tensorGroupConvolution(const char *hpvm_node_id, void *input, + void *filter, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups); + +void *wrapper_tensorRelu(const char *hpvm_node_id, void *input_ptr); + +void *wrapper_tensorTanh(const char *hpvm_node_id, void *input_ptr); + +void *wrapper_tensorBatchNorm(const char *hpvm_node_id, void *input_ptr, + void *gamma_ptr, void *beta_ptr, void *mean_ptr, + void *variance_ptr, double epsilon); + +void *wrapper_tensorAdd(const char *hpvm_node_id, void *input_ptr, + void *bias_ptr); + +void *wrapper_tensorPooling(const char *hpvm_node_id, void *input_ptr, + int poolFunction, int window_height, + int window_width, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride); + +void *wrapper_tensorSoftmax(const char *hpvm_node_id, void *input_ptr); + +// Utilities +// TODO: separate utils in separate header +void dumpAccuracyNorms(); +void readOpenTunerFlags(const char *file_name); +void clearOpCounter(); +void clearTensorMap(); +void startMemTracking(); +void freeOutputTensors(); +void freeBatchMemory(); +void *quantizeTensorPromise(void *input_ptr, float min, float max); +void *addPromiseError(void *x_ptr, int error_scale); +void readSkipTensors(int *skip_tensor_ids, int op_count); +void convertToFP32(struct Tensor *tensor); } - - - #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_signatures.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_signatures.cc index 61a895d63b9bcddcd18975eb54d6209771d645d0..19c385e27af0949cf3006c1947c34bb21d401017 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_signatures.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_signatures.cc @@ -1,66 +1,65 @@ #include "tensor_runtime.h" +void dummyFunction() { -void dummyFunction(){ + void *initRT = (void *)&llvm_hpvm_initTensorRt; + void *cleanRT = (void *)&llvm_hpvm_cleanupTensorRt; - void* initRT = (void*) &llvm_hpvm_initTensorRt; - void* cleanRT = (void*) &llvm_hpvm_cleanupTensorRt; + void *initApproxRT = (void *)&llvm_hpvm_initApproxhpvmRt; + void *cleanApproxRT = (void *)&llvm_hpvm_cleanupApproxhpvmRt; - void* initApproxRT = (void*) &llvm_hpvm_initApproxhpvmRt; - void* cleanApproxRT = (void*) &llvm_hpvm_cleanupApproxhpvmRt; + void *initRTController = (void *)&llvm_hpvm_initializeRuntimeController; + void *cleanRTController = (void *)&llvm_hpvm_clearRuntimeController; - void* initRTController = (void*) &llvm_hpvm_initializeRuntimeController; - void* cleanRTController = (void*) &llvm_hpvm_clearRuntimeController; - - void* request_tensorPtr = (void*) &hpvm_request_tensor; - void* startProf = (void*) &startProfiling; - void* stopProf = (void*) &stopProfiling; - void* create2Dptr = (void*) &create2DTensor; - void* create3Dptr = (void*) &create3DTensor; - void* create4Dptr = (void*) &create4DTensor; - void* initTensorPtr = (void*) &initTensorData; - void* tensorSplitPtr = (void*) &tensorSplit; - void* tensorConcatPtr = (void*) &tensorConcat; - void* tensorConvPtr = (void*) &tensorConvolution; - void* tensorHConvPtr = (void*) &tensorHalfConvolution; - void* tensorPoolPtr = (void*) &tensorPooling; - void* tensorHalfPoolPtr = (void*) &tensorHalfPooling; - void* tensorLRNPtr = (void*) &tensorLRN; - void* tensorGemmPr = (void*) &tensorGemm; - void* tensorGemmCPUPtr = (void*) &tensorGemmCPU; - void* tensorGemmGPUPtr = (void*) &tensorGemmGPU; - void* tensorHgemmPtr = (void*) &tensorHalfGemm; - void* tensorGemmBiasPtr = (void*) &tensorGemmBias; - void* tensorAddPtr = (void*) &tensorAdd; - void* tensorHalfAddPtr = (void*) &tensorHalfAdd; - void* tensorReluPtr = (void*) &tensorRelu; - //FIXME: --void* tensorHalfReluPtr = (void*) &tensorHalfRelu; - void* tensorRelu2Ptr = (void*) &tensorRelu2; - void* tensorHalfRelu2Ptr = (void*) &tensorHalfRelu2; - void* tensorTanhPtr = (void*) &tensorTanh; - void* tensorHalfTanhPtr = (void*) &tensorHalfTanh; - void* tensorSoftmaxPtr = (void*) &tensorSoftmax; - void* tensorBatchNormPtr = (void*) &tensorBatchNorm; - void* tensorAddErrorPtr = (void*) &tensorAddError; - void* ConvLayer = (void*) &ConvLayer_PROMISE; - void* FCLayer = (void*) &FCLayer_PROMISE; - - void* ConvLayer2 = (void*) &wrapper_ConvLayer; - void* FCLayer2 = (void*) &wrapper_FCLayer; - void* AddWrapper = (void*) &wrapper_tensorAdd; - void* ReluWrapper = (void*) &wrapper_tensorRelu; - void* TanhWrapper = (void*) &wrapper_tensorTanh; - void* BatchNormWrapper = (void*) &wrapper_tensorBatchNorm; - void* PoolingWrapper = (void*) &wrapper_tensorPooling; - void* softmaxWrapper = (void*) &wrapper_tensorSoftmax; + void *request_tensorPtr = (void *)&hpvm_request_tensor; + void *startProf = (void *)&startProfiling; + void *stopProf = (void *)&stopProfiling; + void *create2Dptr = (void *)&create2DTensor; + void *create3Dptr = (void *)&create3DTensor; + void *create4Dptr = (void *)&create4DTensor; + void *initTensorPtr = (void *)&initTensorData; + void *tensorSplitPtr = (void *)&tensorSplit; + void *tensorConcatPtr = (void *)&tensorConcat; + void *tensorConvPtr = (void *)&tensorConvolution; + void *tensorHConvPtr = (void *)&tensorHalfConvolution; + void *tensorPoolPtr = (void *)&tensorPooling; + void *tensorHalfPoolPtr = (void *)&tensorHalfPooling; + void *tensorLRNPtr = (void *)&tensorLRN; + void *tensorGemmPr = (void *)&tensorGemm; + void *tensorGemmCPUPtr = (void *)&tensorGemmCPU; + void *tensorGemmGPUPtr = (void *)&tensorGemmGPU; + void *tensorHgemmPtr = (void *)&tensorHalfGemm; + void *tensorGemmBiasPtr = (void *)&tensorGemmBias; + void *tensorAddPtr = (void *)&tensorAdd; + void *tensorHalfAddPtr = (void *)&tensorHalfAdd; + void *tensorReluPtr = (void *)&tensorRelu; + // FIXME: --void* tensorHalfReluPtr = (void*) &tensorHalfRelu; + void *tensorRelu2Ptr = (void *)&tensorRelu2; + void *tensorHalfRelu2Ptr = (void *)&tensorHalfRelu2; + void *tensorTanhPtr = (void *)&tensorTanh; + void *tensorHalfTanhPtr = (void *)&tensorHalfTanh; + void *tensorSoftmaxPtr = (void *)&tensorSoftmax; + void *tensorBatchNormPtr = (void *)&tensorBatchNorm; + void *tensorAddErrorPtr = (void *)&tensorAddError; + void *ConvLayer = (void *)&ConvLayer_PROMISE; + void *FCLayer = (void *)&FCLayer_PROMISE; - void* tensorFft = (void *) &wrapper_tensorFft; - void* tensorReduce = (void *) &wrapper_tensorReduce; - void* tensorProjectiveT = (void *) &wrapper_tensorProjectiveT; - void* tensorMap1 = (void *) &wrapper_tensorMap1; - void* tensorMap2 = (void *) &wrapper_tensorMap2; - void* tensorMap3 = (void *) &wrapper_tensorMap3; - void* tensorStencil = (void *) &wrapper_tensorStencil; - void* tensorCosineT = (void *) &wrapper_tensorCosineT; + void *ConvLayer2 = (void *)&wrapper_ConvLayer; + void *FCLayer2 = (void *)&wrapper_FCLayer; + void *AddWrapper = (void *)&wrapper_tensorAdd; + void *ReluWrapper = (void *)&wrapper_tensorRelu; + void *TanhWrapper = (void *)&wrapper_tensorTanh; + void *BatchNormWrapper = (void *)&wrapper_tensorBatchNorm; + void *PoolingWrapper = (void *)&wrapper_tensorPooling; + void *softmaxWrapper = (void *)&wrapper_tensorSoftmax; + + void *tensorFft = (void *)&wrapper_tensorFft; + void *tensorReduce = (void *)&wrapper_tensorReduce; + void *tensorProjectiveT = (void *)&wrapper_tensorProjectiveT; + void *tensorMap1 = (void *)&wrapper_tensorMap1; + void *tensorMap2 = (void *)&wrapper_tensorMap2; + void *tensorMap3 = (void *)&wrapper_tensorMap3; + void *tensorStencil = (void *)&wrapper_tensorStencil; + void *tensorCosineT = (void *)&wrapper_tensorCosineT; } diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_utils.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_utils.h index 4204e50f99a192b523222d5aa6a54926c8032a92..f9a199eea2d5e80d3da9b238ac521409df1a1ac0 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_utils.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/tensor_utils.h @@ -2,71 +2,64 @@ #ifndef TENSOR_UTILS_HEADER #define TENSOR_UTILS_HEADER - -#include <vector> #include "tensor.h" +#include <vector> +extern "C" { +void freeTensor(void *tensor_ptr); -extern "C"{ - - void freeTensor(void* tensor_ptr); - - // Returns the size of the target cudnn datatype - int getTypeSize(int data_type); - - void setSizeInBytes(struct Tensor* tensor, int data_type, size_t num_elems); - - // NOTE: Always allocates FP32 on Host, FP32/FP16 for Device (GPU) - void allocateMem(struct Tensor* tensor, int data_type, size_t num_elems); - - void setCudnnDataFormat(struct Tensor* tensor, int data_format); +// Returns the size of the target cudnn datatype +int getTypeSize(int data_type); +void setSizeInBytes(struct Tensor *tensor, int data_type, size_t num_elems); - void set4DFilterDescriptor(struct Tensor* tensor, int data_format, size_t dim1_size, - size_t dim2_size, size_t dim3_size, size_t dim4_size); +// NOTE: Always allocates FP32 on Host, FP32/FP16 for Device (GPU) +void allocateMem(struct Tensor *tensor, int data_type, size_t num_elems); - void set4DTensorDescriptor(struct Tensor* tensor, int data_format, size_t dim1_size, - size_t dim2_size, size_t dim3_size, size_t dim4_size); +void setCudnnDataFormat(struct Tensor *tensor, int data_format); - // FIXIT: Striding still not working - hence 2D and 3D tensor support is missing - void setTensorDescriptor(struct Tensor* tensor, int num_dims, - size_t* dim_sizes); +void set4DFilterDescriptor(struct Tensor *tensor, int data_format, + size_t dim1_size, size_t dim2_size, size_t dim3_size, + size_t dim4_size); +void set4DTensorDescriptor(struct Tensor *tensor, int data_format, + size_t dim1_size, size_t dim2_size, size_t dim3_size, + size_t dim4_size); - void* create2DTensor(int data_type, size_t dim1_size, size_t dim2_size); +// FIXIT: Striding still not working - hence 2D and 3D tensor support is missing +void setTensorDescriptor(struct Tensor *tensor, int num_dims, + size_t *dim_sizes); - void* create3DTensor(int data_type, size_t dim1_size, size_t dim2_size, - size_t dim3_size); +void *create2DTensor(int data_type, size_t dim1_size, size_t dim2_size); - void* create4DTensor(int data_type, int data_format, size_t dim1_size, size_t dim2_size, - size_t dim3_size, size_t dim4_size); - - void initTensorData(void* tensor_ptr, void* data_ptr, size_t size_in_bytes); +void *create3DTensor(int data_type, size_t dim1_size, size_t dim2_size, + size_t dim3_size); - void hostToDeviceCopy(struct Tensor* tensor); - - void deviceToHostCopy(struct Tensor* tensor); +void *create4DTensor(int data_type, int data_format, size_t dim1_size, + size_t dim2_size, size_t dim3_size, size_t dim4_size); - void tensorCopy(void* srcTensor_ptr, void* dstTensor_ptr); +void initTensorData(void *tensor_ptr, void *data_ptr, size_t size_in_bytes); - void hpvm_request_tensor(void* tensor_ptr, int destination); +void hostToDeviceCopy(struct Tensor *tensor); +void deviceToHostCopy(struct Tensor *tensor); +void tensorCopy(void *srcTensor_ptr, void *dstTensor_ptr); - void convertToFP16(struct Tensor* tensor); +void hpvm_request_tensor(void *tensor_ptr, int destination); - void convertToFP32(struct Tensor* tensor); +void convertToFP16(struct Tensor *tensor); - void convertToFP32_offline(struct Tensor* tensor); +void convertToFP32(struct Tensor *tensor); - // Called from within the runtime to change the data placement - // This routine is required to change the output data placements from host to device - void changeTensorPlacement(struct Tensor* tensor, data_location_t data_placement); +void convertToFP32_offline(struct Tensor *tensor); +// Called from within the runtime to change the data placement +// This routine is required to change the output data placements from host to +// device +void changeTensorPlacement(struct Tensor *tensor, + data_location_t data_placement); } - #endif - - diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/approx_knobs_utils.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/approx_knobs_utils.cc index 8e13ca118621efb3769b620249c2bbb1bc40978f..9d7cb4976f30d1f16a90a1eb48524a95192888f5 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/approx_knobs_utils.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/approx_knobs_utils.cc @@ -1,208 +1,192 @@ -#include <sstream> #include <fstream> #include <map> -#include <vector> +#include <sstream> #include <string.h> +#include <vector> #include "approx_knob_utils.h" #include "debug.h" - -PerfParams::PerfParams(){ +PerfParams::PerfParams() { row = 1; col = 1; skip_offset = 0; } - -PerfParams::PerfParams(int row1, int col1, int skip_offset1){ + +PerfParams::PerfParams(int row1, int col1, int skip_offset1) { row = row1; col = col1; skip_offset = skip_offset1; } - +PerfParamSet::PerfParamSet() { -PerfParamSet::PerfParamSet(){ - char llvm_src_root[100]; - char* env_str= getenv("LLVM_SRC_ROOT"); + char *env_str = getenv("LLVM_SRC_ROOT"); - if (env_str == NULL){ + if (env_str == NULL) { ERROR("ERROR: SET LLVM_SRC_ROOT \n"); } - strcpy(llvm_src_root, env_str); - printf ("*LLVM_SRC_ROOT = %s", llvm_src_root); + strcpy(llvm_src_root, env_str); + printf("*LLVM_SRC_ROOT = %s", llvm_src_root); + + char *knobs_file_path = + strcat(llvm_src_root, + "/projects/hpvm-tensor-rt/autotuner/data/global_knobs.txt"); + printf("- knobs_file_path = %s \n", knobs_file_path); - char* knobs_file_path = strcat(llvm_src_root, "/projects/hpvm-tensor-rt/autotuner/data/global_knobs.txt"); - printf ("- knobs_file_path = %s \n", knobs_file_path); - std::ifstream file(knobs_file_path); std::string line; std::string partial; std::vector<std::string> tokens; - while(std::getline(file, line)) { // Read each line + while (std::getline(file, line)) { // Read each line - //printf ("***** line === %s ", line); + // printf ("***** line === %s ", line); std::istringstream iss(line); std::string token; - while(std::getline(iss, token, '\t')){ // Read each token in the line + while (std::getline(iss, token, '\t')) { // Read each token in the line tokens.push_back(token); int index = token.find("perf"); - if (index != std::string::npos){ - - int index2 = token.find(","); - std::string knob_str = token.substr(index2 + 1); - int knob = atoi(knob_str.c_str()); - - std::getline(iss, token, '\t'); - std::istringstream token_stream(token); - - std::string tok; - - std::getline(token_stream, tok, ','); - int row = atoi(tok.c_str()); - - std::getline(token_stream, tok, ','); - int col = atoi(tok.c_str()); - - std::getline(token_stream, tok, ','); - int offset = atoi(tok.c_str()); - - printf ("**** knob = %d, row = %d, col = %d, offset = %d \n\n", knob, row, col, offset); - PerfParams params(row, col, offset); - perf_knob_map[knob] = params; - + if (index != std::string::npos) { + + int index2 = token.find(","); + std::string knob_str = token.substr(index2 + 1); + int knob = atoi(knob_str.c_str()); + + std::getline(iss, token, '\t'); + std::istringstream token_stream(token); + + std::string tok; + + std::getline(token_stream, tok, ','); + int row = atoi(tok.c_str()); + + std::getline(token_stream, tok, ','); + int col = atoi(tok.c_str()); + + std::getline(token_stream, tok, ','); + int offset = atoi(tok.c_str()); + + printf("**** knob = %d, row = %d, col = %d, offset = %d \n\n", knob, + row, col, offset); + PerfParams params(row, col, offset); + perf_knob_map[knob] = params; } - } } file.close(); } - -PerfParams PerfParamSet::getPerfParams(int swing){ +PerfParams PerfParamSet::getPerfParams(int swing) { - if (swing >= 150){ + if (swing >= 150) { swing = swing - 30; } - + return perf_knob_map[swing]; - } - - - -SampParams::SampParams(){ - skip_rate = 1; - skip_offset = 0; -} - -SampParams::SampParams(int skip_rate1, int skip_offset1, float interpolation_id1){ - skip_rate = skip_rate1; - skip_offset = skip_offset1; - interpolation_id = interpolation_id1; +SampParams::SampParams() { + skip_rate = 1; + skip_offset = 0; } - +SampParams::SampParams(int skip_rate1, int skip_offset1, + float interpolation_id1) { + skip_rate = skip_rate1; + skip_offset = skip_offset1; + interpolation_id = interpolation_id1; +} -SampParamSet::SampParamSet(){ +SampParamSet::SampParamSet() { char llvm_src_root[100]; - char* env_str= getenv("LLVM_SRC_ROOT"); + char *env_str = getenv("LLVM_SRC_ROOT"); - if (env_str == NULL){ + if (env_str == NULL) { ERROR("ERROR: SET LLVM_SRC_ROOT \n"); } - strcpy(llvm_src_root, env_str); - printf ("* LLVM_SRC_ROOT = %s \n", llvm_src_root); + strcpy(llvm_src_root, env_str); + printf("* LLVM_SRC_ROOT = %s \n", llvm_src_root); + + char *knobs_file_path = + strcat(llvm_src_root, + "/projects/hpvm-tensor-rt/autotuner/data/global_knobs.txt"); + printf("- knobs_file_path = %s \n", knobs_file_path); - char* knobs_file_path = strcat(llvm_src_root, "/projects/hpvm-tensor-rt/autotuner/data/global_knobs.txt"); - printf ("- knobs_file_path = %s \n", knobs_file_path); - std::ifstream file(knobs_file_path); std::string line; std::string partial; std::vector<std::string> tokens; - while(std::getline(file, line)) { // Read each line + while (std::getline(file, line)) { // Read each line std::istringstream iss(line); std::string token; - while(std::getline(iss, token, '\t')){ // Read each token in the line + while (std::getline(iss, token, '\t')) { // Read each token in the line tokens.push_back(token); int index = token.find("samp"); int test_index = token.find("reduction"); - - if (index != std::string::npos && test_index == std::string::npos){ - - int index2 = token.find(","); - std::string knob_str = token.substr(index2 + 1); - int knob = atoi(knob_str.c_str()); - printf ("knob = %d \n", knob); - - std::getline(iss, token, '\t'); - std::istringstream token_stream(token); - - std::string tok; - - std::getline(token_stream, tok, ','); - int skip_every = atoi(tok.c_str()); - - std::getline(token_stream, tok, ','); - int offset = atoi(tok.c_str()); - - std::getline(token_stream, tok, ','); - float interpolation_id = atof(tok.c_str()); - - printf ("skip_every = %d, offset = %d \n", skip_every, offset); - SampParams params(skip_every, offset, interpolation_id); - samp_knob_map[knob] = params; - + + if (index != std::string::npos && test_index == std::string::npos) { + + int index2 = token.find(","); + std::string knob_str = token.substr(index2 + 1); + int knob = atoi(knob_str.c_str()); + printf("knob = %d \n", knob); + + std::getline(iss, token, '\t'); + std::istringstream token_stream(token); + + std::string tok; + + std::getline(token_stream, tok, ','); + int skip_every = atoi(tok.c_str()); + + std::getline(token_stream, tok, ','); + int offset = atoi(tok.c_str()); + + std::getline(token_stream, tok, ','); + float interpolation_id = atof(tok.c_str()); + + printf("skip_every = %d, offset = %d \n", skip_every, offset); + SampParams params(skip_every, offset, interpolation_id); + samp_knob_map[knob] = params; } - } } - file.close(); - } +SampParams SampParamSet::getSampParams(int swing) { - -SampParams SampParamSet::getSampParams(int swing){ - - if (swing >= 260){ + if (swing >= 260) { swing = swing - 30; } - return samp_knob_map[swing]; + return samp_knob_map[swing]; } - - - RedSampParams::RedSampParams() { skip_ratio = 0.0f; is_half = false; } - + RedSampParams::RedSampParams(float skip_ratio1, bool is_half1) { skip_ratio = skip_ratio1; is_half = is_half1; } - RedSampParams getRedSampParams(int swing) { @@ -227,7 +211,4 @@ RedSampParams getRedSampParams(int swing) { red_samp_knob_map[46] = params46; return red_samp_knob_map[swing]; - } - - diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/common.cpp b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/common.cpp index 08607a90796836d2218c53355a142c9c1e11cf6f..0fe6c20ca848c1caf8180735db9d5cce2f3b2f82 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/common.cpp +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/common.cpp @@ -30,7 +30,7 @@ template <> half *convertAndGetGPUData<half>(Tensor *t) { return static_cast<half *>(t->gpu_half_data); } ERROR("Type %s is incompatible with target type half\n", - std::to_string(t->cur_type)); + std::to_string(t->cur_type)); } template <> float2 *convertAndGetGPUData<float2>(Tensor *t) { @@ -85,8 +85,8 @@ std::vector<size_t> sizes(const Dimension &dim) { std::vector<size_t> sizes(Tensor *t) { return sizes(t->dims); } size_t num_elems(const std::vector<size_t> &dim_sizes) { - return std::accumulate( - dim_sizes.begin(), dim_sizes.end(), 1, std::multiplies<>()); + return std::accumulate(dim_sizes.begin(), dim_sizes.end(), 1, + std::multiplies<>()); } size_t num_elems(const Dimension &dim) { return num_elems(sizes(dim)); } diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/configuration.cpp b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/configuration.cpp index 9efbea07c9a1ef31a87a3266de89cb9d10660621..517b7c7009645c43c7f2af6fa733b4205590efd8 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/configuration.cpp +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/configuration.cpp @@ -12,8 +12,8 @@ bool NodeConfiguration::isGPUNodeConfiguration() { return NODE_CONFIGURATION_TARGET_ID == GPU; } -void PROMISENodeConfiguration::pushNewApproximationChoice( - P_APPROX approx, int u) { +void PROMISENodeConfiguration::pushNewApproximationChoice(P_APPROX approx, + int u) { ApproxChoices.push_back(std::make_pair(approx, u)); } @@ -36,9 +36,8 @@ void GPUNodeConfiguration::pushNewTensorOperation(enum TENSOR_OP top) { void GPUNodeConfiguration::pushNewApproximationChoiceForOperation( G_APPROX approx, int u) { unsigned size = ApproxChoices.size(); - CUSTOM_ASSERT( - size >= 1 && - "Cannot apply approximation choice to non existent operation."); + CUSTOM_ASSERT(size >= 1 && + "Cannot apply approximation choice to non existent operation."); ApproxChoices[size - 1].second.push_back(std::make_pair(approx, u)); } @@ -52,8 +51,8 @@ GPUNodeConfiguration::GPUNodeConfiguration() { } GPUNodeConfiguration::~GPUNodeConfiguration() {} -Configuration::Configuration( - std::string &n, float f, float e, float a, float al) +Configuration::Configuration(std::string &n, float f, float e, float a, + float al) : name(n), speedup(f), energy(e), accuracy(a), accuracyLoss(al) {} float Configuration::getSpeedup() { return speedup; } @@ -63,20 +62,20 @@ float Configuration::getEnergy() { return energy; } float Configuration::getAccuracy() { return accuracy; } float Configuration::getAccuracyLoss() { return accuracyLoss; } -bool ConfigurationLessThan:: -operator()(const struct Configuration &a, const struct Configuration &b) const { +bool ConfigurationLessThan::operator()(const struct Configuration &a, + const struct Configuration &b) const { return (a.accuracyLoss < b.accuracyLoss); } -bool ConfigurationLessThan_AL:: -operator()(const struct Configuration *a, const float &b) const { +bool ConfigurationLessThan_AL::operator()(const struct Configuration *a, + const float &b) const { return (a->accuracyLoss < b); } -bool ConfigurationLessThan_SP:: -operator()(const struct Configuration *a, const float &b) const { +bool ConfigurationLessThan_SP::operator()(const struct Configuration *a, + const float &b) const { return (a->speedup < b); } -bool ConfigurationLessThan_E:: -operator()(const struct Configuration *a, const float &b) const { +bool ConfigurationLessThan_E::operator()(const struct Configuration *a, + const float &b) const { return (a->energy < b); } @@ -212,9 +211,8 @@ void GPUNodeConfiguration::print() { void Configuration::print() { printf("+++++\n"); - printf( - "%s %f %f %f %f\n", name.c_str(), speedup, energy, accuracy, - accuracyLoss); + printf("%s %f %f %f %f\n", name.c_str(), speedup, energy, accuracy, + accuracyLoss); for (std::map<std::string, NodeConfiguration *>::const_iterator it = setup.begin(); it != setup.end(); ++it) { diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/debug.