diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index bd5edbd1a467666f67c66be132b3a9d9bbd2d540..8bcc4738d02d7f07a497131d74f9a0ff6f119048 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -14,15 +14,20 @@ cache: - hpvm/llvm/ when: always -build: +build-and-test: stage: build tags: - hpvm script: - - pwd - source activate hpvm && cd hpvm + - mv /root/cfe-9.0.0.src.tar.xz /root/llvm-9.0.0.src.tar.xz ./ + - mv /root/model_params ./test/dnn_benchmarks - ./install.sh -j32 -t "X86" DCMAKE_BUILD_TYPE=Release - - cd .. + - cd build + - make -j32 check-hpvm-pass + - make -j32 check-hpvm-dnn + - make -j32 check-hpvm-profiler + - make -j32 check-hpvm-torch2hpvm only: - hpvm-release-exp - merge_requests diff --git a/hpvm/docs/components/hpvm-profiler.rst b/hpvm/docs/components/hpvm-profiler.rst index 8a0e6603d3b7111d2735a86b5db26d7aa834ebb6..820456799ddf0570be6b92564e35077e31fcd3da 100644 --- a/hpvm/docs/components/hpvm-profiler.rst +++ b/hpvm/docs/components/hpvm-profiler.rst @@ -1,6 +1,6 @@ HPVM Profiler API ====================== -.. autofunction:: hpvm_profiler.profile_configs +.. autofunction:: hpvm_profiler.profile_config_file .. autofunction:: hpvm_profiler.plot_hpvm_configs diff --git a/hpvm/docs/getting-started.rst b/hpvm/docs/getting-started.rst index 82a582283e7f7071a77ef55c1e2d9eca5fa9668d..6976fa012112eace8bc842658d5ea28b31ff04b6 100644 --- a/hpvm/docs/getting-started.rst +++ b/hpvm/docs/getting-started.rst @@ -207,14 +207,14 @@ we obtained in the tuning step. .. code-block:: python - from hpvm_profiler import profile_configs, plot_hpvm_configs + from hpvm_profiler import profile_config_file, plot_hpvm_configs # Set `target_binary` to the path of the plain binary. target_binary = "./alexnet2_cifar10/build/alexnet2_cifar10" # Set `config_file` to the config file produced in tuning, such as "hpvm_confs.txt". config_file = "hpvm_confs.txt" out_config_file = "hpvm_confs_profiled.txt" - profile_configs(target_binary, config_file, out_config_file) + profile_config_file(target_binary, config_file, out_config_file) plot_hpvm_configs(out_config_file, "configs_profiled.png") ``hpvm_confs_profiled.txt`` contains the profiled configurations in HPVM format, diff --git a/hpvm/include/SupportHPVM/DFG2LLVM.h b/hpvm/include/SupportHPVM/DFG2LLVM.h index fb1e35033eda0445f10423beb69aab5f07c093f0..c1ade92e9a7201a5c3c80e9302b9bac57c750537 100644 --- a/hpvm/include/SupportHPVM/DFG2LLVM.h +++ b/hpvm/include/SupportHPVM/DFG2LLVM.h @@ -291,6 +291,7 @@ Function *CodeGenTraversal::addArgument(Function *F, Type *Ty, // Return new function with additional index and limit arguments. // The original function is removed from the module and erased. Function *CodeGenTraversal::addIdxDimArgs(Function *F) { + DEBUG(errs() << "Adding dimension and limit arguments to Function: " << F->getName()); DEBUG(errs() << "Function Type: " << *F->getFunctionType() << "\n"); // Add Index and Dim arguments std::string names[] = {"idx_x", "idx_y", "idx_z", "dim_x", "dim_y", "dim_z"}; diff --git a/hpvm/include/SupportHPVM/HPVMUtils.h b/hpvm/include/SupportHPVM/HPVMUtils.h index 781306956dad0eacc85eadaaf60be4c8ce0e7b21..2a5116ddb122b16b28ee45022d7c57409cdce566 100644 --- a/hpvm/include/SupportHPVM/HPVMUtils.h +++ b/hpvm/include/SupportHPVM/HPVMUtils.h @@ -175,14 +175,15 @@ void replaceNodeFunctionInIR(Module &M, Function *F, Function *G) { continue; // Otherwise, replace F with G - DEBUG(errs() << *G->getType() << "\n"); - DEBUG(errs() << *CI->getArgOperand(1)->getType() << "\n"); + DEBUG(errs() << "Fixing