diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/compile.py b/hpvm/projects/torch2hpvm/torch2hpvm/compile.py index 52b6a5bc21dbbe8df16af6972df370321013aca5..ee65a539d3ac35f4e65c6414c4337a2066b2c692 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/compile.py +++ b/hpvm/projects/torch2hpvm/torch2hpvm/compile.py @@ -154,8 +154,6 @@ class ModelExporter: "knob_speedup": knob_speedup, "op_knobs": op_knobs, "baseline_knob": baseline_knob, - "tune_args": "tune", - "test_args": "test", }, f, indent=2, diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in index 00a15dc9553fcfab7ecbcda1be61e31cfde9dfd9..f6024fe8641a40b4d61567ab74991a9f2a177be1 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in +++ b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in @@ -10,14 +10,16 @@ #include <sys/stat.h> /**** Routines for Handling Piped Execution ***/ -bool fifo_wait(const std::string &filename) { +int fifo_wait(const std::string &filename) { std::ifstream file{filename}; std::string line; std::getline(file, line); - if (line == "next") - return true; + if (line == "test") + return 1; + if (line == "tune") + return 2; if (line == "stop") - return false; + return 0; std::cout << "Invalid fifo file content \"" << line << "\"\n"; abort(); } @@ -33,15 +35,6 @@ void make_fifo(const std::string &filename) { file << "{{conf_path}}\n"; // Write path to config file in FIFO file return; } - - if (errno == EEXIST) { - if (unlink(filename.c_str()) < 0) { - std::cout << "Error removing existing file: " << strerror(errno) << '\n'; - abort(); - } - make_fifo(filename); - return; - } std::cout << "Error making FIFO file: " << strerror(errno) << '\n'; abort(); } @@ -105,20 +98,13 @@ typedef struct __attribute__((__packed__)) { const int batch_size = {{batch_size}}, input_size = {{input_size}}, batch_count = input_size / batch_size; -int main(int argc, char *argv[]){ - if (argc != 2) { - std::cout << "Usage: " << argv[0] << " {tune|test}\n"; - return 1; - } - std::string arg1 = argv[1]; - if (arg1 != "tune" && arg1 != "test") { - std::cout << "Usage: " << argv[0] << " {tune|test}\n"; - return 1; - } - +int main(){ std::string dir_prefix = "{{prefix}}/"; - std::string input_path = dir_prefix + arg1 + "_input.bin"; - std::string labels_path = dir_prefix + arg1 + "_labels.bin"; + std::string test_input = dir_prefix + "test_input.bin"; + std::string test_labels = dir_prefix + "test_labels.bin"; + std::string tune_input = dir_prefix + "tune_input.bin"; + std::string tune_labels = dir_prefix + "tune_labels.bin"; + {% for w in weights %} std::string {{w.name}}_path = dir_prefix + "{{w.filename}}"; void* {{w.name}} = readTrainedWeights({{w.name}}_path.c_str(), 0, {{w.shape|join(', ')}}); @@ -132,19 +118,23 @@ int main(int argc, char *argv[]){ {% endfor %} make_fifo("{{fifo_path}}"); - while (fifo_wait("{{fifo_path}}")) { + int ret = 0; + while ((ret = fifo_wait("{{fifo_path}}"))) { __hpvm__init(); startMemTracking(); + const auto *input_pth = (ret == 1 ? test_input : tune_input).c_str(); + const auto *labels_pth = (ret == 1 ? test_labels : tune_labels).c_str(); + for (int i = 0; i < batch_count; i++){ int start = i * batch_size, end = start + batch_size; - copyInputBatch(input_path.c_str(), start, end, {{input_shape|join(', ')}}, {{input_name}}); + copyInputBatch(input_pth, start, end, {{input_shape|join(', ')}}, {{input_name}}); void* dfg = __hpvm__launch(0, root, (void*) args); __hpvm__wait(dfg); void *result = static_cast<RootIn*>(args)->r.tensor; hpvm_request_tensor(result, 0); - llvm_hpvm_invokeRtControl(result, labels_path.c_str(), start, end); + llvm_hpvm_invokeRtControl(result, labels_pth, start, end); freeBatchMemory(); } __hpvm__cleanup(); diff --git a/hpvm/test/dnn_benchmarks/pytorch/test_tuning.py b/hpvm/test/dnn_benchmarks/pytorch/test_tuning.py index 4da55559a2c2b5abe45d432aaac0930bada5faf5..34a179b6864e57a10fb9a3516d35e9566c24aefb 100644 --- a/hpvm/test/dnn_benchmarks/pytorch/test_tuning.py +++ b/hpvm/test/dnn_benchmarks/pytorch/test_tuning.py @@ -1,20 +1,11 @@ -import shutil -from pathlib import Path -from subprocess import run -import torch - -from torch2hpvm import BinDataset, ModelExporter -from torch.nn import Module -from predtuner.pipedbin import PipedBinaryApp - - import os import shutil import site from pathlib import Path -from subprocess import run -import torch +from subprocess import Popen +import torch +from predtuner.pipedbin import PipedBinaryApp from torch2hpvm import BinDataset, ModelExporter from torch.nn import Module @@ -37,29 +28,30 @@ benchmarks = [ self_folder = Path(__file__).parent model_cls, nch, img_size, batch_size, pathname = benchmarks[0] codegen_dir = Path(f"/tmp/{pathname}_tune") -print(f"Generating {pathname} to {codegen_dir}") -if codegen_dir.exists(): - shutil.rmtree(codegen_dir) - -params = self_folder / "../model_params" / pathname -dataset_shape = 5000, nch, img_size, img_size -bin_tuneset = BinDataset( - params / "tune_input.bin", params / "tune_labels.bin", dataset_shape -) -bin_testset = BinDataset( - params / "test_input.bin", params / "test_labels.bin", dataset_shape -) -model: Module = model_cls() -checkpoint = self_folder / "../model_params" / f"{pathname}.pth.tar" -model.load_state_dict(torch.load(checkpoint.as_posix())) - build_dir = codegen_dir / "build" -target_binary = build_dir / pathname -exporter = ModelExporter( - model, bin_tuneset, bin_testset, codegen_dir, target="hpvm_tensor_inspect" -) -exporter.generate(batch_size=batch_size).compile(target_binary, build_dir) -run([str(target_binary), "test"], check=True) - -# build_dir = codegen_dir / "build" -# print(PipedBinaryApp("test", codegen_dir / "ops.json", build_dir / "lenet_mnist", build_dir)) +metadata_file = codegen_dir / "ops.json" +binary_file = build_dir / pathname +conf_file = codegen_dir / ModelExporter.config_file_name +if not binary_file.is_file() or not metadata_file.is_file(): + print(f"Generating {pathname} to {codegen_dir}") + if codegen_dir.exists(): + shutil.rmtree(codegen_dir) + + params = self_folder / "../model_params" / pathname + dataset_shape = 5000, nch, img_size, img_size + bin_tuneset = BinDataset( + params / "tune_input.bin", params / "tune_labels.bin", dataset_shape + ) + bin_testset = BinDataset( + params / "test_input.bin", params / "test_labels.bin", dataset_shape + ) + model: Module = model_cls() + checkpoint = self_folder / "../model_params" / f"{pathname}.pth.tar" + model.load_state_dict(torch.load(checkpoint.as_posix())) + + exporter = ModelExporter( + model, bin_tuneset, bin_testset, codegen_dir, target="hpvm_tensor_inspect" + ) + exporter.generate(batch_size=batch_size).compile(binary_file, build_dir) +app = PipedBinaryApp("test", codegen_dir, "ops.json", f"build/{pathname}", "hpvm_fifo") +app.measure_qos_perf({}, False)