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/debug.cc index 3720d43f32065e14b27148753e505d874c771ec6..ebb7e73f2b5a019954e7390f3eb8fadc96a3719e 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/debug.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/debug.cc @@ -3,20 +3,19 @@ #ifndef RUNTIME_DEBUG #define RUNTIME_DEBUG -#define LOG_DEBUG 1 // Sets the debug logging to true -#define LOG_INFO 1 // Sets the info logging to true +#define LOG_DEBUG 1 // Sets the debug logging to true +#define LOG_INFO 1 // Sets the info logging to true #define ASSERT_FLAG // Sets assertions to true (opposite of NDEBUG macro) -#include "tensor.h" #include "debug.h" +#include "tensor.h" +#include <sstream> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> -#include <sstream> - -void INFO(const char* format, ...){ - if(!LOG_INFO) // Don't print if logging info is disabled +void INFO(const char *format, ...) { + if (!LOG_INFO) // Don't print if logging info is disabled return; va_list args; va_start(args, format); @@ -25,8 +24,8 @@ void INFO(const char* format, ...){ va_end(args); } -void DEBUG(const char* format, ...){ - if(!LOG_DEBUG) // Don't print if logging info is disabled +void DEBUG(const char *format, ...) { + if (!LOG_DEBUG) // Don't print if logging info is disabled return; va_list args; va_start(args, format); @@ -35,8 +34,8 @@ void DEBUG(const char* format, ...){ va_end(args); } -void ERROR(const char* format, ...){ - if(!LOG_DEBUG) // Don't print if logging info is disabled +void ERROR(const char *format, ...) { + if (!LOG_DEBUG) // Don't print if logging info is disabled return; va_list args; va_start(args, format); @@ -47,39 +46,30 @@ void ERROR(const char* format, ...){ abort(); } - - -void fillOnes(struct Tensor* tensor){ +void fillOnes(struct Tensor *tensor) { // initialization is specific to the floating point type - if(tensor->data_type == CUDNN_DATA_FLOAT){ - float* data_arr = (float*) tensor->host_data; - for(unsigned int i = 0; i < tensor->num_elems; i++){ - data_arr[i] = 1.0; + if (tensor->data_type == CUDNN_DATA_FLOAT) { + float *data_arr = (float *)tensor->host_data; + for (unsigned int i = 0; i < tensor->num_elems; i++) { + data_arr[i] = 1.0; } } } - -void printTensorDescInfo(struct Tensor* tensor){ +void printTensorDescInfo(struct Tensor *tensor) { cudnnDataType_t dType; int nStride, cStride, hStride, wStride; int size1, size2, size3, size4; - cudnnGetTensor4dDescriptor(tensor->tensor_desc, - &dType, - &size1, &size2, &size3, &size4, - &nStride, &cStride, &hStride, &wStride); - - DEBUG("dType = %d, size1 = %d, size2 = %d, size3 = %d, size4 = %d \n", - dType, size1, size2, size3, size4); - - DEBUG("nStride = %d, cStride = %d, hStride = %d, wStride = %d \n", - nStride, cStride, hStride, wStride); - -} - - + cudnnGetTensor4dDescriptor(tensor->tensor_desc, &dType, &size1, &size2, + &size3, &size4, &nStride, &cStride, &hStride, + &wStride); + DEBUG("dType = %d, size1 = %d, size2 = %d, size3 = %d, size4 = %d \n", dType, + size1, size2, size3, size4); + DEBUG("nStride = %d, cStride = %d, hStride = %d, wStride = %d \n", nStride, + cStride, hStride, wStride); +} #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/debug.cpp b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/debug.cpp index 8e163e7049fbe317624e934504d7dc9297032983..9bec84de77fc279547eaaba8410c0e25ba3f3cd0 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/debug.cpp +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/debug.cpp @@ -1,130 +1,127 @@ +#include "debug.h" #include <cstdarg> #include <cstdio> -#include <stdexcept> #include <cuda_runtime_api.h> -#include "debug.h" +#include <stdexcept> void throwError(const char *file, int line, const char *fmt, ...) { - char msg[2048]; - va_list args; - /* vasprintf not standard */ - /* vsnprintf: how to handle if does not exist? */ - va_start(args, fmt); - int n = vsnprintf(msg, 2048, fmt, args); - va_end(args); - if (n < 2048) { - snprintf(msg + n, 2048 - n, " at %s:%d", file, line); - } + char msg[2048]; + va_list args; + /* vasprintf not standard */ + /* vsnprintf: how to handle if does not exist? */ + va_start(args, fmt); + int n = vsnprintf(msg, 2048, fmt, args); + va_end(args); + if (n < 2048) { + snprintf(msg + n, 2048 - n, " at %s:%d", file, line); + } - ERROR(msg); + ERROR(msg); } -template<typename T, typename F> -void checkCompareFlag( - T err, T success_const, F get_err_str, const char *error_kind, const char *file, int line -) { - if (err != success_const) { - static int alreadyFailed = 0; - if (!alreadyFailed) { - fprintf( - stderr, "%s Error file=%s line=%i error=%i : %s\n", - error_kind, file, line, err, - get_err_str(err) - ); - alreadyFailed = 1; - } - throwError( - file, line, "%s Error error (%d) : %s", error_kind, err, - get_err_str(err) - ); +template <typename T, typename F> +void checkCompareFlag(T err, T success_const, F get_err_str, + const char *error_kind, const char *file, int line) { + if (err != success_const) { + static int alreadyFailed = 0; + if (!alreadyFailed) { + fprintf(stderr, "%s Error file=%s line=%i error=%i : %s\n", error_kind, + file, line, err, get_err_str(err)); + alreadyFailed = 1; } + throwError(file, line, "%s Error error (%d) : %s", error_kind, err, + get_err_str(err)); + } } void _checkCUDA(cudaError_t err, const char *file, int line) { - checkCompareFlag(err, cudaSuccess, cudaGetErrorString, "CUDA", file, line); + checkCompareFlag(err, cudaSuccess, cudaGetErrorString, "CUDA", file, line); } void _checkWarnCUDA(cudaError_t err, const char *file, int line) { - if (err != cudaSuccess) { - fprintf(stderr, "CUDA Warning file=%s line=%i error=%i : %s\n", file, line, err, - cudaGetErrorString(err)); - } + if (err != cudaSuccess) { + fprintf(stderr, "CUDA Warning file=%s line=%i error=%i : %s\n", file, line, + err, cudaGetErrorString(err)); + } } void _checkCUDNN(cudnnStatus_t error, const char *file, int line) { - checkCompareFlag(error, CUDNN_STATUS_SUCCESS, cudnnGetErrorString, "CUDNN", file, line); + checkCompareFlag(error, CUDNN_STATUS_SUCCESS, cudnnGetErrorString, "CUDNN", + file, line); } static const char *cublasGetErrorString(cublasStatus_t status) { - switch (status) { - case CUBLAS_STATUS_SUCCESS: - return "CUBLAS_STATUS_SUCCESS"; - case CUBLAS_STATUS_NOT_INITIALIZED: - return "CUBLAS_STATUS_NOT_INITIALIZED"; - case CUBLAS_STATUS_ALLOC_FAILED: - return "CUBLAS_STATUS_ALLOC_FAILED"; - case CUBLAS_STATUS_INVALID_VALUE: - return "CUBLAS_STATUS_INVALID_VALUE"; - case CUBLAS_STATUS_ARCH_MISMATCH: - return "CUBLAS_STATUS_ARCH_MISMATCH"; - case CUBLAS_STATUS_MAPPING_ERROR: - return "CUBLAS_STATUS_MAPPING_ERROR"; - case CUBLAS_STATUS_EXECUTION_FAILED: - return "CUBLAS_STATUS_EXECUTION_FAILED"; - case CUBLAS_STATUS_INTERNAL_ERROR: - return "CUBLAS_STATUS_INTERNAL_ERROR"; - case CUBLAS_STATUS_NOT_SUPPORTED: - return "CUBLAS_STATUS_NOT_SUPPORTED"; - case CUBLAS_STATUS_LICENSE_ERROR: - return "CUBLAS_STATUS_LICENSE_ERROR"; - } - return "unknown error"; + switch (status) { + case CUBLAS_STATUS_SUCCESS: + return "CUBLAS_STATUS_SUCCESS"; + case CUBLAS_STATUS_NOT_INITIALIZED: + return "CUBLAS_STATUS_NOT_INITIALIZED"; + case CUBLAS_STATUS_ALLOC_FAILED: + return "CUBLAS_STATUS_ALLOC_FAILED"; + case CUBLAS_STATUS_INVALID_VALUE: + return "CUBLAS_STATUS_INVALID_VALUE"; + case CUBLAS_STATUS_ARCH_MISMATCH: + return "CUBLAS_STATUS_ARCH_MISMATCH"; + case CUBLAS_STATUS_MAPPING_ERROR: + return "CUBLAS_STATUS_MAPPING_ERROR"; + case CUBLAS_STATUS_EXECUTION_FAILED: + return "CUBLAS_STATUS_EXECUTION_FAILED"; + case CUBLAS_STATUS_INTERNAL_ERROR: + return "CUBLAS_STATUS_INTERNAL_ERROR"; + case CUBLAS_STATUS_NOT_SUPPORTED: + return "CUBLAS_STATUS_NOT_SUPPORTED"; + case CUBLAS_STATUS_LICENSE_ERROR: + return "CUBLAS_STATUS_LICENSE_ERROR"; + } + return "unknown error"; } void _checkCUBLAS(cublasStatus_t error, const char *file, int line) { - checkCompareFlag(error, CUBLAS_STATUS_SUCCESS, cublasGetErrorString, "CUBLAS", file, line); + checkCompareFlag(error, CUBLAS_STATUS_SUCCESS, cublasGetErrorString, "CUBLAS", + file, line); } static const char *cufftGetErrorString(cufftResult error) { - switch (error) { - case CUFFT_SUCCESS: - return "CUFFT_SUCCESS"; - case CUFFT_INVALID_PLAN: - return "CUFFT_INVALID_PLAN"; - case CUFFT_ALLOC_FAILED: - return "CUFFT_ALLOC_FAILED"; - case CUFFT_INVALID_TYPE: - return "CUFFT_INVALID_TYPE"; - case CUFFT_INVALID_VALUE: - return "CUFFT_INVALID_VALUE"; - case CUFFT_INTERNAL_ERROR: - return "CUFFT_INTERNAL_ERROR"; - case CUFFT_EXEC_FAILED: - return "CUFFT_EXEC_FAILED"; - case CUFFT_SETUP_FAILED: - return "CUFFT_SETUP_FAILED"; - case CUFFT_INVALID_SIZE: - return "CUFFT_INVALID_SIZE"; - case CUFFT_UNALIGNED_DATA: - return "CUFFT_UNALIGNED_DATA"; - case CUFFT_INCOMPLETE_PARAMETER_LIST: - return "CUFFT_INCOMPLETE_PARAMETER_LIST"; - case CUFFT_INVALID_DEVICE: - return "CUFFT_INVALID_DEVICE"; - case CUFFT_PARSE_ERROR: - return "CUFFT_PARSE_ERROR"; - case CUFFT_NO_WORKSPACE: - return "CUFFT_NO_WORKSPACE"; - case CUFFT_NOT_IMPLEMENTED: - return "CUFFT_NOT_IMPLEMENTED"; - case CUFFT_LICENSE_ERROR: - return "CUFFT_LICENSE_ERROR"; - case CUFFT_NOT_SUPPORTED: - return "CUFFT_NOT_SUPPORTED"; - } - return "<unknown>"; + switch (error) { + case CUFFT_SUCCESS: + return "CUFFT_SUCCESS"; + case CUFFT_INVALID_PLAN: + return "CUFFT_INVALID_PLAN"; + case CUFFT_ALLOC_FAILED: + return "CUFFT_ALLOC_FAILED"; + case CUFFT_INVALID_TYPE: + return "CUFFT_INVALID_TYPE"; + case CUFFT_INVALID_VALUE: + return "CUFFT_INVALID_VALUE"; + case CUFFT_INTERNAL_ERROR: + return "CUFFT_INTERNAL_ERROR"; + case CUFFT_EXEC_FAILED: + return "CUFFT_EXEC_FAILED"; + case CUFFT_SETUP_FAILED: + return "CUFFT_SETUP_FAILED"; + case CUFFT_INVALID_SIZE: + return "CUFFT_INVALID_SIZE"; + case CUFFT_UNALIGNED_DATA: + return "CUFFT_UNALIGNED_DATA"; + case CUFFT_INCOMPLETE_PARAMETER_LIST: + return "CUFFT_INCOMPLETE_PARAMETER_LIST"; + case CUFFT_INVALID_DEVICE: + return "CUFFT_INVALID_DEVICE"; + case CUFFT_PARSE_ERROR: + return "CUFFT_PARSE_ERROR"; + case CUFFT_NO_WORKSPACE: + return "CUFFT_NO_WORKSPACE"; + case CUFFT_NOT_IMPLEMENTED: + return "CUFFT_NOT_IMPLEMENTED"; + case CUFFT_LICENSE_ERROR: + return "CUFFT_LICENSE_ERROR"; + case CUFFT_NOT_SUPPORTED: + return "CUFFT_NOT_SUPPORTED"; + } + return "<unknown>"; } void _checkCUFFT(cufftResult error, const char *file, int line) { - checkCompareFlag(error, CUFFT_SUCCESS, cufftGetErrorString, "CUFFT", file, line); + checkCompareFlag(error, CUFFT_SUCCESS, cufftGetErrorString, "CUFFT", file, + line); } diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/freq_utils.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/freq_utils.cc index 92d7499d539dfb8a2e9bde4f18daea8a292ac91e..333635fbda6959f6f456153c444dc363531734df 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/freq_utils.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/freq_utils.cc @@ -1,31 +1,28 @@ -#include <stdlib.h> #include <stdio.h> +#include <stdlib.h> #include <string.h> +const char *available_freqs[] = { + "140250000", "229500000", "318750000", "408000000", "497250000", + "586500000", "675750000", "765000000", "854250000", "943500000", + "1032750000", "1122000000", "1211250000", "1300500000"}; +void updateJetsonGPUFreq(int freq_level) { - -const char* available_freqs[] = {"140250000", "229500000", "318750000", "408000000", "497250000", - "586500000", "675750000", "765000000", "854250000", - "943500000", "1032750000", "1122000000", "1211250000", "1300500000"}; - - -void updateJetsonGPUFreq(int freq_level){ - - if (freq_level < 0 || freq_level > 13){ + if (freq_level < 0 || freq_level > 13) { printf("ERRROR: Provide freq level between {0, 13} \n\n\n"); abort(); } - const char* freq_val = available_freqs[freq_level]; + const char *freq_val = available_freqs[freq_level]; printf("freq-val[0] = %s \n", freq_val); - - FILE* max_file = fopen("/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/max_freq", "w+"); + FILE *max_file = fopen( + "/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/max_freq", "w+"); - if (max_file == NULL){ + if (max_file == NULL) { printf("Could not min_freq file \n"); } @@ -33,10 +30,10 @@ void updateJetsonGPUFreq(int freq_level){ fclose(max_file); - - FILE* min_file = fopen("/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/min_freq", "w+"); + FILE *min_file = fopen( + "/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/min_freq", "w+"); - if (min_file == NULL){ + if (min_file == NULL) { printf("Could not min_freq file \n"); abort(); } @@ -44,23 +41,20 @@ void updateJetsonGPUFreq(int freq_level){ fwrite(freq_val, strlen(freq_val), 1, min_file); fclose(min_file); - } +unsigned long int readJetsonGPUFreq() { + FILE *cur_freq_file = + fopen("/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/cur_freq", "r"); -unsigned long int readJetsonGPUFreq(){ - - FILE* cur_freq_file = fopen("/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/cur_freq", "r"); - - if (cur_freq_file == NULL){ + if (cur_freq_file == NULL) { printf("Could not open cur_freq file \n"); } - char buf[50]; - char* ptr; - + char *ptr; + fread(buf, 50, 1, cur_freq_file); unsigned long cur_freq = strtoul(buf, &ptr, 10); @@ -70,15 +64,13 @@ unsigned long int readJetsonGPUFreq(){ return cur_freq; } - - -int main(){ +int main() { updateJetsonGPUFreq(7); unsigned long int cur_freq = readJetsonGPUFreq(); printf("** cur_freq = %lu \n\n", cur_freq); - + return 0; } diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/global_data.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/global_data.cc index 516030a75b0a113ab80c78401785e363cf5a7a29..61e37ed9a3dd5a7a40b170660e164d7ae9965344 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/global_data.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/global_data.cc @@ -1,22 +1,22 @@ -#include <stdio.h> -#include <stdarg.h> #include <cstdio> #include <cstdlib> +#include <stdarg.h> +#include <stdio.h> #include <cuda_runtime.h> #include <device_launch_parameters.h> - #include <cublas_v2.h> -#include <cudnn.h> +// Must come after cublas_v2.h #include <cublas_api.h> +#include <cudnn.h> + #include <string> #include <unordered_map> #include <vector> -#include "tensor.h" -#include "global_data.h" #include "approx_knob_utils.h" - +#include "global_data.h" +#include "tensor.h" /* Data declarations */ cudnnHandle_t cudnnHandle; @@ -26,17 +26,16 @@ bool runtime_initialized = false; // NOTE: Layers Mode is True or Approxhpvm wrappper runtime mode bool approxhpvm_runtime_mode = false; - int op_counter = 0; int total_ops = 0; // NOTE: Both vectors asssume a linear CFG // FIXME: Each operation should have an ID passed to the runtime std::vector<int> op_accuracies; -std::vector<Range*> quant_ranges; +std::vector<Range *> quant_ranges; -std::unordered_set<void*> tensors_ptr, host_ptr, obj_ptr; +std::unordered_set<void *> tensors_ptr, host_ptr, obj_ptr; -std::unordered_map<void*, int> tracked_tensors; +std::unordered_map<void *, int> tracked_tensors; // Autotuning data std::unordered_map<int, int> skip_tensors; @@ -45,7 +44,5 @@ std::unordered_map<int, int> skip_tensors; std::unordered_map<std::string, int> func_counters; std::string profile_data = ""; - - -PerfParamSet* perfParamSet; -SampParamSet* sampParamSet; +PerfParamSet *perfParamSet; +SampParamSet *sampParamSet; diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/hpvm-rt-controller.cpp b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/hpvm-rt-controller.cpp index 9dba9ca15b2c267b505e6a3a72620b37e44c93e1..fd308a3409dc679a07b5374238e7150fb3c34beb 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/hpvm-rt-controller.cpp +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/hpvm-rt-controller.cpp @@ -1,37 +1,35 @@ #include "hpvm-rt-controller.h" -#include "img_tensor_utils.h" #include "global_data.h" +#include "img_tensor_utils.h" #include <fstream> //-------- Functionality to read and update frequency on Jetson board -------// /*const char* available_freqs[] = {"140250000", "229500000", "318750000", - "408000000", "497250000", "586500000", + "408000000", "497250000", "586500000", "675750000", "765000000", "854250000", "943500000", "1032750000", "1122000000", "1211250000", "1300500000"}; */ - const int available_freqs[] = { -140250000, // 0 -229500000, // 1 -318750000, // 2 -408000000, // 3 -497250000, // 4 -586500000, // 5 -675750000, // 6 -765000000, // 7 -854250000, // 8 -943500000, // 9 -1032750000,// 10 -1122000000,// 11 -1211250000,// 12 -1300500000 // 13 + 140250000, // 0 + 229500000, // 1 + 318750000, // 2 + 408000000, // 3 + 497250000, // 4 + 586500000, // 5 + 675750000, // 6 + 765000000, // 7 + 854250000, // 8 + 943500000, // 9 + 1032750000, // 10 + 1122000000, // 11 + 1211250000, // 12 + 1300500000 // 13 }; - /*void updateJetsonGPUFreq(int freq_level) { if (freq_level < 0 || freq_level > 13) { @@ -39,7 +37,7 @@ const int available_freqs[] = { abort(); } - const char* freq_val = available_freqs[freq_level]; + const char* freq_val = available_freqs[freq_level]; printf("freq-val[0] = %s \n", freq_val); FILE* max_file = @@ -49,7 +47,7 @@ const int available_freqs[] = { } fwrite(freq_val, strlen(freq_val), 1, max_file); fclose(max_file); - + FILE* min_file = fopen("/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/min_freq", "w+"); if (min_file == NULL){ @@ -70,7 +68,7 @@ unsigned long int readJetsonGPUFreq() { char buf[50]; char* ptr; - + fread(buf, 50, 1, cur_freq_file); unsigned long cur_freq = strtoul(buf, &ptr, 10); fclose(cur_freq_file); @@ -79,14 +77,15 @@ unsigned long int readJetsonGPUFreq() { */ - // Sets frequency void setFreq(unsigned freq_index) { unsigned target_freq = available_freqs[freq_index]; - - const char * const min_freq_file = "/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/min_freq"; - const char * const max_freq_file = "/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/max_freq"; + + const char *const min_freq_file = + "/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/min_freq"; + const char *const max_freq_file = + "/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/max_freq"; std::ofstream min_stream; std::ofstream max_stream; @@ -105,7 +104,8 @@ void setFreq(unsigned freq_index) { unsigned recordFreq() { // Current frequency file - const char * const cur_freq_file = "/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/cur_freq"; + const char *const cur_freq_file = + "/sys/devices/17000000.gp10b/devfreq/17000000.gp10b/cur_freq"; std::ifstream cur_stream; cur_stream.open(cur_freq_file, std::ifstream::in); @@ -118,10 +118,6 @@ unsigned recordFreq() { return cur_freq; } - - - - //---------------------------------------------------------------------------// /* @@ -135,13 +131,13 @@ bool fileExists(const std::string &file) { // There will be no frequency request for the first batch // Therefore, we skip the first element by initializing to 1, not 0. -FrequencyIndexList::FrequencyIndexList(std::vector<int> il, unsigned rf) : - idx_list(il), rep_factor(rf), count(1), idx(0) {} +FrequencyIndexList::FrequencyIndexList(std::vector<int> il, unsigned rf) + : idx_list(il), rep_factor(rf), count(1), idx(0) {} unsigned FrequencyIndexList::getNextIndex() { if (count == rep_factor) { count = 0; - idx = (idx+1) % idx_list.size(); + idx = (idx + 1) % idx_list.size(); } count++; return idx_list[idx]; @@ -208,7 +204,7 @@ void ProfileInfo::readIterationFrequency() { frequency_current_iteration = recordFreq(); #else frequency_current_iteration = 0; -#endif //JETSON_EXECUTION +#endif // JETSON_EXECUTION } unsigned long ProfileInfo::getIterationFrequency() { @@ -275,15 +271,14 @@ void ProfileInfo::printToFile() { // to have equal sizes, in outer and inner vectors both, // and all time_info and energy_info vectors must have the same size. unsigned iterations = tensor_time_info.size(); - CUSTOM_ASSERT( - (tensor_time_info.size() == iterations) && - (tensor_energy_info.size() == iterations) && - (control_time_info.size() == iterations) && - (control_energy_info.size() == iterations) && - (config_time_info.size() == iterations) && - (config_energy_info.size() == iterations) && - (frequency_info.size() == iterations) && - "time_info, energy_info, frequency_info size: \ + CUSTOM_ASSERT((tensor_time_info.size() == iterations) && + (tensor_energy_info.size() == iterations) && + (control_time_info.size() == iterations) && + (control_energy_info.size() == iterations) && + (config_time_info.size() == iterations) && + (config_energy_info.size() == iterations) && + (frequency_info.size() == iterations) && + "time_info, energy_info, frequency_info size: \ iteration number does not match."); for (unsigned i = 0; i < tensor_time_info.size(); i++) { @@ -333,8 +328,8 @@ ProfileInfo::ProfileInfo() time_control_current_iteration(0.0), time_config_current_iteration(0.0), energy_compute_current_iteration(0.0), energy_control_current_iteration(0.0), - energy_config_current_iteration(0.0), - frequency_current_iteration(0), in_iteration(false) {} + energy_config_current_iteration(0.0), frequency_current_iteration(0), + in_iteration(false) {} Slowdowns::Slowdowns() { idx = 0; @@ -376,37 +371,37 @@ void RuntimeController::stop_profiler() { profiler->stop_profiler(); } // For testing purposes only - do not use widely -std::vector<struct Configuration *> &RuntimeController:: -getSpeedupConfigurations() { +std::vector<struct Configuration *> & +RuntimeController::getSpeedupConfigurations() { return SpeedupConfigurations; } // For testing purposes only - do not use widely -std::vector<struct Configuration *> &RuntimeController:: -getEnergyConfigurations() { +std::vector<struct Configuration *> & +RuntimeController::getEnergyConfigurations() { return EnergyConfigurations; } // For testing purposes only - do not use widely -std::vector<struct Configuration *> &RuntimeController:: -getThreeDCurveConfigurations() { +std::vector<struct Configuration *> & +RuntimeController::getThreeDCurveConfigurations() { return ThreeDCurveConfigurations; } // For testing purposes only - do not use widely unsigned RuntimeController::getConfigurationIdx() { return configurationIdx; } double RuntimeController::getCurrentConfigurationSpeedup() { - return (double) (*Configurations)[configurationIdx]->speedup; + return (double)(*Configurations)[configurationIdx]->speedup; } double RuntimeController::getCurrentConfigurationEnergy() { - return (double) (*Configurations)[configurationIdx]->energy; + return (double)(*Configurations)[configurationIdx]->energy; } double RuntimeController::getCurrentConfigurationAccuracy() { - return (double) (*Configurations)[configurationIdx]->accuracy; + return (double)(*Configurations)[configurationIdx]->accuracy; } double RuntimeController::getCurrentConfigurationAccuracyLoss() { - return (double) (*Configurations)[configurationIdx]->accuracyLoss; + return (double)(*Configurations)[configurationIdx]->accuracyLoss; } std::vector<float> &RuntimeController::getQuantizationRanges(const char *data) { @@ -448,8 +443,10 @@ void RuntimeController::init(const char *Cstr, const char *Qstr) { // Pseudo random variable (when we did few experiments) // or true random numbers for probabilistic control pseudo_rd = 0.0; - std::random_device rd; //Will be used to obtain a seed for the random number engine - generator = std::mt19937 (rd()); //Standard mersenne_twister_engine seeded with rd() + std::random_device + rd; // Will be used to obtain a seed for the random number engine + generator = + std::mt19937(rd()); // Standard mersenne_twister_engine seeded with rd() distr = std::uniform_real_distribution<>(0.0, 1.0); g_freq = available_freqs[13]; @@ -471,8 +468,8 @@ void RuntimeController::end_iteration() { PI->end_iteration(); } -void RuntimeController::addToCurrentIterationComputeTime( - const char *s, double t) { +void RuntimeController::addToCurrentIterationComputeTime(const char *s, + double t) { if (PI) PI->addToCurrentIterationComputeTime(s, t); } @@ -487,8 +484,8 @@ void RuntimeController::addToCurrentIterationConfigTime(double t) { PI->addToCurrentIterationConfigTime(t); } -void RuntimeController::addToCurrentIterationComputeEnergy( - const char *s, double e) { +void RuntimeController::addToCurrentIterationComputeEnergy(const char *s, + double e) { if (PI) PI->addToCurrentIterationComputeEnergy(s, e); } @@ -526,8 +523,8 @@ void RuntimeController::updateFrequency() { //--- updateJetsonGPUFreq(freq_idx); setFreq(freq_idx); - -#endif //JETSON_EXECUTION + +#endif // JETSON_EXECUTION } void RuntimeController::writeProfileInfo() { @@ -560,11 +557,9 @@ std::pair<double, double> RuntimeController::fc_profile( const unsigned num_rows_a, const unsigned num_cols_a, const unsigned num_rows_b, const unsigned num_cols_b, const unsigned voltage_swing, const unsigned patch_factor) { - return ( - promise ? promise->fc_profile( - num_rows_a, num_cols_a, num_rows_b, num_cols_b, - voltage_swing, patch_factor) - : std::make_pair(0.0, 0.0)); + return (promise ? promise->fc_profile(num_rows_a, num_cols_a, num_rows_b, + num_cols_b, voltage_swing, patch_factor) + : std::make_pair(0.0, 0.0)); } std::pair<double, double> RuntimeController::conv_profile( @@ -572,17 +567,16 @@ std::pair<double, double> RuntimeController::conv_profile( const unsigned c_out, const unsigned c_in, const unsigned k_h, const unsigned k_w, const unsigned s_h, const unsigned s_w, const unsigned voltage_swing, const unsigned patch_factor) { - return ( - promise ? promise->conv_profile( - n, c, h, w, c_out, c_in, k_h, k_w, s_h, s_w, voltage_swing, - patch_factor) - : std::make_pair(0.0, 0.0)); + return (promise ? promise->conv_profile(n, c, h, w, c_out, c_in, k_h, k_w, + s_h, s_w, voltage_swing, patch_factor) + : std::make_pair(0.0, 0.0)); } // Constructor and descructor RuntimeController::RuntimeController() { configurationIdx = 0; - FIL = new FrequencyIndexList({13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, 10); + FIL = new FrequencyIndexList({13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, + 10); #ifdef ACTIVE_PROFILING PI = new ProfileInfo(); profiler = new Profiler(); @@ -719,14 +713,13 @@ void RuntimeController::readConfigurationFile(const char *str) { std::getline(qin, first_line); DEBUG("first_line: %s\n", first_line.c_str()); - try{ + try { baseline_time = std::stod(first_line); DEBUG("Baseline time: %lf\n\n", baseline_time); - } - catch(...){ + } catch (...) { ERROR("Please Add/Fix Baseline Time at Top of Config File.. "); } - + for (std::string line; std::getline(qin, line);) { DEBUG("line: %s\n", line.c_str()); @@ -758,9 +751,9 @@ void RuntimeController::readConfigurationFile(const char *str) { if (readingFirstLine) { // Read first line, to create the new configuration struct readingFirstLine = false; - InitialConfigurations.push_back(Configuration( - tokens[0], std::stof(tokens[1]), std::stof(tokens[2]), - std::stof(tokens[3]), std::stof(tokens[4]))); + InitialConfigurations.push_back( + Configuration(tokens[0], std::stof(tokens[1]), std::stof(tokens[2]), + std::stof(tokens[3]), std::stof(tokens[4]))); continue; } @@ -768,8 +761,8 @@ void RuntimeController::readConfigurationFile(const char *str) { DEBUG("Found promise configuration\n"); // There must be at least one approximation option - CUSTOM_ASSERT( - (tokens.size() >= 2) && "Not enough approximation options."); + CUSTOM_ASSERT((tokens.size() >= 2) && + "Not enough approximation options."); PROMISENodeConfiguration *NodeConf = new PROMISENodeConfiguration(); InitialConfigurations.back().setup.insert( @@ -792,9 +785,8 @@ void RuntimeController::readConfigurationFile(const char *str) { DEBUG("Found gpu configuration\n"); // There must be at least one operation, with an approximation option - CUSTOM_ASSERT( - (tokens.size() >= 5) && - "Not enough operations - approximation options."); + CUSTOM_ASSERT((tokens.size() >= 5) && + "Not enough operations - approximation options."); GPUNodeConfiguration *NodeConf = new GPUNodeConfiguration(); InitialConfigurations.back().setup.insert( @@ -968,9 +960,8 @@ void RuntimeController::computeParetoConfigurationPoints() { // Sort the configurations according to accuracy loss INFO("Sorting autotuner configurations...\n"); - std::sort( - InitialConfigurations.begin() + 1, InitialConfigurations.end(), - ConfigurationLessThan()); + std::sort(InitialConfigurations.begin() + 1, InitialConfigurations.end(), + ConfigurationLessThan()); INFO("Done sorting.\n"); for (unsigned start_idx = 1; start_idx < InitialConfigurations.size();) { @@ -1004,14 +995,12 @@ void RuntimeController::computeParetoConfigurationPoints() { en_idx = i; } } - DEBUG( - "accuracy loss = %f, speedup = %f, at sp_idx = %d\n", - InitialConfigurations[sp_idx].accuracyLoss, sp, sp_idx); + DEBUG("accuracy loss = %f, speedup = %f, at sp_idx = %d\n", + InitialConfigurations[sp_idx].accuracyLoss, sp, sp_idx); // Found best speedup for this accuracy point (not dominated by any of // these). - DEBUG( - "accuracy loss = %f, energy = %f, at en_idx = %d\n", - InitialConfigurations[en_idx].accuracyLoss, en, en_idx); + DEBUG("accuracy loss = %f, energy = %f, at en_idx = %d\n", + InitialConfigurations[en_idx].accuracyLoss, en, en_idx); // Found best energy for this accuracy point (not dominated by any of // these). @@ -1081,9 +1070,8 @@ void RuntimeController::compute3DParetoConfigurationPoints() { // Sort the configurations according to accuracy loss INFO("Sorting autotuner configurations...\n"); - std::sort( - InitialConfigurations.begin(), InitialConfigurations.end(), - ConfigurationLessThan()); + std::sort(InitialConfigurations.begin(), InitialConfigurations.end(), + ConfigurationLessThan()); INFO("Done sorting.\n"); for (unsigned start_idx = 0; start_idx < InitialConfigurations.size();) { @@ -1117,11 +1105,10 @@ void RuntimeController::compute3DParetoConfigurationPoints() { } } if (!dominated) { - DEBUG( - "accuracy loss = %f, speedup = %f, energy = %f, at idx = %d\n", - InitialConfigurations[i].accuracyLoss, - InitialConfigurations[i].speedup, InitialConfigurations[i].energy, - i); + DEBUG("accuracy loss = %f, speedup = %f, energy = %f, at idx = %d\n", + InitialConfigurations[i].accuracyLoss, + InitialConfigurations[i].speedup, InitialConfigurations[i].energy, + i); Indices.push_back(i); } } @@ -1180,31 +1167,22 @@ void RuntimeController::printConfigurations( } } -unsigned long RuntimeController::getLastFrequency() { - return g_freq; -} +unsigned long RuntimeController::getLastFrequency() { return g_freq; } -void RuntimeController::setLastFrequency(unsigned long f) { - g_freq = f; -} +void RuntimeController::setLastFrequency(unsigned long f) { g_freq = f; } -double RuntimeController::getLastSpeedup() { - return g_speedup; -} +double RuntimeController::getLastSpeedup() { return g_speedup; } -void RuntimeController::setLastSpeedup(double s) { - g_speedup = s; -} +void RuntimeController::setLastSpeedup(double s) { g_speedup = s; } void RuntimeController::findNextConfiguration() { configurationIdx = (configurationIdx + 1) % Configurations->size(); - DEBUG( - "findNextConfiguration: Updated configurationIdx to %u.\n", - configurationIdx); + DEBUG("findNextConfiguration: Updated configurationIdx to %u.\n", + configurationIdx); } -void RuntimeController::findTargetConfiguration( - float goal, enum SEARCH_KIND sk) { +void RuntimeController::findTargetConfiguration(float goal, + enum SEARCH_KIND sk) { // We search in range begin(), end()-1 . It is OK to decrement end(), because // the configurations vector always points to one of the pareto curves, and // they are never empty - we have always pushed at least one configuration. @@ -1214,25 +1192,25 @@ void RuntimeController::findTargetConfiguration( switch (sk) { case SPEEDUP: { Configurations = &SpeedupConfigurations; - low_it = std::lower_bound( - Configurations->begin(), Configurations->end() - 1, goal, - ConfigurationLessThan_SP()); + low_it = + std::lower_bound(Configurations->begin(), Configurations->end() - 1, + goal, ConfigurationLessThan_SP()); configurationIdx = low_it - Configurations->begin(); break; } case ENERGY: { Configurations = &EnergyConfigurations; - low_it = std::lower_bound( - Configurations->begin(), Configurations->end() - 1, goal, - ConfigurationLessThan_E()); + low_it = + std::lower_bound(Configurations->begin(), Configurations->end() - 1, + goal, ConfigurationLessThan_E()); configurationIdx = low_it - Configurations->begin(); break; } case ACCURACY_LOSS: { Configurations = &SpeedupConfigurations; - low_it = std::lower_bound( - Configurations->begin(), Configurations->end() - 1, goal, - ConfigurationLessThan_AL()); + low_it = + std::lower_bound(Configurations->begin(), Configurations->end() - 1, + goal, ConfigurationLessThan_AL()); if ((*low_it)->accuracyLoss > goal) --low_it; configurationIdx = low_it - Configurations->begin(); @@ -1247,9 +1225,8 @@ void RuntimeController::findTargetConfiguration( // After search, low_it points to the Configuration to the element with the // goal value or the immediately lower value if it does not exist - DEBUG( - "findTargetConfiguration: Updated configurationIdx to %u.\n", - configurationIdx); + DEBUG("findTargetConfiguration: Updated configurationIdx to %u.\n", + configurationIdx); } void RuntimeController::adjustTargetConfiguration(float goal) { @@ -1260,8 +1237,8 @@ void RuntimeController::adjustTargetConfiguration(float goal) { // Find configuration before the selected one. // There is always one, unless goal is 1. Then, we would pick baseline, and // both upper and lower should be the same configuration, at index 0. - unsigned prev_conf_idx = configurationIdx > 0 ? configurationIdx - 1 - : configurationIdx; + unsigned prev_conf_idx = + configurationIdx > 0 ? configurationIdx - 1 : configurationIdx; // Get the two configurations' speedup, and compute the appropriate ranges float curr_conf_speedup = (*Configurations)[configurationIdx]->speedup; float prev_conf_speedup = (*Configurations)[prev_conf_idx]->speedup; @@ -1280,32 +1257,32 @@ void RuntimeController::adjustTargetConfiguration(float goal) { //***--- Probability adjustment strategy 1 ---***// // No big adjustments at edges of probability range -// float adjust_val = 0.0; -// if (low_pb < high_pb) { -// adjust_val = low_pb * 0.2; -// } else { -// adjust_val = high_pb * 0.2; -// } -// low_pb -= adjust_val; -// high_pb += adjust_val; + // float adjust_val = 0.0; + // if (low_pb < high_pb) { + // adjust_val = low_pb * 0.2; + // } else { + // adjust_val = high_pb * 0.2; + // } + // low_pb -= adjust_val; + // high_pb += adjust_val; //***--- ---***// //***--- Probability adjustment strategy 2 ---***// // No big adjustment at high edge of probability range -// float adjust_val = high_pb * 0.2 > 0.1 ? 0.1 : high_pb * 0.2; -// low_pb -= adjust_val; -// high_pb += adjust_val; + // float adjust_val = high_pb * 0.2 > 0.1 ? 0.1 : high_pb * 0.2; + // low_pb -= adjust_val; + // high_pb += adjust_val; //***--- ---***// //***--- Probability adjustment strategy 3 ---***// - //Similar to 2, but higher always increases, more significantly -// float adjust_val = low_pb * 0.5 > 0.1 ? 0.1 : low_pb * 0.5; -// low_pb -= adjust_val; -// high_pb += adjust_val; + // Similar to 2, but higher always increases, more significantly + // float adjust_val = low_pb * 0.5 > 0.1 ? 0.1 : low_pb * 0.5; + // low_pb -= adjust_val; + // high_pb += adjust_val; //***--- ---***// //***--- Probability adjustment strategy 4 ---***// - //Similar to 2, but higher always increases, more significantly + // Similar to 2, but higher always increases, more significantly // Low end, high end a bit less aggressive than total range float adjust_val = low_pb * 0.6 > 0.2 ? 0.2 : low_pb * 0.6; adjust_val = adjust_val > high_pb ? high_pb : adjust_val; @@ -1314,20 +1291,18 @@ void RuntimeController::adjustTargetConfiguration(float goal) { //***--- ---***// } - DEBUG( - "**---- adjustTargetConfiguration: upper conf = %s with probability: " - "%f.\n", - ((*Configurations)[configurationIdx]->name).c_str(), high_pb); - DEBUG( - "**---- adjustTargetConfiguration: lower conf = %s with probability: " - "%f.\n\n", - ((*Configurations)[prev_conf_idx]->name).c_str(), low_pb); + DEBUG("**---- adjustTargetConfiguration: upper conf = %s with probability: " + "%f.\n", + ((*Configurations)[configurationIdx]->name).c_str(), high_pb); + DEBUG("**---- adjustTargetConfiguration: lower conf = %s with probability: " + "%f.