use: " << *CI << "\n"); + DEBUG(errs() << "in function: " << Func.getName() << "\n"); CI->setArgOperand(1, G); + DEBUG(errs() << "Fixed use: " << *CI << "\n"); } } for (auto I : toBeErased) { - DEBUG(errs() << "\tErasing " << *I << "\n"); + DEBUG(errs() << "\tErasing Instruction: " << *I << "\n"); I->eraseFromParent(); } } @@ -448,7 +449,7 @@ hpvm::Target getUpdatedTag(hpvm::Target Tag, hpvm::Target T) { // This functions add the hint as metadata in hpvm code void addHint(Function *F, hpvm::Target T) { - errs() << "ADD HINT *************************\n"; + DEBUG(errs() << "ADD HINT *************************\n"); // Get Module Module *M = F->getParent(); DEBUG(errs() << "Set preferred target for " << F->getName() << ": "); @@ -474,7 +475,7 @@ void addHint(Function *F, hpvm::Target T) { break; case hpvm::TENSOR_TARGET: DEBUG(errs() << "PROMISE Target\n"); - errs() << "PROMISE\n"; + DEBUG(errs() << "PROMISE\n"); HintNode = M->getOrInsertNamedMetadata("hpvm_hint_promise"); break; default: diff --git a/hpvm/lib/Transforms/BuildDFG/BuildDFG.cpp b/hpvm/lib/Transforms/BuildDFG/BuildDFG.cpp index e7293a0640b5d7e45614459ed9687768998142a4..b3b46de48260f965782b1fb13bc049d446f51da2 100644 --- a/hpvm/lib/Transforms/BuildDFG/BuildDFG.cpp +++ b/hpvm/lib/Transforms/BuildDFG/BuildDFG.cpp @@ -59,7 +59,7 @@ bool BuildDFG::runOnModule(Module &M) { BuildGraph(Root, F); Root->getChildGraph()->sortChildren(); - viewDFGraph(Root->getChildGraph()); + // viewDFGraph(Root->getChildGraph()); } } } diff --git a/hpvm/lib/Transforms/DFG2LLVM_CPU/DFG2LLVM_CPU.cpp b/hpvm/lib/Transforms/DFG2LLVM_CPU/DFG2LLVM_CPU.cpp index d5904bd83c0eadcbdd912a79443bd7126acc36c5..10667ddeecc7f072222032e930d27fd1f75e7b2d 100644 --- a/hpvm/lib/Transforms/DFG2LLVM_CPU/DFG2LLVM_CPU.cpp +++ b/hpvm/lib/Transforms/DFG2LLVM_CPU/DFG2LLVM_CPU.cpp @@ -1412,7 +1412,7 @@ void CGT_CPU::codeGen(DFLeafNode *N) { break; } case hpvm::CUDNN_TARGET: { - errs() << "CUDNN hint found. Store CUDNN function as CPU funtion.\n"; + DEBUG(errs() << "CUDNN hint found. Store CUDNN function as CPU funtion.\n"); // Make sure there is a generated CPU function for cudnn assert(N->getGenFuncForTarget(hpvm::CUDNN_TARGET) && ""); assert(N->hasCPUGenFuncForTarget(hpvm::CUDNN_TARGET) && ""); @@ -1431,7 +1431,7 @@ void CGT_CPU::codeGen(DFLeafNode *N) { } case hpvm::TENSOR_TARGET: { - errs() << "Promise hint found. Store PROMISE function as CPU funtion.\n"; + DEBUG(errs() << "Promise hint found. Store PROMISE function as CPU funtion.\n"); // Make sure there is a generated x86 function for promise assert(N->getGenFuncForTarget(hpvm::TENSOR_TARGET) && ""); assert(N->hasCPUGenFuncForTarget(hpvm::TENSOR_TARGET) && ""); diff --git a/hpvm/lib/Transforms/DFG2LLVM_CUDNN/DFG2LLVM_CUDNN.cpp b/hpvm/lib/Transforms/DFG2LLVM_CUDNN/DFG2LLVM_CUDNN.cpp index 0559e8136da6bff441e3c1fb0b948bcaaeb954ee..110f8918ef6dbfc748862334b6ed68a9a34d0466 100644 --- a/hpvm/lib/Transforms/DFG2LLVM_CUDNN/DFG2LLVM_CUDNN.cpp +++ b/hpvm/lib/Transforms/DFG2LLVM_CUDNN/DFG2LLVM_CUDNN.cpp @@ -171,8 +171,8 @@ void CGT_CUDNN::initRuntimeAPI() { } void CGT_CUDNN::codeGen(DFInternalNode *N) { - errs() << "Inside node: " << N->getFuncPointer()->getName() << "\n"; - errs() << "Skipping internal node\n"; + DEBUG(errs() << "Inside node: " << N->getFuncPointer()->getName() << "\n"); + DEBUG(errs() << "Skipping internal node\n"); } void CGT_CUDNN::codeGen(DFLeafNode *N) { @@ -191,13 +191,13 @@ void