diff --git a/hpvm/include/nvdla/tensorUtils.h b/hpvm/include/nvdla/tensorUtils.h index 47441bae9ddade48849b2d17b0e97c183d41f1c3..ecfd1092877128b17cc40a23800a36fa60771158 100644 --- a/hpvm/include/nvdla/tensorUtils.h +++ b/hpvm/include/nvdla/tensorUtils.h @@ -15,9 +15,9 @@ std::string model_params_path = "../../test/dnn_benchmarks/model_params/"; -__attribute__((noinline)) struct Tensor *readTrainedWeights(const char *file_name, int data_type, - long int dim1_size, long int dim2_size, - long int dim3_size, long int dim4_size) { +__attribute__((noinline)) void *readTrainedWeights(const char *file_name, int data_type, + long int dim1_size, long int dim2_size, + long int dim3_size, long int dim4_size) { int type_size = 4; // NOTE: Assuming floating point tensors long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; @@ -45,9 +45,9 @@ __attribute__((noinline)) struct Tensor *readTrainedWeights(const char *file_nam } -__attribute__((noinline)) struct Tensor *readInputBatch(const char *file_name, long data_type, - long start, long end, - long dim2_size, long dim3_size, long dim4_size) { +__attribute__((noinline)) void * readInputBatch(const char *file_name, long data_type, + long start, long end, + long dim2_size, long dim3_size, long dim4_size) { long int dim1_size = end - start; // FIXIT: Don't assume floating point types long int type_size = 4; // NOTE: Assuming floating point tensors