\n\n", + ((*Configurations)[prev_conf_idx]->name).c_str(), low_pb); // Select a random number from 0 to 1 // We assign the (0..low_pb) to the lower configuration, and the (low_pb..1) // to the upper // float rd = static_cast <float> (rand()) / static_cast <float> (RAND_MAX) ; - //float rd = pseudo_rd; + // float rd = pseudo_rd; float rd = distr(generator); if (rd < low_pb) { // If the probability is in the low range @@ -1347,8 +1322,8 @@ double RuntimeController::getBaselineTime() { return baseline_time; } Slowdowns *RuntimeController::getSlowdowns() { return slowdowns; } // Functions to be inserted with initializeTensorRT and clearTensorRT -extern "C" void llvm_hpvm_initializeRuntimeController( - const char *ConfigFile, const char *QRangeFile) { +extern "C" void llvm_hpvm_initializeRuntimeController(const char *ConfigFile, + const char *QRangeFile) { RC = new RuntimeController(); RC->init(ConfigFile, QRangeFile); return; @@ -1362,8 +1337,8 @@ extern "C" void llvm_hpvm_clearRuntimeController() { //*** Methods to compute accuracy of a tensor by the runtime controller ***// uint32_t *labels_from_file = NULL; -uint32_t * -hpvm_rt_readLabelsBatch_cached(const char *labels_file, int start, int end) { +uint32_t *hpvm_rt_readLabelsBatch_cached(const char *labels_file, int start, + int end) { // Initialize buffer if (!labels_from_file) { @@ -1448,13 +1423,12 @@ float hpvm_rt_computeAccuracy3(uint32_t *labels, void *result_ptr) { return accuracy; } - //#define llvm_hpvm_invokeRtControl_BASE llvm_hpvm_invokeRtControl #define llvm_hpvm_invokeRtControl_ADJUST_PR llvm_hpvm_invokeRtControl //#define llvm_hpvm_invokeRtControl_ADJUST llvm_hpvm_invokeRtControl -extern "C" void llvm_hpvm_invokeRtControl_BASE( - void *result, const char *str, int start, int end) { +extern "C" void llvm_hpvm_invokeRtControl_BASE(void *result, const char *str, + int start, int end) { uint32_t *labels_cached = hpvm_rt_readLabelsBatch_cached(str, start, end); hpvm_rt_computeAccuracy3(labels_cached, result); @@ -1471,16 +1445,15 @@ extern "C" void llvm_hpvm_invokeRtControl_BASE( RC->addToCurrentIterationControlTime(pinfo.first); RC->addToCurrentIterationControlEnergy(pinfo.second); - INFO( - "current iteration time = %f, current iteration energy = %f\n\n", - current_iteration_time, current_iteration_energy); + INFO("current iteration time = %f, current iteration energy = %f\n\n", + current_iteration_time, current_iteration_energy); // Note the end of iteration RC->end_iteration(); } -extern "C" void llvm_hpvm_invokeRtControl_ITERATE( - void *result, const char *str, int start, int end) { +extern "C" void llvm_hpvm_invokeRtControl_ITERATE(void *result, const char *str, + int start, int end) { uint32_t *labels_cached = hpvm_rt_readLabelsBatch_cached(str, start, end); hpvm_rt_computeAccuracy3(labels_cached, result); @@ -1504,16 +1477,15 @@ extern "C" void llvm_hpvm_invokeRtControl_ITERATE( RC->addToCurrentIterationControlTime(pinfo.first); RC->addToCurrentIterationControlEnergy(pinfo.second); - INFO( - "current iteration time = %f, current iteration energy = %f\n\n", - current_iteration_time, current_iteration_energy); + INFO("current iteration time = %f, current iteration energy = %f\n\n", + current_iteration_time, current_iteration_energy); // Note the end of iteration RC->end_iteration(); } -extern "C" void llvm_hpvm_invokeRtControl_ADJUST( - void *result, const char *str, int start, int end) { +extern "C" void llvm_hpvm_invokeRtControl_ADJUST(void *result, const char *str, + int start, int end) { uint32_t *labels_cached = hpvm_rt_readLabelsBatch_cached(str, start, end); hpvm_rt_computeAccuracy3(labels_cached, result); @@ -1556,17 +1528,17 @@ extern "C" void llvm_hpvm_invokeRtControl_ADJUST( RC->addToCurrentIterationConfigEnergy(pinfo2.second); //* */ - INFO( - "current iteration time = %f, current iteration energy = %f\n", - current_iteration_time, current_iteration_energy); + INFO("current iteration time = %f, current iteration energy = %f\n", + current_iteration_time, current_iteration_energy); INFO("target speedup = %lf\n\n", target_speedup); // Note the end of iteration RC->end_iteration(); } -extern "C" void llvm_hpvm_invokeRtControl_ADJUST_PR( - void *result, const char *str, int start, int end) { +extern "C" void llvm_hpvm_invokeRtControl_ADJUST_PR(void *result, + const char *str, int start, + int end) { uint32_t *labels_cached = hpvm_rt_readLabelsBatch_cached(str, start, end); hpvm_rt_computeAccuracy3(labels_cached, result); @@ -1610,17 +1582,17 @@ extern "C" void llvm_hpvm_invokeRtControl_ADJUST_PR( RC->addToCurrentIterationConfigEnergy(pinfo2.second); //* */ - INFO( - "current iteration time = %f, current iteration energy = %f\n", - current_iteration_time, current_iteration_energy); + INFO("current iteration time = %f, current iteration energy = %f\n", + current_iteration_time, current_iteration_energy); INFO("target speedup = %lf\n\n", target_speedup); // Note the end of iteration RC->end_iteration(); } -extern "C" void llvm_hpvm_invokeRtControl_SLOWDOWN( - void *result, const char *str, int start, int end) { +extern "C" void llvm_hpvm_invokeRtControl_SLOWDOWN(void *result, + const char *str, int start, + int end) { uint32_t *labels_cached = hpvm_rt_readLabelsBatch_cached(str, start, end); hpvm_rt_computeAccuracy3(labels_cached, result); @@ -1647,21 +1619,20 @@ extern "C" void llvm_hpvm_invokeRtControl_SLOWDOWN( float next_conf_speedup = RC->getSpeedupConfigurations()[RC->getConfigurationIdx()]->speedup; - INFO( - "current iteration time = %f, current iteration energy = %f\n", - current_iteration_time, current_iteration_energy); + INFO("current iteration time = %f, current iteration energy = %f\n", + current_iteration_time, current_iteration_energy); INFO("slowdown (target speedup) = %f\n", slowdown); INFO("Previous configuration: %s\n", prev_conf_name.c_str()); - INFO( - "Swapping to next configuration: %s with speedup %f\n\n", - next_conf_name.c_str(), next_conf_speedup); + INFO("Swapping to next configuration: %s with speedup %f\n\n", + next_conf_name.c_str(), next_conf_speedup); // Note the end of iteration RC->end_iteration(); } -extern "C" void llvm_hpvm_invokeRtControl_SLOWDOWN_PR( - void *result, const char *str, int start, int end) { +extern "C" void llvm_hpvm_invokeRtControl_SLOWDOWN_PR(void *result, + const char *str, + int start, int end) { uint32_t *labels_cached = hpvm_rt_readLabelsBatch_cached(str, start, end); hpvm_rt_computeAccuracy3(labels_cached, result); @@ -1689,21 +1660,19 @@ extern "C" void llvm_hpvm_invokeRtControl_SLOWDOWN_PR( float next_conf_speedup = RC->getSpeedupConfigurations()[RC->getConfigurationIdx()]->speedup; - INFO( - "current iteration time = %f, current iteration energy = %f\n", - current_iteration_time, current_iteration_energy); + INFO("current iteration time = %f, current iteration energy = %f\n", + current_iteration_time, current_iteration_energy); INFO("slowdown (target speedup) = %f\n", slowdown); INFO("Previous configuration: %s\n", prev_conf_name.c_str()); - INFO( - "Swapping to next configuration: %s with speedup %f\n\n", - next_conf_name.c_str(), next_conf_speedup); + INFO("Swapping to next configuration: %s with speedup %f\n\n", + next_conf_name.c_str(), next_conf_speedup); // Note the end of iteration RC->end_iteration(); } -extern "C" void llvm_hpvm_invokeRtControl_RAND( - void *result, const char *str, int start, int end) { +extern "C" void llvm_hpvm_invokeRtControl_RAND(void *result, const char *str, + int start, int end) { uint32_t *labels_cached = hpvm_rt_readLabelsBatch_cached(str, start, end); hpvm_rt_computeAccuracy3(labels_cached, result); @@ -1721,9 +1690,8 @@ extern "C" void llvm_hpvm_invokeRtControl_RAND( RC->addToCurrentIterationControlTime(pinfo.first); RC->addToCurrentIterationControlEnergy(pinfo.second); - INFO( - "current iteration time = %f, current iteration energy = %f\n\n", - current_iteration_time, current_iteration_energy); + INFO("current iteration time = %f, current iteration energy = %f\n\n", + current_iteration_time, current_iteration_energy); // Note the end of iteration RC->end_iteration(); @@ -1734,12 +1702,13 @@ static void writeVectorToFile(const char *path, const std::vector<T> &vec) { std::ofstream of(path, std::ofstream::out | std::ofstream::app); if (!of.good()) ERROR("Cannot write to %s file", path); - for (float f: vec) + for (float f : vec) of << f << ' '; of << '\n'; } -extern "C" void llvm_hpvm_imgInvokeRtControl(void* result, void *gold, int start, int end) { +extern "C" void llvm_hpvm_imgInvokeRtControl(void *result, void *gold, + int start, int end) { RC->resume_profiler(); if (gold != nullptr) { diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/img_tensor_utils.cpp b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/img_tensor_utils.cpp index 38ba3d4683cb60483d4ec5d56f8c21f8fd50a7fa..b4e9e3fea8a2f0638267f6386698d5434a6b91fc 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/img_tensor_utils.cpp +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/img_tensor_utils.cpp @@ -66,8 +66,8 @@ static Tensor *to_nhwc(Tensor *t) { for (int c0 = 0; c0 < c; c0++) { size_t nc = n0 * c + c0, nch = nc * h + h0, nchw_idx = nch * w + w0, nchw_offset = nchw_idx * element_size; - std::memcpy( - out_data + nhwc_offset, in_data + nchw_offset, element_size); + std::memcpy(out_data + nhwc_offset, in_data + nchw_offset, + element_size); nhwc_offset += element_size; } return out_tensor; @@ -96,8 +96,8 @@ static Tensor *to_nchw(Tensor *t) { for (int w0 = 0; w0 < w; w0++) { size_t nh = n0 * h + h0, nhw = nh * w + w0, nhwc_idx = nhw * c + c0, nhwc_offset = nhwc_idx * element_size; - std::memcpy( - out_data + nchw_offset, in_data + nhwc_offset, element_size); + std::memcpy(out_data + nchw_offset, in_data + nhwc_offset, + element_size); nchw_offset += element_size; } return out_tensor; @@ -116,8 +116,8 @@ static inline std::vector<std::string> listFiles(const std::string &folder) { // return in[start:start+count] template <typename T> -std::vector<T> -sliceVector(const std::vector<T> &in, size_t start, size_t count) { +std::vector<T> sliceVector(const std::vector<T> &in, size_t start, + size_t count) { auto slice_begin = in.begin() + start; if (slice_begin > in.end()) slice_begin = in.end(); @@ -128,8 +128,8 @@ sliceVector(const std::vector<T> &in, size_t start, size_t count) { } // Read an image dataset from a folder with each image as a file. -Tensor * -readDataSet(const char *path, size_t start, size_t count, size_t n_color) { +Tensor *readDataSet(const char *path, size_t start, size_t count, + size_t n_color) { INFO("Loading image dataset from path %s\n", path); std::vector<std::string> filenames = sliceVector(listFiles(path), start, count); @@ -141,10 +141,10 @@ readDataSet(const char *path, size_t start, size_t count, size_t n_color) { auto *first_image = (Tensor *)loadAsImage(filenames[0].c_str(), n_color); std::vector<size_t> sizes = ::sizes(first_image); size_t h = sizes[2], w = sizes[3]; - DEBUG( - "Loading shape: (%lu, %lu, %lu, %lu)\n", filenames.size(), n_color, h, w); - auto *batch = (Tensor *)create4DTensor( - CUDNN_DATA_FLOAT, CUDNN_TENSOR_NHWC, filenames.size(), h, w, n_color); + DEBUG("Loading shape: (%lu, %lu, %lu, %lu)\n", filenames.size(), n_color, h, + w); + auto *batch = (Tensor *)create4DTensor(CUDNN_DATA_FLOAT, CUDNN_TENSOR_NHWC, + filenames.size(), h, w, n_color); size_t n_floats = n_color * h * w; auto *base_data = (float *)batch->host_data; for (const auto &path : filenames) { @@ -181,8 +181,8 @@ static Tensor *complexToFloat(Tensor *batch) { } size_t *dims = batch->dims.dim_sizes; - auto *ret = (Tensor *)create4DTensor( - float_type, batch->data_format, dims[0], dims[1], dims[2], dims[3]); + auto *ret = (Tensor *)create4DTensor(float_type, batch->data_format, dims[0], + dims[1], dims[2], dims[3]); auto *out_data = (float *)ret->host_data; for (size_t i = 0; i < magnitudes.size(); i++) { float f = magnitudes[i]; @@ -192,8 +192,8 @@ static Tensor *complexToFloat(Tensor *batch) { } // Save an image tensor image-by-image to a folder. -void saveDataSet( - const char *path, Tensor *batch, size_t start_idx, size_t write_n) { +void saveDataSet(const char *path, Tensor *batch, size_t start_idx, + size_t write_n) { INFO("Saving image dataset to path %s\n", path); Tensor *float_batch = batch; if (batch->data_type == float2_type || batch->data_type == half2_type) @@ -268,8 +268,8 @@ void saveToImage(const char *filename, Tensor *tensor) { } // Make a conv2d filter from 2-dim data. -void *createFilterFromData( - int data_type, void *data, size_t w, size_t h, size_t n_chan) { +void *createFilterFromData(int data_type, void *data, size_t w, size_t h, + size_t n_chan) { DEBUG("Creating filter from data\n"); auto *tensor = (Tensor *)create4DTensor(data_type, CUDNN_TENSOR_NCHW, n_chan, 1, h, w); @@ -312,8 +312,8 @@ float compute_variance(float *arr, int left, int right, float mean) { return sum / (right - left - 1); } -float compute_covariance( - float *x, float *y, int left, int right, float x_mean, float y_mean) { +float compute_covariance(float *x, float *y, int left, int right, float x_mean, + float y_mean) { float sum = 0; for (int i = left; i < right; i++) { sum += (x[i] - x_mean) * (y[i] - y_mean); @@ -394,8 +394,8 @@ std::vector<float> PSNR(void *gold_ptr, void *approx_ptr) { return std::vector<float>(float_data, float_data + batch_dim); } -float violationRate( - const std::vector<float> &values, float threshold, bool higher_better) { +float violationRate(const std::vector<float> &values, float threshold, + bool higher_better) { if (values.empty()) return 0.0f; size_t violation = 0; @@ -422,9 +422,9 @@ float mean(const std::vector<float> &values) { void *sliceTensorInBatch(void *whole, size_t start, size_t end) { auto *whole_tensor = (Tensor *)whole; size_t *dim_sizes = whole_tensor->dims.dim_sizes; - auto *output = (Tensor *)create4DTensor( - CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, end - start, dim_sizes[1], - dim_sizes[2], dim_sizes[3]); + auto *output = + (Tensor *)create4DTensor(CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, end - start, + dim_sizes[1], dim_sizes[2], dim_sizes[3]); size_t single_size = dim_sizes[1] * dim_sizes[2] * dim_sizes[3]; auto *in_data = (float *)(whole_tensor->host_data) + start * single_size; memcpy(output->host_data, in_data, (end - start) * single_size); @@ -440,6 +440,6 @@ void reshape(void *t, const std::vector<size_t> &shape) { free(tensor->dims.dim_sizes); tensor->dims.dim_sizes = (size_t *)malloc(sizeof(size_t) * shape.size()); std::copy(shape.begin(), shape.end(), tensor->dims.dim_sizes); - set4DTensorDescriptor( - tensor, tensor->data_format, shape[0], shape[1], shape[2], shape[3]); + set4DTensorDescriptor(tensor, tensor->data_format, shape[0], shape[1], + shape[2], shape[3]); } diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/init_api.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/init_api.cc index b311f50f99bf6ffc8ec508300d3e92bd9b314796..284a75c444f54a0f3aa3412c8cd177d4ebad4e2e 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/init_api.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/init_api.cc @@ -1,36 +1,36 @@ -#include <stdio.h> -#include <stdarg.h> #include <cstdio> #include <cstdlib> +#include <cublas_v2.h> +// Must come after cublas_v2.h +#include <cublas_api.h> +#include <cuda_fp16.h> +#include <cuda_runtime.h> +#include <cudnn.h> #include <iostream> #include <map> #include <sstream> +#include <stdarg.h> +#include <stdio.h> #include <string> -#include <cuda_runtime.h> -#include <cublas_v2.h> -#include <cudnn.h> -#include <cublas_api.h> -#include <cuda_fp16.h> // Tensor runtime header files -#include "tensor_runtime.h" -#include "tensor_utils.h" +#include "approx_simulation.h" #include "debug.h" -#include "profiling.h" -#include "global_data.h" #include "error.h" -#include "tensor.h" -#include "op_overheads.h" -#include "approx_simulation.h" +#include "global_data.h" #include "init_api.h" +#include "op_overheads.h" +#include "profiling.h" +#include "tensor.h" +#include "tensor_runtime.h" +#include "tensor_utils.h" +void llvm_hpvm_initTensorRt(int gpuid) { -void llvm_hpvm_initTensorRt(int gpuid){ + if (!runtime_initialized) { - if(!runtime_initialized){ - printf("INITIALIZING GPU %d \n", gpuid); // NOTE: Setting the target GPU. Can we use multiple GPUs? checkCudaErrors(cudaSetDevice(gpuid)); @@ -40,10 +40,9 @@ void llvm_hpvm_initTensorRt(int gpuid){ printf("CREATED HANDLES %d \n", gpuid); - #ifdef PROMISE_TUNER_ENABLED // readOpenTunerFlags("opentuner_flags"); - + readOpenTunerFlags("promise_flags"); initializeAutotuner(); @@ -51,67 +50,52 @@ void llvm_hpvm_initTensorRt(int gpuid){ #endif - #ifdef ERROR_INJECTION_ENABLED readOpenTunerFlags("opentuner_flags"); #endif - runtime_initialized = true; } printf("DONE INTIALIZING GPU %d \n", gpuid); - } - -void llvm_hpvm_cleanupTensorRt(){ +void llvm_hpvm_cleanupTensorRt() { DEBUG("**** llvm_hpvm_cleanupTensorRt ***\n"); dumpAccuracyNorms(); } - -void llvm_hpvm_initApproxhpvmRt(int gpuid){ +void llvm_hpvm_initApproxhpvmRt(int gpuid) { llvm_hpvm_initTensorRt(gpuid); approxhpvm_runtime_mode = true; } -void llvm_hpvm_cleanupApproxhpvmRt(){ - -} - +void llvm_hpvm_cleanupApproxhpvmRt() {} +void dumpAccuracyNorms() { -void dumpAccuracyNorms(){ +#ifdef ERROR_INJECTION_ENABLED - #ifdef ERROR_INJECTION_ENABLED - - - #endif +#endif dump_result("accuracy_summary"); - } - // Returns the number of GPUs active on the platform -unsigned int getGPUCount(){ +unsigned int getGPUCount() { int num_gpus; checkCudaErrors(cudaGetDeviceCount(&num_gpus)); return num_gpus; } - - -void clearTensorMap(){ +void clearTensorMap() { tensors_ptr.clear(); host_ptr.clear(); obj_ptr.clear(); tracked_tensors.clear(); } - -void startMemTracking(){ +void startMemTracking() { tensors_ptr.clear(); host_ptr.clear(); obj_ptr.clear(); @@ -119,33 +103,28 @@ void startMemTracking(){ tracked_tensors.clear(); } - -void freeOutputTensors(){ +void freeOutputTensors() { DEBUG("**** Freeing Ouput Tensors *** \n"); - for (void *ptr: tensors_ptr) + for (void *ptr : tensors_ptr) cudaFree(ptr); - for(void *ptr: host_ptr) + for (void *ptr : host_ptr) free(ptr); - - for(void *ptr: obj_ptr) + + for (void *ptr : obj_ptr) free(ptr); - + clearTensorMap(); } - - -void clearOpCounter(){ +void clearOpCounter() { total_ops = 0; op_counter = 0; op_accuracies.clear(); } - - -void freeBatchMemory(){ +void freeBatchMemory() { // Free allocated memory for the current mini-batch freeOutputTensors(); // Reinitialize couter for OpenTuner flags - next mini-batch of execution @@ -153,5 +132,3 @@ void freeBatchMemory(){ // Clearing profiling data map func_counters.clear(); } - - diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/op_overheads.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/op_overheads.cc index ed827de49594520096b0b423ea96f82fdeaaef3d..40418dd74a400f748b7877258912222e7005a372 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/op_overheads.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/op_overheads.cc @@ -3,113 +3,105 @@ #ifndef OP_OVERHEADS_HEADER #define OP_OVERHEADS_HEADER - -#include <math.h> -#include <sstream> -#include "tensor.h" #include "op_overheads.h" #include "debug.h" +#include "tensor.h" +#include <math.h> +#include <sstream> float scale_down_factor = 10000.0; std::string result_str = ""; +extern "C" { -extern "C"{ - -static float scaleDownComps(double total_comps){ +static float scaleDownComps(double total_comps) { total_comps = total_comps / scale_down_factor; return total_comps; } // private function -static float getScaledComps(double total_comps, int error_scale, int factor_type){ +static float getScaledComps(double total_comps, int error_scale, + int factor_type) { double scaled_comps; - + // Logarithmic error factor scaling - higher error, lower cost - if(factor_type == 1){ - float error_factor = log2((float) error_scale + 3); + if (factor_type == 1) { + float error_factor = log2((float)error_scale + 3); scaled_comps = total_comps / error_factor; } // Linear error factor scaling - if(factor_type == 2){ - scaled_comps = total_comps / (error_scale + 1); + if (factor_type == 2) { + scaled_comps = total_comps / (error_scale + 1); } // Quadratic error factor scaling (scaling down) - if(factor_type == 3){ + if (factor_type == 3) { error_scale = (error_scale + 1) * (error_scale + 1); - scaled_comps = total_comps / error_scale; + scaled_comps = total_comps / error_scale; } - return scaled_comps; } - -static void addNormToResult(float comps){ +static void addNormToResult(float comps) { std::ostringstream ss; ss << std::fixed << comps; - - result_str.append( std::string(ss.str()) ); + + result_str.append(std::string(ss.str())); result_str.append("\t"); } - - -static void addCompsToResult(float total_comps, - float opt_comps1, - float opt_comps2, - float opt_comps3){ +static void addCompsToResult(float total_comps, float opt_comps1, + float opt_comps2, float opt_comps3) { std::ostringstream ss; ss << std::fixed << total_comps; - result_str.append( std::string(ss.str()) ); + result_str.append(std::string(ss.str())); result_str.append("\t"); std::ostringstream ss2; - ss2 << std::fixed << opt_comps1; - result_str.append( std::string(ss2.str()) ); + ss2 << std::fixed << opt_comps1; + result_str.append(std::string(ss2.str())); result_str.append("\t"); - + std::ostringstream ss3; ss3 << std::fixed << opt_comps2; - result_str.append( std::string(ss3.str()) ); + result_str.append(std::string(ss3.str())); result_str.append("\t"); std::ostringstream ss4; ss4 << std::fixed << opt_comps3; - result_str.append( std::string(ss4.str()) ); + result_str.append(std::string(ss4.str())); result_str.append("\n"); } - -void dumpCompOverheads(double total_comps, int error_scale){ +void dumpCompOverheads(double total_comps, int error_scale) { total_comps = scaleDownComps(total_comps); - - float scaled_comps1 = getScaledComps(total_comps, error_scale, 1); // Log scaling - float scaled_comps2 = getScaledComps(total_comps, error_scale, 2); // Linear scaling - float scaled_comps3 = getScaledComps(total_comps, error_scale, 3); // Quadratic scaling - - //INFO("error_scale = %d, total_comps = %f, scaled_comps = %f \n", - // error_scale, total_comps, scaled_comps1); - addCompsToResult(total_comps, scaled_comps1, scaled_comps2, scaled_comps3); -} + float scaled_comps1 = + getScaledComps(total_comps, error_scale, 1); // Log scaling + float scaled_comps2 = + getScaledComps(total_comps, error_scale, 2); // Linear scaling + float scaled_comps3 = + getScaledComps(total_comps, error_scale, 3); // Quadratic scaling + // INFO("error_scale = %d, total_comps = %f, scaled_comps = %f \n", + // error_scale, total_comps, scaled_comps1); + addCompsToResult(total_comps, scaled_comps1, scaled_comps2, scaled_comps3); +} -void add_conv_overheads(void* input_ptr, void* filter_ptr, - int vertical_stride, int horizontal_stride, - int error_scale){ +void add_conv_overheads(void *input_ptr, void *filter_ptr, int vertical_stride, + int horizontal_stride, int error_scale) { - Tensor* input = (Tensor*) input_ptr; - Tensor* filter = (Tensor*) filter_ptr; + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; double kernel_comps = filter->dims.dim_sizes[0] * filter->dims.dim_sizes[1] * - filter->dims.dim_sizes[2] * filter->dims.dim_sizes[3]; + filter->dims.dim_sizes[2] * filter->dims.dim_sizes[3]; double H_in = input->dims.dim_sizes[2] / vertical_stride; double W_in = input->dims.dim_sizes[3] / horizontal_stride; @@ -118,31 +110,29 @@ void add_conv_overheads(void* input_ptr, void* filter_ptr, double total_comps = N_in * H_in * W_in * kernel_comps; dumpCompOverheads(total_comps, error_scale); - } +void add_gemm_overheads(void *lhs_ptr, void *rhs_ptr, int error_scale) { -void add_gemm_overheads(void* lhs_ptr, void* rhs_ptr, int error_scale){ + Tensor *lhs = (Tensor *)lhs_ptr; + Tensor *rhs = (Tensor *)rhs_ptr; - Tensor* lhs = (Tensor*) lhs_ptr; - Tensor* rhs = (Tensor*) rhs_ptr; - int m = lhs->dims.dim_sizes[0]; // The rhs last dimension must contain the neurons - int n = rhs->dims.dim_sizes[rhs->dims.num_dims-1]; // output neurons + int n = rhs->dims.dim_sizes[rhs->dims.num_dims - 1]; // output neurons int k = 1; - + // Flattening the dimensions after the batch dimension - for (int j = 1 ; j < lhs->dims.num_dims; j++){ + for (int j = 1; j < lhs->dims.num_dims; j++) { k = k * lhs->dims.dim_sizes[j]; // input neurons } - int rhs_k = rhs->dims.dim_sizes[rhs->dims.num_dims-2]; + int rhs_k = rhs->dims.dim_sizes[rhs->dims.num_dims - 2]; // Dimension-note: Check if k is same across the two tensors - - //printf("m = %d, n = %d, k = %d \n", m, n, k); - - if(rhs_k != k){ + + // printf("m = %d, n = %d, k = %d \n", m, n, k); + + if (rhs_k != k) { printf("rhs=%d and lhs=%d columns/rows don't match", rhs_k, k); abort(); } @@ -150,40 +140,35 @@ void add_gemm_overheads(void* lhs_ptr, void* rhs_ptr, int error_scale){ double m_d = m; double n_d = n; double rhs_k_d = rhs_k; - + double total_comps = m_d * n_d * rhs_k_d * 1.0; dumpCompOverheads(total_comps, error_scale); - } +void add_bias_overheads(void *input_ptr, int error_scale) { -void add_bias_overheads(void* input_ptr, int error_scale){ - - Tensor* input = (Tensor*) input_ptr; + Tensor *input = (Tensor *)input_ptr; double total_comps = input->num_elems; dumpCompOverheads(total_comps, error_scale); - } +void add_relu_overheads(void *input_ptr, int error_scale) { -void add_relu_overheads(void* input_ptr, int error_scale){ - - Tensor* input = (Tensor*) input_ptr; + Tensor *input = (Tensor *)input_ptr; double total_comps = input->num_elems; dumpCompOverheads(total_comps, error_scale); } +void add_pool_overheads(void *input_ptr, int kernel_size, int stride_size, + int error_scale) { -void add_pool_overheads(void* input_ptr, int kernel_size, - int stride_size, int error_scale){ + Tensor *input = (Tensor *)input_ptr; - Tensor* input = (Tensor*) input_ptr; - int num_dims = input->dims.num_dims; - double H = input->dims.dim_sizes[num_dims-2]; - double W = input->dims.dim_sizes[num_dims-1]; + double H = input->dims.dim_sizes[num_dims - 2]; + double W = input->dims.dim_sizes[num_dims - 1]; double C = input->dims.dim_sizes[1]; // channel dimension double N = input->dims.dim_sizes[0]; // batch dimension @@ -193,50 +178,42 @@ void add_pool_overheads(void* input_ptr, int kernel_size, double total_comps = N * C * H * W * kernel_size * kernel_size; dumpCompOverheads(total_comps, error_scale); - } - -void add_norms(void* norms_ptr, char* op_name, int error_value){ +void add_norms(void *norms_ptr, char *op_name, int error_value) { // Print operation name - {tensorAdd, tensorPool, tensorGemm} result_str.append(op_name); result_str.append("\t"); - + addNormToResult(error_value); - - Norm_t* norms = (Norm_t*) norms_ptr; + + Norm_t *norms = (Norm_t *)norms_ptr; addNormToResult(norms->mean_l1); addNormToResult(norms->mean_l2); addNormToResult(norms->orig_inf_norm); - + addNormToResult(norms->l1_norm); addNormToResult(norms->l2_norm); addNormToResult(norms->inf_norm); } +void dump_result(const char *file_name) { -void dump_result(const char* file_name){ + // printf ("DUMPING RESULT = %s \n", result_str.c_str()); + // printf ("-- file name = %s \n", file_name); - //printf ("DUMPING RESULT = %s \n", result_str.c_str()); - //printf ("-- file name = %s \n", file_name); - - FILE* fp = fopen(file_name, "w+"); - if(fp != NULL){ + FILE *fp = fopen(file_name, "w+"); + if (fp != NULL) { fwrite(result_str.c_str(), 1, result_str.length(), fp); fclose(fp); - } - else{ + } else { ERROR("Could not create file \n"); } - - result_str = ""; + result_str = ""; } - - } - #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/profiling.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/profiling.cc index 70ae14ca82fcf4627b8f49a573b76bb407c91718..18ebcfe4ef7e532e4657303baef6ea585b402a18 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/profiling.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/profiling.cc @@ -2,95 +2,90 @@ #ifndef PROFILING_HEADER #define PROFILING_HEADER - - -#include <stdio.h> -#include <stdarg.h> -#include <ctime> #include <chrono> +#include <ctime> +#include <cuda_runtime.h> #include <iostream> #include <map> #include <memory> #include <random> +#include <stdarg.h> +#include <stdio.h> #include <string> #include <unordered_map> -#include <cuda_runtime.h> -#include "global_data.h" #include "debug.h" - +#include "global_data.h" /***** Profiling routines ***/ - std::chrono::time_point<std::chrono::high_resolution_clock> start_time; // previous_time maintains time for the latest timed operation std::chrono::time_point<std::chrono::high_resolution_clock> previous_time; -extern "C"{ +extern "C" { - void startProfiling(){ - start_time = std::chrono::high_resolution_clock::now(); - } +void startProfiling() { + start_time = std::chrono::high_resolution_clock::now(); +} + +void stopProfiling() { - void stopProfiling(){ - - FILE* fp = fopen("profile_data.txt", "w+"); - if(fp != NULL){ - fwrite(profile_data.c_str(), 1, profile_data.length(), fp); - fclose(fp); - } - - profile_data = ""; - func_counters.clear(); + FILE *fp = fopen("profile_data.txt", "w+"); + if (fp != NULL) { + fwrite(profile_data.c_str(), 1, profile_data.length(), fp); + fclose(fp); } + profile_data = ""; + func_counters.clear(); +} - void profileEvent(const char* event_name, bool compare_previous = false){ +void profileEvent(const char *event_name, bool compare_previous = false) { - checkCudaErrors(cudaDeviceSynchronize()); + checkCudaErrors(cudaDeviceSynchronize()); - auto it = func_counters.find(event_name); - if(it == func_counters.end()){ - func_counters[event_name] = 1; - } - else{ - int counter = func_counters[event_name]; - counter++; - func_counters[event_name] = counter; - } + auto it = func_counters.find(event_name); + if (it == func_counters.end()) { + func_counters[event_name] = 1; + } else { + int counter = func_counters[event_name]; + counter++; + func_counters[event_name] = counter; + } - std::stringstream ss; - ss << func_counters[event_name]; - std::string event_count = ss.str(); + std::stringstream ss; + ss << func_counters[event_name]; + std::string event_count = ss.str(); - - std::chrono::time_point<std::chrono::high_resolution_clock> zero_time; - std::chrono::time_point<std::chrono::high_resolution_clock> time_reading = + std::chrono::time_point<std::chrono::high_resolution_clock> zero_time; + std::chrono::time_point<std::chrono::high_resolution_clock> time_reading = std::chrono::high_resolution_clock::now(); - std::chrono::duration<double, std::ratio<1>> current_time = + std::chrono::duration<double, std::ratio<1>> current_time = time_reading - zero_time; - - INFO("AbsoluteTime, Event = %s, Time = %f \n", event_name, current_time.count()); - profile_data.append(event_name); - profile_data.append(event_count); + + INFO("AbsoluteTime, Event = %s, Time = %f \n", event_name, + current_time.count()); + profile_data.append(event_name); + profile_data.append(event_count); + profile_data.append("\t"); + profile_data.append(std::to_string(current_time.count())); + + if (compare_previous) { + std::chrono::duration<double, std::ratio<1>> duration_time = + time_reading - previous_time; + profile_data.append("\t"); - profile_data.append(std::to_string(current_time.count())); - - if(compare_previous){ - std::chrono::duration<double, std::ratio<1>> duration_time = - time_reading - previous_time; - - profile_data.append("\t"); - profile_data.append(std::to_string(duration_time.count())); - INFO("TimeDuration, Event = %s, Time = %f \n", event_name, duration_time.count()); - } - - profile_data.append("\n"); - - previous_time = time_reading; // set the previous time reading to the current profiled time + profile_data.append(std::to_string(duration_time.count())); + INFO("TimeDuration, Event = %s, Time = %f \n", event_name, + duration_time.count()); } + profile_data.append("\n"); + + previous_time = time_reading; // set the previous time reading to the current + // profiled time +} } #endif diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/tensor_cpu_runtime.cc b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/tensor_cpu_runtime.cc index c629ca73b66111c5e5ad4cd67973d16cc13871df..98fd30ba9ee0ec7e0b81cfcaa9b3a699ec8e57b0 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/tensor_cpu_runtime.cc +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/src/tensor_cpu_runtime.cc @@ -1,10 +1,12 @@ -/* This file includes the API implementation of the HPVM tensor runtime built for CPU +/* This file includes the API implementation of the HPVM tensor runtime built +*for CPU ** ** Author: Hashim Sharif ** Email: hsharif3@illinois.edu */ #include <algorithm> +#include <bits/stdc++.h> #include <cfloat> #include <cmath> #include <cstdio> @@ -14,1101 +16,1152 @@ #include <iostream> #include <limits> #include <map> -#include <cmath> +#include <math.h> #include <memory> -#include <vector> +#include <omp.h> +#include <pthread.h> #include <sstream> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string> #include <vector> -#include <math.h> -#include<bits/stdc++.h> -#include <pthread.h> -#include <omp.h> // Tensor runtime header files #include "tensor_cpu.h" #include "tensor_cpu_runtime.h" void llvm_hpvm_initTensorRt(int) { - // NOTE: Do Nothing + // NOTE: Do Nothing } void llvm_hpvm_cleanupTensorRt() { - // NOTE: Do Nothing + // NOTE: Do Nothing } void hpvm_request_tensor(void *tensor, int destination) { - // NOTE: Do Nothing + // NOTE: Do Nothing } - + std::vector<void *> PtrVect; void freeBatchMemory() { - for(auto it = PtrVect.rbegin(); it != PtrVect.rend(); it++) { - free(*it); - } - PtrVect.erase(PtrVect.begin(), PtrVect.end()); + for (auto it = PtrVect.rbegin(); it != PtrVect.rend(); it++) { + free(*it); + } + PtrVect.erase(PtrVect.begin(), PtrVect.end()); } inline int getTypeSize(int data_type) { - return (data_type == 0) ? 4 : ((data_type == 1) ? 2 : 1); + return (data_type == 0) ? 4 : ((data_type == 1) ? 2 : 1); } -void setSizeInBytes(struct Tensor *tensor, int data_type, size_t num_elems) __attribute__((always_inline)); -inline void setSizeInBytes(struct Tensor *tensor, int data_type, size_t num_elems) { - int type_size = getTypeSize(data_type); - size_t size_in_bytes = type_size * num_elems; - tensor->size_in_bytes = size_in_bytes; +void setSizeInBytes(struct Tensor *tensor, int data_type, size_t num_elems) + __attribute__((always_inline)); +inline void setSizeInBytes(struct Tensor *tensor, int data_type, + size_t num_elems) { + int type_size = getTypeSize(data_type); + size_t size_in_bytes = type_size * num_elems; + tensor->size_in_bytes = size_in_bytes; } -void allocateMemCPU(struct Tensor *tensor, int data_type, - size_t num_elems, bool freeMemory = true) __attribute__((always_inline)); -inline void allocateMemCPU(struct Tensor *tensor, int data_type, size_t num_elems, bool freeMemory) { - setSizeInBytes(tensor, data_type, num_elems); - tensor->data_type = data_type; - tensor->num_elems = num_elems; - tensor->host_data = (void *)malloc(tensor->size_in_bytes); // Allocate memory on the host - if(freeMemory) - PtrVect.push_back(tensor->host_data); +void allocateMemCPU(struct Tensor *tensor, int data_type, size_t num_elems, + bool freeMemory = true) __attribute__((always_inline)); +inline void allocateMemCPU(struct Tensor *tensor, int data_type, + size_t num_elems, bool freeMemory) { + setSizeInBytes(tensor, data_type, num_elems); + tensor->data_type = data_type; + tensor->num_elems = num_elems; + tensor->host_data = + (void *)malloc(tensor->size_in_bytes); // Allocate memory on the host + if (freeMemory) + PtrVect.push_back(tensor->host_data); } void initTensorData(void *tensor_ptr, void *data_ptr, size_t size_in_bytes) { - Tensor *tensor = (Tensor *)tensor_ptr; - if (tensor->size_in_bytes != size_in_bytes) { - printf("The destination and source sizes don't match"); - } - memcpy(tensor->host_data, data_ptr, size_in_bytes); // Is this efficient enough? + Tensor *tensor = (Tensor *)tensor_ptr; + if (tensor->size_in_bytes != size_in_bytes) { + printf("The destination and source sizes don't match"); + } + memcpy(tensor->host_data, data_ptr, + size_in_bytes); // Is this efficient enough? } - -//void *create4DTensor(int data_type, int data_format, size_t dim1_size, - // size_t dim2_size, size_t dim3_size, size_t dim4_size, - //bool freeMemory = true) __attribute__((always_inline)); -inline void *create4DTensor(int data_type, int data_format, size_t dim1_size, - size_t dim2_size, size_t dim3_size, - size_t dim4_size, bool freeMemory) { - struct Tensor *tensor = (struct Tensor *)malloc(sizeof(Tensor)); - size_t num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - if(freeMemory) - PtrVect.push_back(tensor); - allocateMemCPU(tensor, data_type, num_elems, freeMemory); - - // Setting the tensor dimensions - size_t *dim_sizes = (size_t *)malloc(sizeof(size_t) * 4); - dim_sizes[0] = dim1_size; - dim_sizes[1] = dim2_size; - dim_sizes[2] = dim3_size; - dim_sizes[3] = dim4_size; - tensor->dims.dim_sizes = dim_sizes; - tensor->dims.num_dims = 4; - - return tensor; +// void *create4DTensor(int data_type, int data_format, size_t dim1_size, +// size_t dim2_size, size_t dim3_size, size_t dim4_size, +// bool freeMemory = true) __attribute__((always_inline)); +inline void *create4DTensor(int data_type, int data_format, size_t dim1_size, + size_t dim2_size, size_t dim3_size, + size_t dim4_size, bool freeMemory) { + struct Tensor *tensor = (struct Tensor *)malloc(sizeof(Tensor)); + size_t num_elems = dim1_size * dim2_size * dim3_size * dim4_size; + if (freeMemory) + PtrVect.push_back(tensor); + allocateMemCPU(tensor, data_type, num_elems, freeMemory); + + // Setting the tensor dimensions + size_t *dim_sizes = (size_t *)malloc(sizeof(size_t) * 4); + dim_sizes[0] = dim1_size; + dim_sizes[1] = dim2_size; + dim_sizes[2] = dim3_size; + dim_sizes[3] = dim4_size; + tensor->dims.dim_sizes = dim_sizes; + tensor->dims.num_dims = 4; + + return tensor; } -void* tensorRegularConvolutionCPU(void *input_ptr, void *filter_ptr, int vertical_pad, - int horizontal_pad, int vertical_stride, - int horizontal_stride, int conv_mode, - int compute_precision) { - Tensor *input = (Tensor *)input_ptr; - Tensor *filter = (Tensor *)filter_ptr; - - float * __restrict__ host_image = (float *)input->host_data; - float * __restrict__ host_filter = (float *)filter->host_data; - - int batch_size = input->dims.dim_sizes[0]; - int channels = input->dims.dim_sizes[1]; - int image_height = input->dims.dim_sizes[2]; - int image_width = input->dims.dim_sizes[3]; - int num_filters = filter->dims.dim_sizes[0]; - int kernel_height = filter->dims.dim_sizes[2]; - int kernel_width = filter->dims.dim_sizes[3]; - int output_height = - 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); - int output_width = - 1 + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); - int num_filter_elem = kernel_height * kernel_width * channels; - int output_size = output_width * output_height; - - Tensor *output = (Tensor *) create4DTensor(0, 0, batch_size, num_filters, - output_height, output_width); - float * __restrict__ output_data = (float *)output->host_data; - - long int conv_data_size = - sizeof(float) * num_filter_elem * output_height * output_width * batch_size; - float *host_data = (float *) malloc(conv_data_size); - //printf("number of batches: %d\n", batch_size); - omp_set_num_threads(4); - #pragma omp parallel for - for(int b = 0; b < batch_size; b++) { - for(int ch = 0; ch < channels; ch++) { - for(int h = 0; h < output_height; h++) { - for(int w = 0; w < output_width; w++) { - const int inH = h * vertical_stride - vertical_pad; - const int inW = w * horizontal_stride - horizontal_pad; - for(int i = 0; i < kernel_height; i++) { - for(int j = 0; j < kernel_width; j++) { - const int filter_elem_num = (ch * kernel_height + i) * kernel_width + j; - const int output_index = h * output_width + w; - const int out_index = b * num_filter_elem * output_size - + output_index * num_filter_elem + filter_elem_num; - if(inH + i >= 0 && inH + i < image_height - && inW + j >= 0 && inW + j < image_width) { - host_data[out_index] = - host_image[((b * channels + ch) * image_height - + (inH + i)) * image_width + (inW + j)]; - } else { - host_data[out_index] = 0; - } - } - } - } +void *tensorRegularConvolutionCPU(void *input_ptr, void *filter_ptr, + int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, + int conv_mode, int compute_precision) { + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + + float *__restrict__ host_image = (float *)input->host_data; + float *__restrict__ host_filter = (float *)filter->host_data; + + int batch_size = input->dims.dim_sizes[0]; + int channels = input->dims.dim_sizes[1]; + int image_height = input->dims.dim_sizes[2]; + int image_width = input->dims.dim_sizes[3]; + int num_filters = filter->dims.dim_sizes[0]; + int kernel_height = filter->dims.dim_sizes[2]; + int kernel_width = filter->dims.dim_sizes[3]; + int output_height = + 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); + int output_width = 1 + ((image_width - kernel_width + 2 * horizontal_pad) / + horizontal_stride); + int num_filter_elem = kernel_height * kernel_width * channels; + int output_size = output_width * output_height; + + Tensor *output = (Tensor *)create4DTensor(0, 0, batch_size, num_filters, + output_height, output_width); + float *__restrict__ output_data = (float *)output->host_data; + + long int conv_data_size = sizeof(float) * num_filter_elem * output_height * + output_width * batch_size; + float *host_data = (float *)malloc(conv_data_size); + // printf("number of batches: %d\n", batch_size); + omp_set_num_threads(4); +#pragma omp parallel for + for (int b = 0; b < batch_size; b++) { + for (int ch = 0; ch < channels; ch++) { + for (int h = 0; h < output_height; h++) { + for (int w = 0; w < output_width; w++) { + const int inH = h * vertical_stride - vertical_pad; + const int inW = w * horizontal_stride - horizontal_pad; + for (int i = 0; i < kernel_height; i++) { + for (int j = 0; j < kernel_width; j++) { + const int filter_elem_num = + (ch * kernel_height + i) * kernel_width + j; + const int output_index = h * output_width + w; + const int out_index = b * num_filter_elem * output_size + + output_index * num_filter_elem + + filter_elem_num; + if (inH + i >= 0 && inH + i < image_height && inW + j >= 0 && + inW + j < image_width) { + host_data[out_index] = + host_image[((b * channels + ch) * image_height + + (inH + i)) * + image_width + + (inW + j)]; + } else { + host_data[out_index] = 0; + } } + } } - for (int p = 0; p < num_filters; ++p) { - for (int m = 0; m < output_size; ++m) { - float sum = 0; - #pragma omp simd reduction(+:sum) - for (int k = 0; k < num_filter_elem; ++k) { - int input_index = k + num_filter_elem * m + b * num_filter_elem * output_size; - sum += host_data[input_index] * host_filter[p * num_filter_elem + k]; - } - output_data[b * (output_size * num_filters) + p * output_size + m] = sum; - } + } + } + for (int p = 0; p < num_filters; ++p) { + for (int m = 0; m < output_size; ++m) { + float sum = 0; +#pragma omp simd reduction(+ : sum) + for (int k = 0; k < num_filter_elem; ++k) { + int input_index = + k + num_filter_elem * m + b * num_filter_elem * output_size; + sum += host_data[input_index] * host_filter[p * num_filter_elem + k]; } + output_data[b * (output_size * num_filters) + p * output_size + m] = + sum; + } } - free(host_data); - printf("END: %p\n", output); - return output; + } + free(host_data); + printf("END: %p\n", output); + return output; } -void* tensorRegularFilterSamplingConvolutionCPU(void *input_ptr, void *filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int compute_precision, - int skip_every, int start) { - Tensor *input = (Tensor *)input_ptr; - Tensor *filter = (Tensor *)filter_ptr; - - float * __restrict__ host_image = (float *)input->host_data; - float * __restrict__ host_filter = (float *)filter->host_data; - - const int batch_size = input->dims.dim_sizes[0]; - const int