CGT_CUDNN::codeGen(DFLeafNode *N) { // Generate code only if it has the right hint if (!checkPreferredTarget(N, hpvm::CUDNN_TARGET)) { - errs() << "Skipping node: " << N->getFuncPointer()->getName() << "\n"; + DEBUG(errs() << "Skipping node: " << N->getFuncPointer()->getName() << "\n"); return; } // Get the function associated with the dataflow node Function *F = N->getFuncPointer(); - errs() << "function name = " << F->getName() << "\n"; + DEBUG(errs() << "function name = " << F->getName() << "\n"); /* Removing HPVM in/out/inout function attributes */ for (Function::arg_iterator ai = F->arg_begin(), ae = F->arg_end(); ai != ae; @@ -224,7 +224,7 @@ void CGT_CUDNN::codeGen(DFLeafNode *N) { std::string FName(F->getName().data()); F_cudnn = CloneFunction(F, VMap); F_cudnn->setName(FName + "_cudnn"); - errs() << "Cloned function name2 = " << F_cudnn->getName() << "\n"; + DEBUG(errs() << "Cloned function name2 = " << F_cudnn->getName() << "\n"); F_cudnn->removeFromParent(); M.getFunctionList().push_back(F_cudnn); @@ -496,7 +496,7 @@ void CGT_CUDNN::codeGen(DFLeafNode *N) { } else if (II->getIntrinsicID() == Intrinsic::hpvm_tensor_tanh) { // Create cudnn runtime function call FunctionCallee tensorTanh; - errs() << "tensorTanh Call = \n\n"; + DEBUG(errs() << "tensorTanh Call = \n\n"); DECLARE(tensorTanh); // errs()<<"tensorTanh Call = "<<*tensorTanh<<"\l"; CallInst::Create(tensorTanh, Args, "", II); @@ -569,7 +569,7 @@ void CGT_CUDNN::codeGen(DFLeafNode *N) { re = IItoRemove.rend(); ri != re; ++ri) { DEBUG(errs() << "Erasing: " << **ri << "\n"); - errs() << "Erasing: " << **ri << "\n"; + DEBUG(errs() << "Erasing: " << **ri << "\n"); (*ri)->eraseFromParent(); } @@ -577,7 +577,7 @@ void CGT_CUDNN::codeGen(DFLeafNode *N) { } bool DFG2LLVM_CUDNN::runOnModule(Module &M) { - errs() << "\nDFG2LLVM_CUDNN PASS\n"; + DEBUG(errs() << "\nDFG2LLVM_CUDNN PASS\n"); // Get the BuildDFG Analysis Results: // - Dataflow graph @@ -587,7 +587,7 @@ bool DFG2LLVM_CUDNN::runOnModule(Module &M) { InPlaceDFGAnalysis::InPlaceDFGParameter IPP = (getAnalysis<InPlaceDFGAnalysisWrapper>()).getIPP(); // Print results - printInPlaceDFGParameter(IPP); + // printInPlaceDFGParameter(IPP); std::vector<DFInternalNode *> Roots = DFG.getRoots(); diff --git a/hpvm/lib/Transforms/DFG2LLVM_WrapperAPI/DFG2LLVM_WrapperAPI.cpp b/hpvm/lib/Transforms/DFG2LLVM_WrapperAPI/DFG2LLVM_WrapperAPI.cpp index ec5a84cffb31b67cfcc0f9efc7a7c2cc3f4be4a1..c0dbd3899b0f6f31e0cb3d58a501aef7771b8281 100644 --- a/hpvm/lib/Transforms/DFG2LLVM_WrapperAPI/DFG2LLVM_WrapperAPI.cpp +++ b/hpvm/lib/Transforms/DFG2LLVM_WrapperAPI/DFG2LLVM_WrapperAPI.cpp @@ -265,7 +265,7 @@ public: void InitialState::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "INITIAL STATE\n"; + DEBUG(errs() << "INITIAL STATE\n"); switch (II->getIntrinsicID()) { case Intrinsic::hpvm_tensor_convolution: { Mch->addIntrinsicInst(II); @@ -273,7 +273,7 @@ void InitialState::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { Mch->addArgument(II->getOperand(1)); // conv kernel Mch->setCurrent(new ConvolutionLayer_1()); - errs() << "TO CONVOLUTION LAYER 1\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 1\n"); } break; case Intrinsic::hpvm_tensor_mul: { Mch->addIntrinsicInst(II); @@ -281,7 +281,7 @@ void InitialState::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { Mch->addArgument(II->getOperand(1)); // 2nd gemm input Mch->setCurrent(new FullyConnectedLayer_1()); - errs() << "TO FULLY CONNECTED LAYER 