diff --git a/hpvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h b/hpvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h index 7bcfda70080688387e9bb74e8d25a1174a3e7337..e3e6a864fa5128ed21ca6a1a161b3593f7bc9948 100644 --- a/hpvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h +++ b/hpvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h @@ -16,11 +16,10 @@ #include <string.h> std::vector<float> run_accuracies; -std::string model_params_path = "../../../build/model_params/"; +std::string model_params_path = "../../test/dnn_benchmarks/model_params/"; // FIXIT: Move this to debug.h and include in all files void dumpWeightsToFile(const char *file_name, void *weights_ptr) { - struct Tensor *weights = (Tensor *)weights_ptr; // Move data back to host hpvm_request_tensor(weights, 0); diff --git a/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp16/alexnet2_cifar10_half.cc b/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp16/alexnet2_cifar10_half.cc index 8133e86ef9735932607b5548cec5910a907f7b3c..7fa76350b5ec8f95f0a27da2436b7cccbe3c21f3 100644 --- a/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp16/alexnet2_cifar10_half.cc +++ b/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp16/alexnet2_cifar10_half.cc @@ -10,10 +10,9 @@ void testCifarNet() { std::string dir_prefix = model_params_path + std::string("/alexnet2_cifar10/"); - std::string input_path = dir_prefix + std::string("input.bin"); - std::string labels_path = dir_prefix + std::string("labels.bin"); - std::string labels32_path = dir_prefix + std::string("labels32.bin"); - + std::string input_path = dir_prefix + std::string("test_input.bin"); + std::string labels_path = dir_prefix + std::string("test_labels.bin"); + std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); void *conv2d_1_w = readTrainedWeights(conv2d_1_w_path.c_str(), 0, 32, 3, 3, 3); @@ -119,9 +118,9 @@ void testCifarNet() { void *gemm1biasout = tensorHalfAdd(gemm1out, dense_1_b); void *result = tensorSoftmax(gemm1biasout); - uint8_t *labels = readLabelsBatch(labels_path.c_str(), start, end); + uint32_t *labels = readLabelsBatch3(labels_path.c_str(), start, end); - float accuracy = computeAccuracy2(labels, batch_size, result); + float accuracy = computeAccuracy3(labels, result); final_accuracy += accuracy; freeBatchMemory(); diff --git a/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp16/alexnet_cifar10_half.cc b/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp16/alexnet_cifar10_half.cc index 020ad6d578bea8acae8cce5373bdf37ec7df1fd9..7d493b8720ab701f87fdd53b315da7eafecf6637 100644 --- a/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp16/alexnet_cifar10_half.cc +++ b/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp16/alexnet_cifar10_half.cc @@ -9,9 +9,8 @@ int main() { std::string dir_prefix = model_params_path + std::string("/alexnet_cifar10/"); - std::string input_path = dir_prefix + std::string("input.bin"); - std::string labels_path = dir_prefix + std::string("labels.bin"); - std::string labels32_path = dir_prefix + std::string("labels32.bin"); + std::string input_path = dir_prefix + std::string("test_input.bin"); + std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); void *conv2d_1_w = readTrainedWeights(conv2d_1_w_path.c_str(), 0, 64, 3, 11, 11); @@ -86,9 +85,9 @@ int main() { void *var_23 = tensorHalfAdd(var_22, dense_1_b); void *var_24 = tensorSoftmax(var_23); - uint8_t *labels = readLabelsBatch(labels_path.c_str(), start, end); + uint32_t *labels = readLabelsBatch3(labels_path.c_str(), start, end); - float accuracy = computeAccuracy2(labels, batch_size, var_24); + float accuracy = computeAccuracy3(labels, var_24); final_accuracy += accuracy; freeBatchMemory(); diff --git a/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp32/alexnet2_cifar10.cc b/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp32/alexnet2_cifar10.cc index 7e2c4be6335e3de82b0719923554e17b74732b93..287943c0bf2417beccaebbee4f6f5cddfc667549 100644 --- a/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp32/alexnet2_cifar10.cc +++ b/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp32/alexnet2_cifar10.cc @@ -8,11 +8,9 @@ void testCifarNet() { printf("********* Alexnet2 CIFAR-10 DNN ********** \n"); - std::string dir_prefix = - model_params_path + std::string("/alexnet2_cifar10/"); - std::string input_path = dir_prefix + std::string("input.bin"); - std::string labels_path = dir_prefix + std::string("labels.bin"); - std::string labels32_path = dir_prefix + std::string("labels32.bin"); + std::string dir_prefix = model_params_path + std::string("/alexnet2_cifar10/"); + std::string input_path = dir_prefix + std::string("test_input.bin"); + std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); void *conv2d_1_w = @@ -62,8 +60,8 @@ void testCifarNet() { startMemTracking(); - int test_input_size = 2000; - int batch_size = 2000; + int test_input_size = 5000; + int batch_size = 1000; int batch_count = test_input_size / batch_size; float final_accuracy = 0.0; @@ -119,9 +117,9 @@ void testCifarNet() { void *gemm1biasout = tensorAdd(gemm1out, dense_1_b); void *result = tensorSoftmax(gemm1biasout); - uint8_t *labels = readLabelsBatch(labels_path.c_str(), start, end); + uint32_t *labels = readLabelsBatch3(labels_path.c_str(), start, end); - float accuracy = computeAccuracy2(labels, batch_size, result); + float accuracy = computeAccuracy3(labels, result); final_accuracy += accuracy; freeBatchMemory(); diff --git a/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp32/alexnet_cifar10.cc b/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp32/alexnet_cifar10.cc index 1cee9b4fa5dd96bf74c4662d0d8edef34f8f2282..3dfef856c6eeeb93458ee93f7bf4a8c4feb852ac 100644 --- a/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp32/alexnet_cifar10.cc +++ b/hpvm/projects/hpvm-tensor-rt/dnn_sources/src/fp32/alexnet_cifar10.cc @@ -9,9 +9,9 @@ int main() { std::string dir_prefix = model_params_path + std::string("/alexnet_cifar10/"); - std::string input_path = dir_prefix + std::string("input.bin"); - std::string labels_path = dir_prefix + std::string("labels.bin"); - std::string labels32_path = dir_prefix + std::string("labels32.bin"); + std::string input_path = dir_prefix + std::string("test_input.bin"); + //std::string labels_path = dir_prefix + std::string("labels.bin"); + std::string labels32_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); void *conv2d_1_w = readTrainedWeights(conv2d_1_w_path.c_str(), 0, 64, 3, 11, 11); @@ -86,9 +86,9 @@ int main() { void *var_23 = tensorAdd(var_22, dense_1_b); void *var_24 = tensorSoftmax(var_23); - uint8_t *labels = readLabelsBatch(labels_path.c_str(), start, end); + uint32_t *labels = readLabelsBatch3(labels32_path.c_str(), start, end); - float accuracy = computeAccuracy2(labels, batch_size, var_24); + float accuracy = computeAccuracy3(labels, var_24); final_accuracy += accuracy; freeBatchMemory();