channels = input->dims.dim_sizes[1]; - const int image_height = input->dims.dim_sizes[2]; - const int image_width = input->dims.dim_sizes[3]; - const int num_filters = filter->dims.dim_sizes[0]; - const int kernel_height = filter->dims.dim_sizes[2]; - const int kernel_width = filter->dims.dim_sizes[3]; - const int output_height = - 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); - const int output_width = - 1 + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); - const int num_filter_elem = kernel_height * kernel_width * channels; - - const int remainder = ((num_filter_elem - start) % skip_every > 0); - const int reduced_num_filter_elem = - num_filter_elem - ((num_filter_elem - start) / skip_every) - remainder; - const int output_size = output_width * output_height; - - Tensor *output = (Tensor *) create4DTensor(0, 0, batch_size, num_filters, - output_height, output_width); - float * __restrict__ output_data = (float *)output->host_data; - - const long int host_data_size = sizeof(float) * reduced_num_filter_elem - * output_height * output_width * batch_size; - float *host_data = (float *) malloc(host_data_size); - - const int reduced_filer_size = sizeof(float) * num_filters * reduced_num_filter_elem; - float *reduced_kernels = (float *) malloc(reduced_filer_size); - - float fac = (((float) skip_every) / ((float) skip_every - 1)); - int reduced_filter_dim = reduced_num_filter_elem / channels; - - // Create reduced filter - omp_set_num_threads(4); - #pragma omp parallel for - for(int f = 0; f < num_filters; f++) { - for(int i = 0; i < reduced_num_filter_elem; i++) { - int ch = i / reduced_filter_dim; - int offset = (start + ch) % skip_every; - int in_index; - if(i < offset) { - in_index = i; - } else { - in_index = ((i - offset + 1) * skip_every) / (skip_every - 1) - + (((i - offset + 1) * skip_every) % (skip_every - 1) > 0) + offset -1; - } - reduced_kernels[f * reduced_num_filter_elem + i] = - fac * host_filter[num_filter_elem * f + in_index]; +void *tensorRegularFilterSamplingConvolutionCPU( + void *input_ptr, void *filter_ptr, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, int conv_mode, + int compute_precision, int skip_every, int start) { + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + + float *__restrict__ host_image = (float *)input->host_data; + float *__restrict__ host_filter = (float *)filter->host_data; + + const int batch_size = input->dims.dim_sizes[0]; + const int channels = input->dims.dim_sizes[1]; + const int image_height = input->dims.dim_sizes[2]; + const int image_width = input->dims.dim_sizes[3]; + const int num_filters = filter->dims.dim_sizes[0]; + const int kernel_height = filter->dims.dim_sizes[2]; + const int kernel_width = filter->dims.dim_sizes[3]; + const int output_height = + 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); + const int output_width = + 1 + + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); + const int num_filter_elem = kernel_height * kernel_width * channels; + + const int remainder = ((num_filter_elem - start) % skip_every > 0); + const int reduced_num_filter_elem = + num_filter_elem - ((num_filter_elem - start) / skip_every) - remainder; + const int output_size = output_width * output_height; + + Tensor *output = (Tensor *)create4DTensor(0, 0, batch_size, num_filters, + output_height, output_width); + float *__restrict__ output_data = (float *)output->host_data; + + const long int host_data_size = sizeof(float) * reduced_num_filter_elem * + output_height * output_width * batch_size; + float *host_data = (float *)malloc(host_data_size); + + const int reduced_filer_size = + sizeof(float) * num_filters * reduced_num_filter_elem; + float *reduced_kernels = (float *)malloc(reduced_filer_size); + + float fac = (((float)skip_every) / ((float)skip_every - 1)); + int reduced_filter_dim = reduced_num_filter_elem / channels; + + // Create reduced filter + omp_set_num_threads(4); +#pragma omp parallel for + for (int f = 0; f < num_filters; f++) { + for (int i = 0; i < reduced_num_filter_elem; i++) { + int ch = i / reduced_filter_dim; + int offset = (start + ch) % skip_every; + int in_index; + if (i < offset) { + in_index = i; + } else { + in_index = ((i - offset + 1) * skip_every) / (skip_every - 1) + + (((i - offset + 1) * skip_every) % (skip_every - 1) > 0) + + offset - 1; + } + reduced_kernels[f * reduced_num_filter_elem + i] = + fac * host_filter[num_filter_elem * f + in_index]; + } + } + + omp_set_num_threads(4); +#pragma omp parallel for + for (int b = 0; b < batch_size; b++) { + for (int h = 0; h < output_height; h++) { + for (int w = 0; w < output_width; w++) { + const int inH = h * vertical_stride - vertical_pad; + const int inW = w * horizontal_stride - horizontal_pad; + for (int fi = 0; fi < reduced_num_filter_elem; fi++) { + int in_index; + const int ch = fi / reduced_filter_dim; + const int offset = (start + ch) % skip_every; + if (fi < offset) { + in_index = fi; + } else { + in_index = + ((fi - offset + 1) * skip_every) / (skip_every - 1) + + (((fi - offset + 1) * skip_every) % (skip_every - 1) > 0) + + offset - 1; + } + const int i = + (in_index % (kernel_width * kernel_height)) / kernel_width; + const int j = in_index % kernel_width; + const int output_index = h * output_width + w; + const int out_index = b * reduced_num_filter_elem * output_size + + output_index * reduced_num_filter_elem + fi; + if (inH + i >= 0 && inH + i < image_height && inW + j >= 0 && + inW + j < image_width) { + host_data[out_index] = + host_image[((b * channels + ch) * image_height + (inH + i)) * + image_width + + (inW + j)]; + } else { + host_data[out_index] = 0; + } } + } } - omp_set_num_threads(4); - #pragma omp parallel for - for(int b = 0; b < batch_size; b++) { - for(int h = 0; h < output_height; h++) { - for(int w = 0; w < output_width; w++) { - const int inH = h * vertical_stride - vertical_pad; - const int inW = w * horizontal_stride - horizontal_pad; - for(int fi = 0; fi < reduced_num_filter_elem; fi++) { - int in_index; - const int ch = fi / reduced_filter_dim; - const int offset = (start + ch) % skip_every; - if(fi < offset) { - in_index = fi; - } else { - in_index = ((fi - offset + 1) * skip_every) / (skip_every - 1) - + (((fi - offset + 1) * skip_every) % (skip_every - 1) > 0) + offset - 1; - } - const int i = (in_index % (kernel_width * kernel_height)) / kernel_width; - const int j = in_index % kernel_width; - const int output_index = h * output_width + w; - const int out_index = b * reduced_num_filter_elem * output_size - + output_index * reduced_num_filter_elem + fi; - if(inH + i >= 0 && inH + i < image_height - && inW + j >= 0 && inW + j < image_width) { - host_data[out_index] = - host_image[((b * channels + ch) * image_height - + (inH + i)) * image_width + (inW + j)]; - } else { - host_data[out_index] = 0; - } - } - } + // Tensor Multiply + for (int p = 0; p < num_filters; ++p) { + for (int m = 0; m < output_size; ++m) { + float sum = 0; +#pragma omp simd reduction(+ : sum) + for (int k = 0; k < reduced_num_filter_elem; ++k) { + int input_index = k + reduced_num_filter_elem * m + + b * reduced_num_filter_elem * output_size; + sum += host_data[input_index] * + reduced_kernels[p * reduced_num_filter_elem + k]; } + output_data[b * (output_size * num_filters) + p * output_size + m] = + sum; + } + } + } + free(reduced_kernels); + free(host_data); - // Tensor Multiply - for (int p = 0; p < num_filters; ++p) { - for (int m = 0; m < output_size; ++m) { - float sum = 0; - #pragma omp simd reduction(+:sum) - for (int k = 0; k < reduced_num_filter_elem; ++k) { - int input_index = k + reduced_num_filter_elem * m - + b * reduced_num_filter_elem * output_size; - sum += host_data[input_index] - * reduced_kernels[p * reduced_num_filter_elem + k]; - } - output_data[b * (output_size * num_filters) + p * output_size + m] = sum; - } + return output; +} + +void *tensorIrregularFilterSamplingConvolutionCPU( + void *input_ptr, void *filter_ptr, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, int conv_mode, + int compute_precision, int skip_every, int start) { + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + + float *__restrict__ host_image = (float *)input->host_data; + float *__restrict__ host_filter = (float *)filter->host_data; + + const int batch_size = input->dims.dim_sizes[0]; + const int channels = input->dims.dim_sizes[1]; + const int image_height = input->dims.dim_sizes[2]; + const int image_width = input->dims.dim_sizes[3]; + const int num_filters = filter->dims.dim_sizes[0]; + const int kernel_height = filter->dims.dim_sizes[2]; + const int kernel_width = filter->dims.dim_sizes[3]; + const int output_height = + 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); + const int output_width = + 1 + + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); + const int num_filter_elem = kernel_height * kernel_width * channels; + + const int remainder = ((num_filter_elem - start) % skip_every > 0); + const int reduced_num_filter_elem = + num_filter_elem - ((num_filter_elem - start) / skip_every) - remainder; + const int output_size = output_width * output_height; + + Tensor *output = (Tensor *)create4DTensor(0, 0, batch_size, num_filters, + output_height, output_width); + float *__restrict__ output_data = (float *)output->host_data; + + const long int host_data_size = sizeof(float) * reduced_num_filter_elem * + output_height * output_width * batch_size; + float *host_data = (float *)malloc(host_data_size); + + const int reduced_filer_size = + sizeof(float) * num_filters * reduced_num_filter_elem; + float *reduced_kernels = (float *)malloc(reduced_filer_size); + + float fac = (((float)skip_every) / ((float)skip_every - 1)); + int reduced_filter_dim = reduced_num_filter_elem / channels; + + // Create Reduced filter + omp_set_num_threads(4); +#pragma omp parallel for + for (int f = 0; f < num_filters; f++) { + for (int i = 0; i < start; i++) { + reduced_kernels[f * reduced_num_filter_elem + i] = + host_filter[num_filter_elem * f + i]; + } +#pragma omp simd + for (int i = start; i < reduced_num_filter_elem; i++) { + int in_index = ((i - start + 1) * skip_every) / (skip_every - 1) + + (((i - start + 1) * skip_every) % (skip_every - 1) > 0) + + start - 1; + reduced_kernels[f * reduced_num_filter_elem + i] = + fac * host_filter[num_filter_elem * f + in_index]; + } + } + +#pragma omp parallel for + for (int b = 0; b < batch_size; b++) { + for (int h = 0; h < output_height; h++) { + for (int w = 0; w < output_width; w++) { + const int inH = h * vertical_stride - vertical_pad; + const int inW = w * horizontal_stride - horizontal_pad; + for (int fi = 0; fi < reduced_num_filter_elem; fi++) { + int in_index; + int offset = start; + if (fi < offset) { + in_index = fi; + } else { + in_index = + ((fi - offset + 1) * skip_every) / (skip_every - 1) + + (((fi - offset + 1) * skip_every) % (skip_every - 1) > 0) + + offset - 1; + } + const int ch = in_index / (kernel_width * kernel_height); + const int i = + (in_index % (kernel_width * kernel_height)) / kernel_width; + const int j = in_index % kernel_width; + const int output_index = h * output_width + w; + const int out_index = b * reduced_num_filter_elem * output_size + + output_index * reduced_num_filter_elem + fi; + if (inH + i >= 0 && inH + i < image_height && inW + j >= 0 && + inW + j < image_width) { + host_data[out_index] = + host_image[((b * channels + ch) * image_height + (inH + i)) * + image_width + + (inW + j)]; + } else { + host_data[out_index] = 0; + } } + } + } + // Tensor Multiply + for (int p = 0; p < num_filters; ++p) { + for (int m = 0; m < output_size; ++m) { + float sum = 0; +#pragma omp simd reduction(+ : sum) + for (int k = 0; k < reduced_num_filter_elem; ++k) { + int input_index = k + reduced_num_filter_elem * m + + b * reduced_num_filter_elem * output_size; + sum += host_data[input_index] * + reduced_kernels[p * reduced_num_filter_elem + k]; + } + output_data[b * (output_size * num_filters) + p * output_size + m] = + sum; + } } - free(reduced_kernels); - free(host_data); - - return output; + } + free(reduced_kernels); + free(host_data); + + return output; } -void* tensorIrregularFilterSamplingConvolutionCPU(void *input_ptr, void *filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int compute_precision, - int skip_every, int start) { - Tensor *input = (Tensor *)input_ptr; - Tensor *filter = (Tensor *)filter_ptr; - - float * __restrict__ host_image = (float *)input->host_data; - float * __restrict__ host_filter = (float *)filter->host_data; - - const int batch_size = input->dims.dim_sizes[0]; - const int channels = input->dims.dim_sizes[1]; - const int image_height = input->dims.dim_sizes[2]; - const int image_width = input->dims.dim_sizes[3]; - const int num_filters = filter->dims.dim_sizes[0]; - const int kernel_height = filter->dims.dim_sizes[2]; - const int kernel_width = filter->dims.dim_sizes[3]; - const int output_height = - 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); - const int output_width = - 1 + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); - const int num_filter_elem = kernel_height * kernel_width * channels; - - const int remainder = ((num_filter_elem - start) % skip_every > 0); - const int reduced_num_filter_elem = - num_filter_elem - ((num_filter_elem - start) / skip_every) - remainder; - const int output_size = output_width * output_height; - - Tensor *output = (Tensor *) create4DTensor(0, 0, batch_size, num_filters, - output_height, output_width); - float * __restrict__ output_data = (float *)output->host_data; - - const long int host_data_size = sizeof(float) * reduced_num_filter_elem - * output_height * output_width * batch_size; - float *host_data = (float *) malloc(host_data_size); - - const int reduced_filer_size = sizeof(float) * num_filters * reduced_num_filter_elem; - float *reduced_kernels = (float *) malloc(reduced_filer_size); - - float fac = (((float) skip_every) / ((float) skip_every - 1)); - int reduced_filter_dim = reduced_num_filter_elem / channels; - - // Create Reduced filter - omp_set_num_threads(4); - #pragma omp parallel for - for(int f = 0; f < num_filters; f++) { - for(int i = 0; i < start; i++) { - reduced_kernels[f * reduced_num_filter_elem + i] = - host_filter[num_filter_elem * f + i]; +void *tensorRowPerfConvolutionCPU(void *input_ptr, void *filter_ptr, + int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, + int conv_mode, int compute_precision, int row, + int start) { + + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + + float *__restrict__ host_image = (float *)input->host_data; + float *__restrict__ host_filter = (float *)filter->host_data; + + int batch_size = input->dims.dim_sizes[0]; + int channels = input->dims.dim_sizes[1]; + int image_height = input->dims.dim_sizes[2]; + int image_width = input->dims.dim_sizes[3]; + int num_filters = filter->dims.dim_sizes[0]; + int kernel_height = filter->dims.dim_sizes[2]; + int kernel_width = filter->dims.dim_sizes[3]; + + int full_output_height = + 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); + int full_output_width = + 1 + + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); + int num_filter_elem = kernel_height * kernel_width * channels; + int full_output_size = full_output_height * full_output_width; + + Tensor *full_output = (Tensor *)create4DTensor( + 0, 0, batch_size, num_filters, full_output_height, full_output_width); + float *__restrict__ full_output_data = (float *)full_output->host_data; + + int remainder = (full_output_height - start) % row > 0; + int output_height = + full_output_height - ((full_output_height - start) / row) - remainder; + + int output_width = full_output_width; + float *output_data = (float *)malloc( + sizeof(float) * batch_size * num_filters * output_height * output_width); + int output_size = output_width * output_height; + long int host_data_size = sizeof(float) * num_filter_elem * output_height * + output_width * batch_size; + float *host_data = (float *)malloc(host_data_size); + + omp_set_num_threads(4); +#pragma omp parallel for + for (int b = 0; b < batch_size; b++) { + for (int ch = 0; ch < channels; ch++) { + for (int h = 0; h < output_height; h++) { + int inH; + if (h < start) { + inH = h * vertical_stride - vertical_pad; + } else { + int h_index = ((h - start + 1) * row) / (row - 1) + + (((h - start + 1) * row) % (row - 1) > 0) + start - 1; + inH = h_index * vertical_stride - vertical_pad; } - #pragma omp simd - for(int i = start; i < reduced_num_filter_elem; i++) { - int in_index = ((i - start + 1) * skip_every) / (skip_every - 1) - + (((i - start + 1) * skip_every) % (skip_every - 1) > 0) + start - 1; - reduced_kernels[f * reduced_num_filter_elem + i] = - fac * host_filter[num_filter_elem * f + in_index]; + for (int w = 0; w < output_width; w++) { + int inW = w * horizontal_stride - horizontal_pad; + for (int i = 0; i < kernel_height; i++) { + for (int j = 0; j < kernel_width; j++) { + const int filter_elem_num = + (ch * kernel_height + i) * kernel_width + j; + const int output_index = h * output_width + w; + const int out_index = b * num_filter_elem * output_size + + output_index * num_filter_elem + + filter_elem_num; + if (inH + i >= 0 && inH + i < image_height && inW + j >= 0 && + inW + j < image_width) { + host_data[out_index] = + host_image[((b * channels + ch) * image_height + + (inH + i)) * + image_width + + (inW + j)]; + } else { + host_data[out_index] = 0; + } + } + } } + } } - #pragma omp parallel for - for(int b = 0; b < batch_size; b++) { - for(int h = 0; h < output_height; h++) { - for(int w = 0; w < output_width; w++) { - const int inH = h * vertical_stride - vertical_pad; - const int inW = w * horizontal_stride - horizontal_pad; - for(int fi = 0; fi < reduced_num_filter_elem; fi++) { - int in_index; - int offset = start; - if(fi < offset) { - in_index = fi; - } else { - in_index = ((fi - offset + 1) * skip_every) / (skip_every - 1) - + (((fi - offset + 1) * skip_every) % (skip_every - 1) > 0) + offset - 1; - } - const int ch = in_index / (kernel_width * kernel_height); - const int i = (in_index % (kernel_width * kernel_height)) / kernel_width; - const int j = in_index % kernel_width; - const int output_index = h * output_width + w; - const int out_index = b * reduced_num_filter_elem * output_size - + output_index * reduced_num_filter_elem + fi; - if(inH + i >= 0 && inH + i < image_height - && inW + j >= 0 && inW + j < image_width) { - host_data[out_index] = - host_image[((b * channels + ch) * image_height - + (inH + i)) * image_width + (inW + j)]; - } else { - host_data[out_index] = 0; - } - } - } + // Tensor Multiply + for (int p = 0; p < num_filters; ++p) { + for (int m = 0; m < output_size; ++m) { + float sum = 0; +#pragma omp simd reduction(+ : sum) + for (int k = 0; k < num_filter_elem; ++k) { + int input_index = + k + num_filter_elem * m + b * num_filter_elem * output_size; + sum += host_data[input_index] * host_filter[p * num_filter_elem + k]; } + output_data[b * (output_size * num_filters) + p * output_size + m] = + sum; + } + } - // Tensor Multiply - for (int p = 0; p < num_filters; ++p) { - for (int m = 0; m < output_size; ++m) { - float sum = 0; - #pragma omp simd reduction(+:sum) - for (int k = 0; k < reduced_num_filter_elem; ++k) { - int input_index = k + reduced_num_filter_elem * m - + b * reduced_num_filter_elem * output_size; - sum += host_data[input_index] - * reduced_kernels[p * reduced_num_filter_elem + k]; - } - output_data[b * (output_size * num_filters) + p * output_size + m] = sum; - } + // Interpolate + for (int p = 0; p < num_filters; ++p) { + for (int h = 0; h < full_output_height; h++) { + for (int w = 0; w < full_output_width; w++) { + int full_output_index = b * num_filters * full_output_size + + p * full_output_size + h * full_output_width + + w; + if (h < start) { + int output_index = b * num_filters * output_size + p * output_size + + h * output_width + w; + full_output_data[full_output_index] = output_data[output_index]; + } else if (h == full_output_height - 1) { + int output_index = b * num_filters * output_size + p * output_size + + (output_height - 1) * output_width + w; + full_output_data[full_output_index] = output_data[output_index]; + } else if (h == 0) { + int output_index = b * num_filters * output_size + p * output_size + + 0 * output_width + w; + full_output_data[full_output_index] = output_data[output_index]; + } else if ((h - start) % row == 0) { + int row_index = h - ((h + 1 - start) / row); + int output_index = b * num_filters * output_size + p * output_size + + row_index * output_width + w; + full_output_data[full_output_index] = + (output_data[output_index] + + output_data[output_index - output_width]) / + 2; + } else { + int remainder = ((h + 1 - start) % row) > 0; + int row_index = h - ((h + 1 - start) / row) - remainder; + int output_index = b * num_filters * output_size + p * output_size + + row_index * output_width + w; + full_output_data[full_output_index] = output_data[output_index]; + } } - + } } - free(reduced_kernels); - free(host_data); - - return output; -} + } + free(output_data); + free(host_data); -void* tensorRowPerfConvolutionCPU(void *input_ptr, void *filter_ptr, int vertical_pad, - int horizontal_pad, int vertical_stride, int horizontal_stride, - int conv_mode, int compute_precision, int row, int start) { - - Tensor *input = (Tensor *)input_ptr; - Tensor *filter = (Tensor *)filter_ptr; - - float * __restrict__ host_image = (float *)input->host_data; - float * __restrict__ host_filter = (float *)filter->host_data; - - int batch_size = input->dims.dim_sizes[0]; - int channels = input->dims.dim_sizes[1]; - int image_height = input->dims.dim_sizes[2]; - int image_width = input->dims.dim_sizes[3]; - int num_filters = filter->dims.dim_sizes[0]; - int kernel_height = filter->dims.dim_sizes[2]; - int kernel_width = filter->dims.dim_sizes[3]; - - int full_output_height = - 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); - int full_output_width = - 1 + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); - int num_filter_elem = kernel_height * kernel_width * channels; - int full_output_size = full_output_height * full_output_width; - - Tensor *full_output = (Tensor *) create4DTensor(0, 0, batch_size, num_filters, - full_output_height, full_output_width); - float * __restrict__ full_output_data = (float *)full_output->host_data; - - int remainder = (full_output_height - start) % row > 0; - int output_height = - full_output_height - ((full_output_height - start) / row) - remainder; - - int output_width = full_output_width; - float *output_data = (float *) malloc(sizeof(float) * batch_size * num_filters - * output_height * output_width); - int output_size = output_width * output_height; - long int host_data_size = sizeof(float) * num_filter_elem * output_height - * output_width * batch_size; - float *host_data = (float *) malloc(host_data_size); + return full_output; +} - omp_set_num_threads(4); - #pragma omp parallel for - for(int b = 0; b < batch_size; b++) { - for(int ch = 0; ch < channels; ch++) { - for(int h = 0; h < output_height; h++) { - int inH; - if(h < start) { - inH = h * vertical_stride - vertical_pad; - } else { - int h_index = ((h - start + 1) * row) / (row - 1) - + (((h - start + 1) * row) % (row - 1) > 0) + start - 1; - inH = h_index * vertical_stride - vertical_pad; - } - for(int w = 0; w < output_width; w++) { - int inW = w * horizontal_stride - horizontal_pad; - for(int i = 0; i < kernel_height; i++) { - for(int j = 0; j < kernel_width; j++) { - const int filter_elem_num = - (ch * kernel_height + i) * kernel_width + j; - const int output_index = h * output_width + w; - const int out_index = b * num_filter_elem * output_size - + output_index * num_filter_elem + filter_elem_num; - if(inH + i >= 0 && inH + i < image_height - && inW + j >= 0 && inW + j < image_width) { - host_data[out_index] = - host_image[((b * channels + ch) * image_height - + (inH + i)) * image_width + (inW + j)]; - } else { - host_data[out_index] = 0; - } - } - } - } +void *tensorColPerfConvolutionCPU(void *input_ptr, void *filter_ptr, + int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride, + int conv_mode, int compute_precision, int col, + int start) { + + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + + float *__restrict__ host_image = (float *)input->host_data; + float *__restrict__ host_filter = (float *)filter->host_data; + + int batch_size = input->dims.dim_sizes[0]; + int channels = input->dims.dim_sizes[1]; + int image_height = input->dims.dim_sizes[2]; + int image_width = input->dims.dim_sizes[3]; + int num_filters = filter->dims.dim_sizes[0]; + int kernel_height = filter->dims.dim_sizes[2]; + int kernel_width = filter->dims.dim_sizes[3]; + int full_output_height = + 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); + int full_output_width = + 1 + + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); + int num_filter_elem = kernel_height * kernel_width * channels; + int full_output_size = full_output_height * full_output_width; + + Tensor *full_output = (Tensor *)create4DTensor( + 0, 0, batch_size, num_filters, full_output_height, full_output_width); + float *__restrict__ full_output_data = (float *)full_output->host_data; + + int remainder = (full_output_width - start) % col > 0; + int output_width = + full_output_width - ((full_output_width - start) / col) - remainder; + + int output_height = full_output_height; + float *output_data = (float *)malloc( + sizeof(float) * batch_size * num_filters * output_height * output_width); + int output_size = output_width * output_height; + long int host_data_size = sizeof(float) * num_filter_elem * output_height * + output_width * batch_size; + float *host_data = (float *)malloc(host_data_size); + + omp_set_num_threads(4); +#pragma omp parallel for + for (int b = 0; b < batch_size; b++) { + for (int ch = 0; ch < channels; ch++) { + for (int h = 0; h < output_height; h++) { + int inH = h * vertical_stride - vertical_pad; + for (int w = 0; w < output_width; w++) { + int inW; + if (w < start) { + inW = w * horizontal_stride - horizontal_pad; + } else { + int w_index = ((w - start + 1) * col) / (col - 1) + + (((w - start + 1) * col) % (col - 1) > 0) + start - 1; + inW = w_index * horizontal_stride - horizontal_pad; + } + for (int i = 0; i < kernel_height; i++) { + for (int j = 0; j < kernel_width; j++) { + const int filter_elem_num = + (ch * kernel_height + i) * kernel_width + j; + const int output_index = h * output_width + w; + const int out_index = b * num_filter_elem * output_size + + output_index * num_filter_elem + + filter_elem_num; + if (inH + i >= 0 && inH + i < image_height && inW + j >= 0 && + inW + j < image_width) { + host_data[out_index] = + host_image[((b * channels + ch) * image_height + + (inH + i)) * + image_width + + (inW + j)]; + } else { + host_data[out_index] = 0; + } } + } } + } + } - // Tensor Multiply - for (int p = 0; p < num_filters; ++p) { - for (int m = 0; m < output_size; ++m) { - float sum = 0; - #pragma omp simd reduction(+:sum) - for (int k = 0; k < num_filter_elem; ++k) { - int input_index = k + num_filter_elem * m + b * num_filter_elem * output_size; - sum += host_data[input_index] * host_filter[p * num_filter_elem + k]; - } - output_data[b * (output_size * num_filters) + p * output_size + m] = sum; - } + // Tensor Multiply + for (int p = 0; p < num_filters; ++p) { + for (int m = 0; m < output_size; ++m) { + float sum = 0; +#pragma omp simd reduction(+ : sum) + for (int k = 0; k < num_filter_elem; ++k) { + int input_index = + k + num_filter_elem * m + b * num_filter_elem * output_size; + sum += host_data[input_index] * host_filter[p * num_filter_elem + k]; } + output_data[b * (output_size * num_filters) + p * output_size + m] = + sum; + } + } - // Interpolate - for (int p = 0; p < num_filters; ++p) { - for(int h = 0; h < full_output_height; h++) { - for(int w = 0; w < full_output_width; w++) { - int full_output_index = b * num_filters * full_output_size - + p * full_output_size + h * full_output_width + w; - if(h < start) { - int output_index = b * num_filters * output_size - + p * output_size + h * output_width + w; - full_output_data[full_output_index] = output_data[output_index]; - } else if(h == full_output_height - 1) { - int output_index = b * num_filters * output_size + p * output_size - + (output_height - 1) * output_width + w; - full_output_data[full_output_index] = output_data[output_index]; - } else if(h == 0) { - int output_index = b * num_filters * output_size - + p * output_size + 0 * output_width + w; - full_output_data[full_output_index] = output_data[output_index]; - } else if((h - start) % row == 0) { - int row_index = h - ((h + 1 - start) / row); - int output_index = b * num_filters * output_size + p * output_size - + row_index * output_width + w; - full_output_data[full_output_index] = - (output_data[output_index] + output_data[output_index - output_width]) / 2; - } else { - int remainder = ((h + 1 - start) % row) > 0; - int row_index = h - ((h + 1 - start) / row) - remainder; - int output_index = b * num_filters * output_size + p * output_size - + row_index * output_width + w; - full_output_data[full_output_index] = output_data[output_index]; - } - } - } - } + // Interpolate + for (int p = 0; p < num_filters; ++p) { + for (int h = 0; h < full_output_height; h++) { + for (int w = 0; w < full_output_width; w++) { + int full_output_index = b * num_filters * full_output_size + + p * full_output_size + h * full_output_width + + w; + if (w < start) { + int output_index = b * num_filters * output_size + p * output_size + + h * output_width + w; + full_output_data[full_output_index] = output_data[output_index]; + } else if (w == full_output_width - 1) { + int output_index = b * num_filters * output_size + p * output_size + + h * output_width + output_width - 1; + full_output_data[full_output_index] = output_data[output_index]; + } else if (w == 0) { + int output_index = b * num_filters * output_size + p * output_size + + h * output_width + 0; + full_output_data[full_output_index] = output_data[output_index]; + } else if ((w - start) % col == 0) { + int col_index = w - ((w + 1 - start) / col); + int output_index = b * num_filters * output_size + p * output_size + + h * output_width + col_index; + full_output_data[full_output_index] = + (output_data[output_index] + output_data[output_index - 1]) / 2; + } else { + int remainder = ((w + 1 - start) % col) > 0; + int col_index = w - ((w + 1 - start) / col) - remainder; + int output_index = b * num_filters * output_size + p * output_size + + h * output_width + col_index; + full_output_data[full_output_index] = output_data[output_index]; + } + } + } } - free(output_data); - free(host_data); + } + free(output_data); + free(host_data); - return full_output; + return full_output; } -void* tensorColPerfConvolutionCPU(void *input_ptr, void *filter_ptr, int vertical_pad, - int horizontal_pad, int vertical_stride, int horizontal_stride, - int conv_mode, int compute_precision, int col, int start) { - +void *tensorConvApprox(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int compute_precision, int row, int col, int skip_every, + int start) { + if (row > 1) { + printf("ROW PERFORATION\n"); + return tensorRowPerfConvolutionCPU( + input_ptr, filter_ptr, vertical_pad, horizontal_pad, vertical_stride, + horizontal_stride, conv_mode, compute_precision, row, start); + } + if (col > 1) { + printf("COL PERFORATION\n"); + return tensorColPerfConvolutionCPU( + input_ptr, filter_ptr, vertical_pad, horizontal_pad, vertical_stride, + horizontal_stride, conv_mode, compute_precision, col, start); + } + if (skip_every > 1) { + printf("INPUT FILTERING\n"); Tensor *input = (Tensor *)input_ptr; Tensor *filter = (Tensor *)filter_ptr; - - float * __restrict__ host_image = (float *)input->host_data; - float * __restrict__ host_filter = (float *)filter->host_data; - - int batch_size = input->dims.dim_sizes[0]; - int channels = input->dims.dim_sizes[1]; - int image_height = input->dims.dim_sizes[2]; - int image_width = input->dims.dim_sizes[3]; - int num_filters = filter->dims.dim_sizes[0]; - int kernel_height = filter->dims.dim_sizes[2]; - int kernel_width = filter->dims.dim_sizes[3]; - int full_output_height = - 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); - int full_output_width = - 1 + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); - int num_filter_elem = kernel_height * kernel_width * channels; - int full_output_size = full_output_height * full_output_width; - - Tensor *full_output = (Tensor *) create4DTensor(0, 0, batch_size, num_filters, - full_output_height, full_output_width); - float * __restrict__ full_output_data = (float *)full_output->host_data; - - int remainder = (full_output_width - start) % col > 0; - int output_width = full_output_width - ((full_output_width - start) / col) - remainder; - - int output_height = full_output_height; - float *output_data = (float *) malloc(sizeof(float) * batch_size * num_filters - * output_height * output_width); - int output_size = output_width * output_height; - long int host_data_size = sizeof(float) * num_filter_elem * output_height - * output_width * batch_size; - float *host_data = (float *) malloc(host_data_size); - omp_set_num_threads(4); - #pragma omp parallel for - for(int b = 0; b < batch_size; b++) { - for(int ch = 0; ch < channels; ch++) { - for(int h = 0; h < output_height; h++) { - int inH = h * vertical_stride - vertical_pad; - for(int w = 0; w < output_width; w++) { - int inW; - if(w < start) { - inW = w * horizontal_stride - horizontal_pad; - } else { - int w_index = ((w - start + 1) * col) / (col - 1) - + (((w - start + 1) * col) % (col - 1) > 0) + start - 1; - inW = w_index * horizontal_stride - horizontal_pad; - } - for(int i = 0; i < kernel_height; i++) { - for(int j = 0; j < kernel_width; j++) { - const int filter_elem_num = - (ch * kernel_height + i) * kernel_width + j; - const int output_index = h * output_width + w; - const int out_index = b * num_filter_elem * output_size - + output_index * num_filter_elem + filter_elem_num; - if(inH + i >= 0 && inH + i < image_height - && inW + j >= 0 && inW + j < image_width) { - host_data[out_index] = - host_image[((b * channels + ch) * image_height - + (inH + i)) * image_width + (inW + j)]; - } else { - host_data[out_index] = 0; - } - } - } - } - } - } + const int kernel_height = filter->dims.dim_sizes[2]; + const int kernel_width = filter->dims.dim_sizes[3]; - // Tensor Multiply - for (int p = 0; p < num_filters; ++p) { - for (int m = 0; m < output_size; ++m) { - float sum = 0; - #pragma omp simd reduction(+:sum) - for (int k = 0; k < num_filter_elem; ++k) { - int input_index = k + num_filter_elem * m - + b * num_filter_elem * output_size; - sum += host_data[input_index] * host_filter[p * num_filter_elem + k]; - } - output_data[b * (output_size * num_filters) + p * output_size + m] = sum; - } - } + if (!(kernel_height * kernel_width % skip_every)) { + return tensorRegularFilterSamplingConvolutionCPU( + input_ptr, filter_ptr, vertical_pad, horizontal_pad, vertical_stride, + horizontal_stride, conv_mode, compute_precision, skip_every, start); + } + return tensorIrregularFilterSamplingConvolutionCPU( + input_ptr, filter_ptr, vertical_pad, horizontal_pad, vertical_stride, + horizontal_stride, conv_mode, compute_precision, skip_every, start); + } + printf("REGULAR CONV\n"); + return tensorRegularConvolutionCPU( + input_ptr, filter_ptr, vertical_pad, horizontal_pad, vertical_stride, + horizontal_stride, conv_mode, compute_precision); +} - // Interpolate - for (int p = 0; p < num_filters; ++p) { - for(int h = 0; h < full_output_height; h++) { - for(int w = 0; w < full_output_width; w++) { - int full_output_index = b * num_filters * full_output_size - + p * full_output_size + h * full_output_width + w; - if(w < start) { - int output_index = b * num_filters * output_size - + p * output_size + h * output_width + w; - full_output_data[full_output_index] = output_data[output_index]; - } else if(w == full_output_width - 1) { - int output_index = b * num_filters * output_size + p * output_size - + h * output_width + output_width - 1; - full_output_data[full_output_index] = output_data[output_index]; - } else if(w == 0) { - int output_index = b * num_filters * output_size + p * output_size - + h * output_width + 0; - full_output_data[full_output_index] = output_data[output_index]; - } else if((w - start) % col == 0) { - int col_index = w - ((w + 1 - start) / col); - int output_index = b * num_filters * output_size + p * output_size - + h * output_width + col_index; - full_output_data[full_output_index] = - (output_data[output_index] + output_data[output_index - 1]) / 2; - } else { - int remainder = ((w + 1 - start) % col) > 0; - int col_index = w - ((w + 1 - start) / col) - remainder; - int output_index = b * num_filters * output_size + p * output_size - + h * output_width + col_index; - full_output_data[full_output_index] = output_data[output_index]; - } - } +void *tensorConvCutlassCPU(void *input_ptr, void *filter_ptr, int vertical_pad, + int horizontal_pad, int vertical_stride, + int horizontal_stride, int conv_mode, + int conv_groups) { + + Tensor *input = (Tensor *)input_ptr; + Tensor *filter = (Tensor *)filter_ptr; + + float *__restrict__ host_image = (float *)input->host_data; + float *__restrict__ host_filter = (float *)filter->host_data; + + int batch_size = input->dims.dim_sizes[0]; + int channels = input->dims.dim_sizes[1]; + int image_height = input->dims.dim_sizes[2]; + int image_width = input->dims.dim_sizes[3]; + int num_filters = filter->dims.dim_sizes[0]; + int kernel_height = filter->dims.dim_sizes[2]; + int kernel_width = filter->dims.dim_sizes[3]; + int output_height = + 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); + int output_width = 1 + ((image_width - kernel_width + 2 * horizontal_pad) / + horizontal_stride); + int num_filter_elem = kernel_height * kernel_width * channels; + int output_size = output_width * output_height; + + Tensor *output = (Tensor *)create4DTensor(0, 0, batch_size, num_filters, + output_height, output_width); + float *__restrict__ output_data = (float *)output->host_data; + + long int conv_data_size = sizeof(float) * num_filter_elem * output_height * + output_width * batch_size; + float *host_data = (float *)malloc(conv_data_size); + + omp_set_num_threads(4); +#pragma omp parallel for + for (int b = 0; b < batch_size; b++) { + for (int ch = 0; ch < channels; ch++) { + for (int h = 0; h < output_height; h++) { + for (int w = 0; w < output_width; w++) { + const int inH = h * vertical_stride - vertical_pad; + const int inW = w * horizontal_stride - horizontal_pad; + for (int i = 0; i < kernel_height; i++) { + for (int j = 0; j < kernel_width; j++) { + const int filter_elem_num = + (ch * kernel_height + i) * kernel_width + j; + const int output_index = h * output_width + w; + const int out_index = b * num_filter_elem * output_size + + output_index * num_filter_elem + + filter_elem_num; + if (inH + i >= 0 && inH + i < image_height && inW + j >= 0 && + inW + j < image_width) { + host_data[out_index] = + host_image[((b * channels + ch) * image_height + + (inH + i)) * + image_width + + (inW + j)]; + } else { + host_data[out_index] = 0; + } } + } } + } } - free(output_data); - free(host_data); - - return full_output; -} - - -void* tensorConvApprox(void *input_ptr, void *filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int compute_precision, - int row, int col, int skip_every, int start) { - if(row > 1) { - printf("ROW PERFORATION\n"); - return tensorRowPerfConvolutionCPU(input_ptr, filter_ptr, vertical_pad, - horizontal_pad, vertical_stride, horizontal_stride, conv_mode, - compute_precision, row, start); - } - if(col > 1) { - printf("COL PERFORATION\n"); - return tensorColPerfConvolutionCPU(input_ptr, filter_ptr, vertical_pad, - horizontal_pad, vertical_stride, horizontal_stride, conv_mode, - compute_precision, col, start); - } - if(skip_every > 1) { - printf("INPUT FILTERING\n"); - Tensor *input = (Tensor *)input_ptr; - Tensor *filter = (Tensor *)filter_ptr; - - const int kernel_height = filter->dims.dim_sizes[2]; - const int kernel_width = filter->dims.dim_sizes[3]; - - if(!