1\n"; + DEBUG(errs() << "TO FULLY CONNECTED LAYER 1\n"); } break; case Intrinsic::hpvm_node_id: { @@ -304,36 +304,36 @@ void InitialState::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { Mch->addIntrinsicToRemove(II); Mch->setCurrent(new InitialState()); - errs() << "TO INIT STATE\n"; + DEBUG(errs() << "TO INIT STATE\n"); } break; default: // Other HPVM intrinsic { Mch->addIntrinsicInst(II); Mch->setCurrent(new SingleTensorOperation()); - errs() << "TO SINGLE OP\n"; + DEBUG(errs() << "TO SINGLE OP\n"); } break; } delete this; } // else {} // No HPVM intrinsic received. Remain at initial - errs() << "TO NO CHANGE\n"; + DEBUG(errs() << "TO NO CHANGE\n"); } void SingleTensorOperation::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "SINGLE TENSOR OP\n"; + DEBUG(errs() << "SINGLE TENSOR OP\n"); Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); delete this; } - errs() << "NO CHANGE\n"; + DEBUG(errs() << "NO CHANGE\n"); } void FullyConnectedLayer_1::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "FULLY CONNECTED LAYER 1\n"; + DEBUG(errs() << "FULLY CONNECTED LAYER 1\n"); switch (II->getIntrinsicID()) { case Intrinsic::hpvm_tensor_add: { IntrinsicInst *MulII = Mch->getIntrinsicInstAt(0); @@ -344,16 +344,16 @@ void FullyConnectedLayer_1::transition(CodeGenStateMachine *Mch, Mch->addArgument(II->getOperand(1)); // bias Mch->setCurrent(new FullyConnectedLayer_2()); - errs() << "TO FULLY CONNECTED LAYER 2\n"; + DEBUG(errs() << "TO FULLY CONNECTED LAYER 2\n"); } break; default: Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATERN\n"; + DEBUG(errs() << "TO NO PATERN\n"); break; } } else { Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATERN\n"; + DEBUG(errs() << "TO NO PATERN\n"); } delete this; } @@ -361,7 +361,7 @@ void FullyConnectedLayer_1::transition(CodeGenStateMachine *Mch, void FullyConnectedLayer_2::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "FULLY CONNECTED LAYER 2\n"; + DEBUG(errs() << "FULLY CONNECTED LAYER 2\n"); switch (II->getIntrinsicID()) { case Intrinsic::hpvm_tensor_tanh: { // Type of activation : TanH @@ -371,7 +371,7 @@ void FullyConnectedLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new FullyConnectedLayer_3()); - errs() << "TO FULLY CONNECTED LAYER 3\n"; + DEBUG(errs() << "TO FULLY CONNECTED LAYER 3\n"); } break; case Intrinsic::hpvm_tensor_relu: { // Type of activation : ReLU @@ -381,7 +381,7 @@ void FullyConnectedLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new FullyConnectedLayer_3()); - errs() << "TO FULLY CONNECTED LAYER 3\n"; + DEBUG(errs() << "TO FULLY CONNECTED LAYER 3\n"); } break; case Intrinsic::hpvm_tensor_clipped_relu: { // Type of activation : Clipped ReLU @@ -391,11 +391,11 @@ void FullyConnectedLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new FullyConnectedLayer_3()); - errs() << "TO FULLY CONNECTED LAYER 3\n"; + DEBUG(errs() << "TO FULLY CONNECTED LAYER 3\n"); } break; default: // No activation, but HPVM intrinsic Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); break; } } else { // End of instruction stream @@ -404,7 +404,7 @@ void FullyConnectedLayer_2::transition(CodeGenStateMachine *Mch, ConstantInt::get(Type::getInt32Ty(Mch->getModule()->getContext()), -1)); Mch->setCurrent(new FullyConnectedLayer()); - errs() << "TO FULLY CONNECTED LAYER\n"; + DEBUG(errs() << "TO FULLY CONNECTED LAYER\n"); } delete this; } @@ -412,12 +412,12 @@ void FullyConnectedLayer_2::transition(CodeGenStateMachine *Mch, void