(kernel_height * kernel_width % skip_every)) { - return tensorRegularFilterSamplingConvolutionCPU(input_ptr, filter_ptr, - vertical_pad, horizontal_pad, vertical_stride, - horizontal_stride, conv_mode, - compute_precision, skip_every, start); + for (int p = 0; p < num_filters; ++p) { + for (int m = 0; m < output_size; ++m) { + float sum = 0; +#pragma omp simd reduction(+ : sum) + for (int k = 0; k < num_filter_elem; ++k) { + int input_index = + k + num_filter_elem * m + b * num_filter_elem * output_size; + sum += host_data[input_index] * host_filter[p * num_filter_elem + k]; } - return tensorIrregularFilterSamplingConvolutionCPU(input_ptr, filter_ptr, - vertical_pad, horizontal_pad, vertical_stride, - horizontal_stride, conv_mode, - compute_precision, skip_every, start); + output_data[b * (output_size * num_filters) + p * output_size + m] = + sum; + } } - printf("REGULAR CONV\n"); - return tensorRegularConvolutionCPU(input_ptr, filter_ptr, vertical_pad, - horizontal_pad, vertical_stride, - horizontal_stride, conv_mode, compute_precision); + } + free(host_data); + return output; } -void* tensorConvCutlassCPU(void* input_ptr, void* filter_ptr, - int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride, - int conv_mode, int conv_groups){ - - Tensor *input = (Tensor *)input_ptr; - Tensor *filter = (Tensor *)filter_ptr; - - float * __restrict__ host_image = (float *)input->host_data; - float * __restrict__ host_filter = (float *)filter->host_data; - - int batch_size = input->dims.dim_sizes[0]; - int channels = input->dims.dim_sizes[1]; - int image_height = input->dims.dim_sizes[2]; - int image_width = input->dims.dim_sizes[3]; - int num_filters = filter->dims.dim_sizes[0]; - int kernel_height = filter->dims.dim_sizes[2]; - int kernel_width = filter->dims.dim_sizes[3]; - int output_height = - 1 + ((image_height - kernel_height + 2 * vertical_pad) / vertical_stride); - int output_width = - 1 + ((image_width - kernel_width + 2 * horizontal_pad) / horizontal_stride); - int num_filter_elem = kernel_height * kernel_width * channels; - int output_size = output_width * output_height; - - Tensor *output = (Tensor *) create4DTensor(0, 0, batch_size, num_filters, - output_height, output_width); - float * __restrict__ output_data = (float *)output->host_data; - - long int conv_data_size = - sizeof(float) * num_filter_elem * output_height * output_width * batch_size; - float *host_data = (float *) malloc(conv_data_size); - +void *tensorAddCPU(void *x_ptr, void *bias_ptr) { + Tensor *x = (Tensor *)x_ptr; + Tensor *bias = (Tensor *)bias_ptr; + + float *__restrict__ x_data = (float *)x->host_data; + float *__restrict__ bias_data = (float *)bias->host_data; + int n = x->dims.dim_sizes[0]; + int c = x->dims.dim_sizes[1]; + int h = x->dims.dim_sizes[2]; + int w = x->dims.dim_sizes[3]; + + if (x->num_elems == bias->num_elems) { + int const1 = c * h * w; + int const2 = h * w; omp_set_num_threads(4); - #pragma omp parallel for - for(int b = 0; b < batch_size; b++) { - for(int ch = 0; ch < channels; ch++) { - for(int h = 0; h < output_height; h++) { - for(int w = 0; w < output_width; w++) { - const int inH = h * vertical_stride - vertical_pad; - const int inW = w * horizontal_stride - horizontal_pad; - for(int i = 0; i < kernel_height; i++) { - for(int j = 0; j < kernel_width; j++) { - const int filter_elem_num = (ch * kernel_height + i) * kernel_width + j; - const int output_index = h * output_width + w; - const int out_index = b * num_filter_elem * output_size - + output_index * num_filter_elem + filter_elem_num; - if(inH + i >= 0 && inH + i < image_height - && inW + j >= 0 && inW + j < image_width) { - host_data[out_index] = - host_image[((b * channels + ch) * image_height - + (inH + i)) * image_width + (inW + j)]; - } else { - host_data[out_index] = 0; - } - } - } - } - } - } - for (int p = 0; p < num_filters; ++p) { - for (int m = 0; m < output_size; ++m) { - float sum = 0; - #pragma omp simd reduction(+:sum) - for (int k = 0; k < num_filter_elem; ++k) { - int input_index = k + num_filter_elem * m + b * num_filter_elem * output_size; - sum += host_data[input_index] * host_filter[p * num_filter_elem + k]; - } - output_data[b * (output_size * num_filters) + p * output_size + m] = sum; - } +#pragma omp parallel for + for (int i = 0; i < n; i++) { + for (int j = 0; j < c; j++) { +#pragma omp simd collapse(2) + for (int k = 0; k < h; k++) { + for (int l = 0; l < w; l++) { + x_data[i * const1 + j * const2 + (k * w) + l] += + bias_data[i * const1 + j * const2 + (k * w) + l]; + } } + } } - free(host_data); - return output; -} - -void* tensorAddCPU(void *x_ptr, void *bias_ptr) { - Tensor *x = (Tensor *)x_ptr; - Tensor *bias = (Tensor *)bias_ptr; - - float * __restrict__ x_data = (float *)x->host_data; - float * __restrict__ bias_data = (float *)bias->host_data; - int n = x->dims.dim_sizes[0]; - int c = x->dims.dim_sizes[1]; - int h = x->dims.dim_sizes[2]; - int w = x->dims.dim_sizes[3]; - - if(x->num_elems == bias->num_elems) { - int const1 = c * h * w; - int const2 = h * w; - omp_set_num_threads(4); - #pragma omp parallel for - for (int i = 0; i < n; i++) { - for (int j = 0; j < c; j++) { - #pragma omp simd collapse(2) - for (int k = 0; k < h; k++) { - for (int l = 0; l < w; l++) { - x_data[i * const1 + j * const2 + (k * w) + l] += - bias_data[i * const1 + j * const2 + (k*w) + l]; - } - } - } + } else { + omp_set_num_threads(4); +#pragma omp parallel for + for (int i = 0; i < n; i++) { + for (int j = 0; j < c; j++) { +#pragma omp simd collapse(2) + for (int k = 0; k < h; k++) { + for (int l = 0; l < w; l++) { + x_data[i * (c * h * w) + j * (h * w) + k * w + l] += bias_data[j]; + } } - } else { - omp_set_num_threads(4); - #pragma omp parallel for - for (int i = 0; i < n; i++) { - for (int j = 0; j < c; j++) { - #pragma omp simd collapse(2) - for (int k = 0; k < h; k++) { - for (int l = 0; l < w; l++) { - x_data[i * (c * h * w) + j * (h * w) + k * w + l] += bias_data[j]; - } - } - } - } + } } - - return x; + } + + return x; } float max(float v1, float v2) __attribute__((always_inline)); -inline float maximum(float v1, float v2){ - return (v1 < v2) ? v2 : v1; -} +inline float maximum(float v1, float v2) { return (v1 < v2) ? v2 : v1; } void *tensorPoolingCPU(void *input_ptr, int poolFunction, int window_height, - int window_width, int vertical_pad, int horizontal_pad, - int vertical_stride, int horizontal_stride) { - - Tensor *input = (Tensor *)input_ptr; - float * __restrict__ input_data = (float *)input->host_data; - - int batch_size = input->dims.dim_sizes[0]; - int channels = input->dims.dim_sizes[1]; - int image_height = input->dims.dim_sizes[2]; - int image_width = input->dims.dim_sizes[3]; - - int output_height = - 1 + ((image_height - window_height + 2 * vertical_pad) / vertical_stride); - int output_width = - 1 + ((image_width - window_width + 2 * horizontal_pad) / horizontal_stride); - - int center_x = (window_width - 1) / 2 - horizontal_pad; - int center_y = (window_height - 1) / 2 - vertical_pad; - int x_radius = (window_width - 1) / 2; - int y_radius = (window_height - 1) / 2; - - Tensor *output = (Tensor *) create4DTensor(0, 0, batch_size, channels, - output_height, output_width); - float * __restrict__ output_data = (float *)output->host_data; - - omp_set_num_threads(4); - #pragma omp parallel for - for (int b = 0; b < batch_size; b++) { - for (int ch = 0; ch < channels; ch++) { - int ii = 0, jj = 0; - for (int r = center_y; r < image_height + vertical_pad - y_radius; - r += vertical_stride) { - for (int c = center_x; c < image_width + horizontal_pad - x_radius; - c += horizontal_stride) { - float val = (poolFunction == 0) ? -3.40282e+38 : 0; - int y_radius_var = y_radius - r; - int y_radius_var_max = y_radius_var + image_height; - int x_radius_var = x_radius - c; - int x_radius_var_max = x_radius_var + image_width; - int ki_min = (y_radius_var > 0) ? - ((y_radius_var < window_height) ? y_radius_var : -1) : 0; - int ki_max = (y_radius_var_max < window_height) ? - ((y_radius_var_max >= 0) ? y_radius_var_max : -1) : window_height; - int kj_min = (x_radius_var > 0) ? - ((x_radius_var < window_width) ? x_radius_var : -1) : 0; - int kj_max = (x_radius_var_max < window_width) ? - ((x_radius_var_max >= 0) ? x_radius_var_max : -1) : window_width; - - if(ki_min != ki_max && kj_min != kj_max && ki_min != -1 - && ki_max != -1 && kj_min != -1 && kj_max != -1) { - if(!poolFunction) { - for (int ki = 0; ki < window_height; ki++) { - for (int kj = 0; kj < window_width; kj++) { - val = maximum( - val, - input_data[b * (channels * image_height * image_width) + - ch * (image_height * image_width) + - (r - y_radius + ki) * image_width + (c - x_radius + kj)]); - } - } - } else { - for (int ki = 0; ki < window_height; ki++) { - for (int kj = 0; kj < window_width; kj++) { - val += input_data[b * (channels * image_height * image_width) - + ch * (image_height * image_width) + - (r - y_radius + ki) * image_width + (c - x_radius + kj)]; - } - } - } - } - if (poolFunction == 1) { - val /= window_height * window_width; - } - output_data[b * (channels * output_height * output_width) + - ch * (output_height * output_width) + ii * output_width + jj] = val; - jj++; - if (jj == output_width) { - jj = 0; - ii++; - } + int window_width, int vertical_pad, int horizontal_pad, + int vertical_stride, int horizontal_stride) { + + Tensor *input = (Tensor *)input_ptr; + float *__restrict__ input_data = (float *)input->host_data; + + int batch_size = input->dims.dim_sizes[0]; + int channels = input->dims.dim_sizes[1]; + int image_height = input->dims.dim_sizes[2]; + int image_width = input->dims.dim_sizes[3]; + + int output_height = + 1 + ((image_height - window_height + 2 * vertical_pad) / vertical_stride); + int output_width = 1 + ((image_width - window_width + 2 * horizontal_pad) / + horizontal_stride); + + int center_x = (window_width - 1) / 2 - horizontal_pad; + int center_y = (window_height - 1) / 2 - vertical_pad; + int x_radius = (window_width - 1) / 2; + int y_radius = (window_height - 1) / 2; + + Tensor *output = (Tensor *)create4DTensor(0, 0, batch_size, channels, + output_height, output_width); + float *__restrict__ output_data = (float *)output->host_data; + + omp_set_num_threads(4); +#pragma omp parallel for + for (int b = 0; b < batch_size; b++) { + for (int ch = 0; ch < channels; ch++) { + int ii = 0, jj = 0; + for (int r = center_y; r < image_height + vertical_pad - y_radius; + r += vertical_stride) { + for (int c = center_x; c < image_width + horizontal_pad - x_radius; + c += horizontal_stride) { + float val = (poolFunction == 0) ? -3.40282e+38 : 0; + int y_radius_var = y_radius - r; + int y_radius_var_max = y_radius_var + image_height; + int x_radius_var = x_radius - c; + int x_radius_var_max = x_radius_var + image_width; + int ki_min = + (y_radius_var > 0) + ? ((y_radius_var < window_height) ? y_radius_var : -1) + : 0; + int ki_max = (y_radius_var_max < window_height) + ? ((y_radius_var_max >= 0) ? y_radius_var_max : -1) + : window_height; + int kj_min = (x_radius_var > 0) + ? ((x_radius_var < window_width) ? x_radius_var : -1) + : 0; + int kj_max = (x_radius_var_max < window_width) + ? ((x_radius_var_max >= 0) ? x_radius_var_max : -1) + : window_width; + + if (ki_min != ki_max && kj_min != kj_max && ki_min != -1 && + ki_max != -1 && kj_min != -1 && kj_max != -1) { + if (!poolFunction) { + for (int ki = 0; ki < window_height; ki++) { + for (int kj = 0; kj < window_width; kj++) { + val = maximum( + val, + input_data[b * (channels * image_height * image_width) + + ch * (image_height * image_width) + + (r - y_radius + ki) * image_width + + (c - x_radius + kj)]); } + } + } else { + for (int ki = 0; ki < window_height; ki++) { + for (int kj = 0; kj < window_width; kj++) { + val += + input_data[b * (channels * image_height * image_width) + + ch * (image_height * image_width) + + (r - y_radius + ki) * image_width + + (c - x_radius + kj)]; + } + } } + } + if (poolFunction == 1) { + val /= window_height * window_width; + } + output_data[b * (channels * output_height * output_width) + + ch * (output_height * output_width) + ii * output_width + + jj] = val; + jj++; + if (jj == output_width) { + jj = 0; + ii++; + } } + } } - - return output; + } + + return output; } void *tensorTanhCPU(void *input_ptr) { - Tensor *input = (Tensor *)input_ptr; - - float *input_data = (float *)input->host_data; - size_t num_elems = input->num_elems; - - omp_set_num_threads(4); - #pragma omp parallel for - for (size_t i = 0; i < num_elems; i++) { - input_data[i] = tanhf(input_data[i]); - } - - return input; + Tensor *input = (Tensor *)input_ptr; + + float *input_data = (float *)input->host_data; + size_t num_elems = input->num_elems; + + omp_set_num_threads(4); +#pragma omp parallel for + for (size_t i = 0; i < num_elems; i++) { + input_data[i] = tanhf(input_data[i]); + } + + return input; } void *tensorGemmCPU(void *lhs_ptr, void *rhs_ptr) { - Tensor *lhs = (Tensor *)lhs_ptr; - Tensor *rhs = (Tensor *)rhs_ptr; - //printf("GEMM lhs_ptr: %p\n", lhs_ptr); - //printf("GEMM rhs_ptr: %p\n", rhs_ptr); - - int m = lhs->dims.dim_sizes[0]; - int n = rhs->dims.dim_sizes[rhs->dims.num_dims - 1]; // output neurons - int rhs_k = rhs->dims.dim_sizes[rhs->dims.num_dims - 2]; - - Tensor *output = (Tensor *)create4DTensor(0, 0, m, n, 1, 1); - - float * __restrict__ lhs_arr = (float *)lhs->host_data; - float * __restrict__ rhs_arr = (float *)rhs->host_data; - float * __restrict__ output_arr = (float *)output->host_data; - - int k = 1; - #pragma unroll 4 // Can we unroll more??? - for (int j = 1; j < lhs->dims.num_dims; j++) { - k = k * lhs->dims.dim_sizes[j]; // input neurons - } - //printf("unroll\n"); - float *tran_rhs = (float *) malloc(sizeof(float) * k * n); - // printf("tran_rhs: %p\n", tran_rhs); - // printf("rhs_arr: %p\n", rhs_arr); - // printf("lhs_arr: %p\n", lhs_arr); - omp_set_num_threads(4); - #pragma omp parallel for simd - for (int l = 0; l < k; l++) { - for (int j = 0; j < n; j++) { - tran_rhs[j * k + l] = rhs_arr[l * n + j]; - } + Tensor *lhs = (Tensor *)lhs_ptr; + Tensor *rhs = (Tensor *)rhs_ptr; + // printf("GEMM lhs_ptr: %p\n", lhs_ptr); + // printf("GEMM rhs_ptr: %p\n", rhs_ptr); + + int m = lhs->dims.dim_sizes[0]; + int n = rhs->dims.dim_sizes[rhs->dims.num_dims - 1]; // output neurons + int rhs_k = rhs->dims.dim_sizes[rhs->dims.num_dims - 2]; + + Tensor *output = (Tensor *)create4DTensor(0, 0, m, n, 1, 1); + + float *__restrict__ lhs_arr = (float *)lhs->host_data; + float *__restrict__ rhs_arr = (float *)rhs->host_data; + float *__restrict__ output_arr = (float *)output->host_data; + + int k = 1; +#pragma unroll 4 // Can we unroll more??? + for (int j = 1; j < lhs->dims.num_dims; j++) { + k = k * lhs->dims.dim_sizes[j]; // input neurons + } + // printf("unroll\n"); + float *tran_rhs = (float *)malloc(sizeof(float) * k * n); + // printf("tran_rhs: %p\n", tran_rhs); + // printf("rhs_arr: %p\n", rhs_arr); + // printf("lhs_arr: %p\n", lhs_arr); + omp_set_num_threads(4); +#pragma omp parallel for simd + for (int l = 0; l < k; l++) { + for (int j = 0; j < n; j++) { + tran_rhs[j * k + l] = rhs_arr[l * n + j]; } - //printf("TRANS\n"); - #pragma omp parallel for - for (int i = 0; i < m; i++) { - for (int j = 0; j < n; j++) { - float sum = 0.0; - #pragma omp simd reduction(+:sum) - for (int l = 0; l < k; l++) { - sum += lhs_arr[i * k + l] * tran_rhs[j * k + l]; - } - output_arr[i * n + j] = sum; - } + } +// printf("TRANS\n"); +#pragma omp parallel for + for (int i = 0; i < m; i++) { + for (int j = 0; j < n; j++) { + float sum = 0.0; +#pragma omp simd reduction(+ : sum) + for (int l = 0; l < k; l++) { + sum += lhs_arr[i * k + l] * tran_rhs[j * k + l]; + } + output_arr[i * n + j] = sum; } - free(tran_rhs); - //printf("GEMM OUTPUT: %p\n", output); - return output; + } + free(tran_rhs); + // printf("GEMM OUTPUT: %p\n", output); + return output; } void *tensorSoftmaxCPU(void *input_ptr) { - Tensor *input = (Tensor *)input_ptr; - - float *logits = (float *)input->host_data; - int n = input->dims.dim_sizes[0]; - int c = input->dims.dim_sizes[1]; - - omp_set_num_threads(4); - #pragma omp parallel for - for (int i = 0; i < n; i++) { - float x = 0; - for(int j = i*c; j < c + i*c; j++) { - logits[j] = expf(logits[j]); - } - - #pragma omp simd reduction(+:x) - for(int j = i*c; j < i*c+c; j++) { - x += logits[j]; - } - - #pragma omp simd - for(int j = i*c; j < i*c + c; j++) { - logits[j] /= x; - } + Tensor *input = (Tensor *)input_ptr; + + float *logits = (float *)input->host_data; + int n = input->dims.dim_sizes[0]; + int c = input->dims.dim_sizes[1]; + + omp_set_num_threads(4); +#pragma omp parallel for + for (int i = 0; i < n; i++) { + float x = 0; + for (int j = i * c; j < c + i * c; j++) { + logits[j] = expf(logits[j]); } - return input; -} - -void *tensorBatchNormCPU(void* input_ptr, void* gamma_ptr, void* beta_ptr, - void* mean_ptr, void* variance_ptr, double epsilon) { - - Tensor* input = (Tensor*) input_ptr; - Tensor* gamma = (Tensor*) gamma_ptr; - Tensor* beta = (Tensor*) beta_ptr; - Tensor* mean = (Tensor*) mean_ptr; - Tensor* variance = (Tensor*) variance_ptr; - - float * __restrict__ host_image = (float *)input->host_data; - float * __restrict__ host_beta = (float *)beta->host_data; - float * __restrict__ host_gamma = (float *)gamma->host_data; - float * __restrict__ host_mean = (float *)mean->host_data; - float * __restrict__ host_variance = (float *)variance->host_data; - - float alpha_val = 1.0f, beta_val = 0.0f; - size_t num_elems = input->num_elems; - - int batch_size = input->dims.dim_sizes[0]; - int channels = input->dims.dim_sizes[1]; - int image_height = input->dims.dim_sizes[2]; - int image_width = input->dims.dim_sizes[3]; - int image_dim = image_height * image_width; +#pragma omp simd reduction(+ : x) + for (int j = i * c; j < i * c + c; j++) { + x += logits[j]; + } - omp_set_num_threads(4); - #pragma omp parallel for - for(int b = 0; b < batch_size; b++) { - for(int ch = 0; ch < channels; ch++) { - float mean = 0; - #pragma omp simd reduction(+:mean) - for(int i = 0; i < image_dim; i++) { - int index = b * channels * image_dim + ch * image_dim + i; - mean += host_image[index]; - } - mean = mean / channels; - - float variance = 0; - #pragma omp simd reduction(+:variance) - for(int i = 0; i < image_dim; i++) { - int index = b * channels * image_dim + ch * image_dim + i; - float tmp = host_image[index] - mean; - variance += (tmp * tmp); - } - variance = variance / channels; - - #pragma omp simd - for(int i = 0; i < image_dim; i++) { - int index = b * channels * image_dim + ch * image_dim + i; - host_image[index] = host_beta[ch] - + (host_gamma[ch] * ((host_image[index] - mean) / sqrt(epsilon + variance))); - } - } +#pragma omp simd + for (int j = i * c; j < i * c + c; j++) { + logits[j] /= x; } - return input; + } + + return input; } - void *tensorReluCPU(void *input_ptr) { - Tensor *input = (Tensor *)input_ptr; - float *input_data = (float *)input->host_data; - size_t num_elems = input->num_elems; - - #pragma omp simd - for (size_t i = 0; i < num_elems; i++) { - input_data[i] = (input_data[i] < 0) ? 0 : input_data[i]; +void *tensorBatchNormCPU(void *input_ptr, void *gamma_ptr, void *beta_ptr, + void *mean_ptr, void *variance_ptr, double epsilon) { + + Tensor *input = (Tensor *)input_ptr; + Tensor *gamma = (Tensor *)gamma_ptr; + Tensor *beta = (Tensor *)beta_ptr; + Tensor *mean = (Tensor *)mean_ptr; + Tensor *variance = (Tensor *)variance_ptr; + + float *__restrict__ host_image = (float *)input->host_data; + float *__restrict__ host_beta = (float *)beta->host_data; + float *__restrict__ host_gamma = (float *)gamma->host_data; + float *__restrict__ host_mean = (float *)mean->host_data; + float *__restrict__ host_variance = (float *)variance->host_data; + + float alpha_val = 1.0f, beta_val = 0.0f; + size_t num_elems = input->num_elems; + + int batch_size = input->dims.dim_sizes[0]; + int channels = input->dims.dim_sizes[1]; + int image_height = input->dims.dim_sizes[2]; + int image_width = input->dims.dim_sizes[3]; + int image_dim = image_height * image_width; + + omp_set_num_threads(4); +#pragma omp parallel for + for (int b = 0; b < batch_size; b++) { + for (int ch = 0; ch < channels; ch++) { + float mean = 0; +#pragma omp simd reduction(+ : mean) + for (int i = 0; i < image_dim; i++) { + int index = b * channels * image_dim + ch * image_dim + i; + mean += host_image[index]; + } + mean = mean / channels; + + float variance = 0; +#pragma omp simd reduction(+ : variance) + for (int i = 0; i < image_dim; i++) { + int index = b * channels * image_dim + ch * image_dim + i; + float tmp = host_image[index] - mean; + variance += (tmp * tmp); + } + variance = variance / channels; + +#pragma omp simd + for (int i = 0; i < image_dim; i++) { + int index = b * channels * image_dim + ch * image_dim + i; + host_image[index] = + host_beta[ch] + (host_gamma[ch] * ((host_image[index] - mean) / + sqrt(epsilon + variance))); + } } + } + return input; +} + +void *tensorReluCPU(void *input_ptr) { + Tensor *input = (Tensor *)input_ptr; + float *input_data = (float *)input->host_data; + size_t num_elems = input->num_elems; - return input; +#pragma omp simd + for (size_t i = 0; i < num_elems; i++) { + input_data[i] = (input_data[i] < 0) ? 0 : input_data[i]; + } + + return input; } void *tensorRelu2CPU(void *input_ptr, float min, float max) { - Tensor *input = (Tensor *)input_ptr; - float *input_data = (float *)input->host_data; - size_t num_elems = input->num_elems; - - #pragma omp simd - for (size_t i = 0; i < num_elems; i++) { - input_data[i] = (input_data[i] < min) ? min : ((input_data[i] > max) ? - max : input_data[i]); - } - - return input; -} \ No newline at end of file + Tensor *input = (Tensor *)input_ptr; + float *input_data = (float *)input->host_data; + size_t num_elems = input->num_elems; + +#pragma omp simd + for (size_t i = 0; i < num_elems; i++) { + input_data[i] = (input_data[i] < min) + ? min + : ((input_data[i] > max) ? max : input_data[i]); + } + + return input; +} \ No newline at end of file