FullyConnectedLayer_3::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (!II) { // End of instruction stream - errs() << "FULLY CONNECTED LAYER 3\n"; + DEBUG(errs() << "FULLY CONNECTED LAYER 3\n"); Mch->setCurrent(new FullyConnectedLayer()); - errs() << "TO FULLY CONNECTED LAYER\n"; + DEBUG(errs() << "TO FULLY CONNECTED LAYER\n"); } else { Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); } delete this; } @@ -425,18 +425,18 @@ void FullyConnectedLayer_3::transition(CodeGenStateMachine *Mch, void FullyConnectedLayer::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "FULLY CONNECTED LAYER\n"; + DEBUG(errs() << "FULLY CONNECTED LAYER\n"); Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); delete this; } - errs() << "TO NO CHANGE\n"; + DEBUG(errs() << "TO NO CHANGE\n"); } void ConvolutionLayer_1::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "CONVOLUTION LAYER 1\n"; + DEBUG(errs() << "CONVOLUTION LAYER 1\n"); switch (II->getIntrinsicID()) { case Intrinsic::hpvm_tensor_add: { IntrinsicInst *ConvII = Mch->getIntrinsicInstAt(0); @@ -452,11 +452,11 @@ void ConvolutionLayer_1::transition(CodeGenStateMachine *Mch, Mch->addArgument(ConvII->getOperand(5)); // 4th numeric arg of conv Mch->setCurrent(new ConvolutionLayer_2()); - errs() << "TO CONVOLUTION LAYER 2\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 2\n"); } break; default: Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); break; } } else { @@ -497,7 +497,7 @@ void ConvolutionLayer_1::transition(CodeGenStateMachine *Mch, ConstantInt::get(Type::getInt32Ty(Mch->getModule()->getContext()), -1)); Mch->setCurrent(new ConvolutionLayer()); - errs() << "TO CONVOLUTION LAYER\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER\n"); } delete this; } @@ -505,7 +505,7 @@ void ConvolutionLayer_1::transition(CodeGenStateMachine *Mch, void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "CONVOLUTION LAYER 2\n"; + DEBUG(errs() << "CONVOLUTION LAYER 2\n"); switch (II->getIntrinsicID()) { case Intrinsic::hpvm_tensor_tanh: { // Type of activation : TanH @@ -515,7 +515,7 @@ void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new ConvolutionLayer_3()); - errs() << "TO CONVOLUTION LAYER 3\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 3\n"); } break; case Intrinsic::hpvm_tensor_relu: { // Type of activation : ReLU @@ -525,7 +525,7 @@ void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new ConvolutionLayer_3()); - errs() << "TO CONVOLUTION LAYER 3\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 3\n"); } break; case Intrinsic::hpvm_tensor_clipped_relu: { // Type of activation : Clipped ReLU @@ -535,7 +535,7 @@ void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new ConvolutionLayer_3()); - errs() << "TO CONVOLUTION LAYER 3\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 3\n"); } break; case Intrinsic::hpvm_tensor_pool_max: { // pool max @@ -552,7 +552,7 @@ void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new ConvolutionLayer_4()); - errs() << "TO CONVOLUTION LAYER 4\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 4\n"); } break; case Intrinsic::hpvm_tensor_pool_min: { // pool min FIXME: 2: supported? @@ -569,7 +569,7 @@ void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new ConvolutionLayer_4()); - errs() << "TO CONVOLUTION LAYER 4\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 4\n"); } break; case Intrinsic::hpvm_tensor_pool_mean: { // pool mean @@ -586,11 +586,11 @@ void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, Mch->addIntrinsicInst(II); Mch->setCurrent(new ConvolutionLayer_4()); - errs() << "TO CONVOLUTION LAYER 4\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 4\n"); } break; default: // No activation, No pooling, but HPVM intrinsic Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); break; } } else { // End of instruction stream @@ -607,7 +607,7 @@ void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, ConstantInt::get(Type::getInt32Ty(Mch->getModule()->getContext()), -1)); Mch->setCurrent(new ConvolutionLayer()); - errs() << "TO CONVOLUTION LAYER\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER\n"); } delete this; } @@ -615,7 +615,7 @@ void ConvolutionLayer_2::transition(CodeGenStateMachine *Mch, void ConvolutionLayer_3::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "CONVOLUTION LAYER 3\n"; + DEBUG(errs() << "CONVOLUTION LAYER 3\n"); switch (II->getIntrinsicID()) { case Intrinsic::hpvm_tensor_pool_max: { // pool max @@ -644,7 +644,7 @@ void ConvolutionLayer_3::transition(CodeGenStateMachine *Mch, } Mch->setCurrent(new ConvolutionLayer_4()); - errs() << "TO CONVOLUTION LAYER 4\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 4\n"); } break; case Intrinsic::hpvm_tensor_pool_min: { // pool min FIXME: 2: supported? @@ -674,7 +674,7 @@ void ConvolutionLayer_3::transition(CodeGenStateMachine *Mch, } Mch->setCurrent(new ConvolutionLayer_4()); - errs() << "TO CONVOLUTION LAYER 4\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 4\n"); } break; case Intrinsic::hpvm_tensor_pool_mean: { // pool max @@ -703,11 +703,11 @@ void ConvolutionLayer_3::transition(CodeGenStateMachine *Mch, } Mch->setCurrent(new ConvolutionLayer_4()); - errs() << "TO CONVOLUTION LAYER 4\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER 4\n"); } break; default: // No pooling, but HPVM intrinsic Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); break; } } else { // End of instruction stream @@ -736,7 +736,7 @@ void ConvolutionLayer_3::transition(CodeGenStateMachine *Mch, } Mch->setCurrent(new ConvolutionLayer()); - errs() << "TO CONVOLUTION LAYER\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER\n"); } delete this; } @@ -744,24 +744,24 @@ void ConvolutionLayer_3::transition(CodeGenStateMachine *Mch, void ConvolutionLayer_4::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (!II) { // End of instruction stream - errs() << "CONVOLUTION LAYER 4\n"; + DEBUG(errs() << "CONVOLUTION LAYER 4\n"); Mch->setCurrent(new ConvolutionLayer()); - errs() << "TO CONVOLUTION LAYER\n"; + DEBUG(errs() << "TO CONVOLUTION LAYER\n"); } else { Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); } delete this; } void ConvolutionLayer::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) { if (II) { // Not end of instruction stream - errs() << "CONVOLUTION LAYER\n"; + DEBUG(errs() << "CONVOLUTION LAYER\n"); Mch->setCurrent(new NoPattern()); - errs() << "TO NO PATTERN\n"; + DEBUG(errs() << "TO NO PATTERN\n"); delete this; } - errs() << "NO CHANGE\n"; + DEBUG(errs() << "NO CHANGE\n"); } void NoPattern::transition(CodeGenStateMachine *Mch, IntrinsicInst *II) {} @@ -779,8 +779,8 @@ void CodeGenStateMachine::codeGen( DFNode *N, Function *F, const StringRef &strRef, InPlaceDFGAnalysis::InPlaceDFGParameter &IPP) { - errs() << "TRANSITIONTED TO: " << std::to_string(current->getStateID()) - << "\n"; + DEBUG(errs() << "TRANSITIONTED TO: " << std::to_string(current->getStateID()) + << "\n"); assert( ((current->getStateID() == AbstractState::ID::FULLY_CONNECTED_LAYER) || (current->getStateID() == AbstractState::ID::CONVOLUTION_LAYER) || @@ -894,7 +894,7 @@ void CodeGenStateMachine::codeGen( "Unexpected arguments found in coge gen state machine.\n"); IntrinsicInst *TensorII = IIs[0]; - errs() << "TensorII: " << *TensorII << "\n"; + DEBUG(errs() << "TensorII: " << *TensorII << "\n"); switch (TensorII->getIntrinsicID()) { case Intrinsic:: @@ -1330,8 +1330,8 @@ void CGT_WrapperAPI::initRuntimeAPI() { } void CGT_WrapperAPI::codeGen(DFInternalNode *N) { - errs() << "Inside node: " << N->getFuncPointer()->getName() << "\n"; - errs() << "Skipping internal node\n"; + DEBUG(errs() << "Inside node: " << N->getFuncPointer()->getName() << "\n"); + DEBUG(errs() << "Skipping internal node\n"); } void CGT_WrapperAPI::codeGen(DFLeafNode *N) { @@ -1350,11 +1350,11 @@ void CGT_WrapperAPI::codeGen(DFLeafNode *N) { // Increment the node ID, for current node. ++nodeID; - errs() << "Node ID string: " << StringRef(std::to_string(nodeID)) << "\n"; + DEBUG(errs() << "Node ID string: " << StringRef(std::to_string(nodeID)) << "\n"); // Get the function associated with the dataflow node Function *F = N->getFuncPointer(); - errs() << "Node Function: " << *F << "\n"; + DEBUG(errs() << "Node Function: " << *F << "\n"); // Look up if we have visited this function before. If we have, then just // get the cloned function pointer from DFNode. Otherwise, create the cloned // function and add it to the DFNode GenFunc. @@ -1418,10 +1418,10 @@ void CGT_WrapperAPI::codeGen(DFLeafNode *N) { for (inst_iterator i = inst_begin(F_wrapper_api), e = inst_end(F_wrapper_api); i != e; ++i) { Instruction *I = &(*i); - errs() << "PRINT INST: " << *I << "\n"; + DEBUG(errs() << "PRINT INST: " << *I << "\n"); CGM.transition(dyn_cast<IntrinsicInst>(I)); } - errs() << "CLONED FUNCTION: " << *F_wrapper_api << "\n"; + DEBUG(errs() << "CLONED FUNCTION: " << *F_wrapper_api << "\n"); // errs() << "Node ID string: "<< StringRef(std::to_string(nodeID)) << "\n"; // CGM.codeGen(N, F_wrapper_api, N->getFuncPointer()->getName(), *IPP); CGM.codeGen(N, F_wrapper_api, StringRef(std::to_string(nodeID)), *IPP); @@ -1431,7 +1431,7 @@ void CGT_WrapperAPI::codeGen(DFLeafNode *N) { bool DFG2LLVM_WrapperAPI::runOnModule(Module &M) { - errs() << "\nDFG2LLVM_WrapperAPI PASS\n"; + DEBUG(errs() << "\nDFG2LLVM_WrapperAPI PASS\n"); // Get the BuildDFG Analysis Results: // - Dataflow graph BuildDFG &DFG = getAnalysis<BuildDFG>(); diff --git a/hpvm/lib/Transforms/FuseHPVMTensorNodes/FuseHPVMTensorNodes.cpp b/hpvm/lib/Transforms/FuseHPVMTensorNodes/FuseHPVMTensorNodes.cpp index 5117cc23d30a7392ee53107e63e7c2d13a4f9692..616b8a9b572473ed4acb2f2316d88f41a06e434a 100644 --- a/hpvm/lib/Transforms/FuseHPVMTensorNodes/FuseHPVMTensorNodes.cpp +++ b/hpvm/lib/Transforms/FuseHPVMTensorNodes/FuseHPVMTensorNodes.cpp @@ -101,7 +101,7 @@ static IntrinsicInst *isValidHPVMTensorNode(DFNode *N) { if (dyn_cast<IntrinsicInst>(&*I)) { II = dyn_cast<IntrinsicInst>(&*I); if ((II->getCalledFunction()->getName()).startswith("llvm.hpvm.tensor")) { - errs() << "** Tensor Intrinsic = " << *II << "\n"; + DEBUG(errs() << "** Tensor Intrinsic = " << *II << "\n"); } } } @@ -134,7 +134,7 @@ static DFNode *findNextNodeInSequence(DFNode *SrcN) { if (!DstN) DstN = N; if (DstN != N) { - errs() << "Found different destination nodes: no node sequence.\n"; + DEBUG(errs() << "Found different destination nodes: no node sequence.\n"); return NULL; } } @@ -767,7 +767,7 @@ void FuseHPVMTensorNodes::FuseHPVMTensorNodeSequence( } if (IIs.size() < 2) { - errs() << "Warning: Attempted to fuse fewer than 2 nodes\n"; + DEBUG(errs() << "Warning: Attempted to fuse fewer than 2 nodes\n"); return; } @@ -792,17 +792,17 @@ void FuseHPVMTensorNodes::run(Module &M, FusionTargets &FTs) { // Print Fusion Targets. The argument vector contains createNode intrinsics // of nodes to be fused). void FuseHPVMTensorNodes::printFusionTargets(FusionTargets &FTs) { - errs() << "Print Fusion Targets\n"; - errs() << "Found " << FTs.size() << " targets\n"; + DEBUG(errs() << "Print Fusion Targets\n"); + DEBUG(errs() << "Found " << FTs.size() << " targets\n"); for (FuseHPVMTensorNodes::FusionTargets::iterator ii = FTs.begin(), ie = FTs.end(); ii != ie; ++ii) { - errs() << "Target:\n"; + DEBUG(errs() << "Target:\n"); std::vector<IntrinsicInst *> IIv = *ii; for (std::vector<IntrinsicInst *>::iterator pi = IIv.begin(), pe = IIv.end(); pi != pe; ++pi) { - errs() << "\t" << *((*pi)->getOperand(0)) << "\n"; + DEBUG(errs() << "\t" << *((*pi)->getOperand(0)) << "\n"); } } return; @@ -817,19 +817,19 @@ void FindFusionTargetsTraversal::codeGen(DFInternalNode *N) { void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { DEBUG(errs() << "Inside leaf node: " << N->getFuncPointer()->getName() << "\n"); - errs() << "FUSE TARGETS AT LEAF NODE\n"; + DEBUG(errs() << "FUSE TARGETS AT LEAF NODE\n"); // Skip fusion check if it is a dummy node if (N->isDummyNode()) { DEBUG(errs() << "Skipping dummy node\n"); return; } - errs() << "THIS IS NOT A DUMMY NODE\n"; - errs() << "INTRINSIC: " << *isValidHPVMTensorNode(N) << "\n"; + DEBUG(errs() << "THIS IS NOT A DUMMY NODE\n"); + DEBUG(errs() << "INTRINSIC: " << *isValidHPVMTensorNode(N) << "\n"); if (!preferredTargetIncludes(N, hpvm::TENSOR_TARGET)) { // Only fuse if we plan to target PROMISE/Layers API // The CUDNN backend would be able to generate calls for the fused node, // but not the other way around - errs() << "NO PROMISE HINT. SKIPPING NODE.\n"; + DEBUG(errs() << "NO PROMISE HINT. SKIPPING NODE.\n"); DEBUG(errs() << "No PROMISE hint. Skipping node: " << N->getFuncPointer()->getName() << "\n"); return; @@ -852,7 +852,7 @@ void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { */ case Intrinsic::hpvm_tensor_convolution: { - errs() << "INSTRUCTION: " << *II << "\n"; + DEBUG(errs() << "INSTRUCTION: " << *II << "\n"); // Found beginning of pattern conv-bias-activation-pooling. // Look for the rest @@ -861,20 +861,20 @@ void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { // Look for bias DFNode *SN = findNextNodeInSequence(N); if (!SN) { - errs() << "DID NOT FIND ADD IN NODE SEQUENCE\n"; + DEBUG(errs() << "DID NOT FIND ADD IN NODE SEQUENCE\n"); return; // Did not find a node sequence starting at N. Simpy return. } if (getPreferredTarget(SN) != StartNodePreferredTarget) { - errs() << "NODE IN SEQUENCE HAS DIFFERENT HINT\n"; + DEBUG(errs() << "NODE IN SEQUENCE HAS DIFFERENT HINT\n"); return; // Node in sequence has different hint. Simpy return. } IntrinsicInst *SII = isValidHPVMTensorNode(SN); if (SII->getIntrinsicID() != Intrinsic::hpvm_tensor_add) { - errs() << "SUCCESSOR IS NOT A BIAS OPERATION\n"; + DEBUG(errs() << "SUCCESSOR IS NOT A BIAS OPERATION\n"); // Successor is not the bias operation, thus does not fit the pattern. return; } - errs() << "SUCCESSOR IS A BIAS OPERATION\n"; + DEBUG(errs() << "SUCCESSOR IS A BIAS OPERATION\n"); // Otherwise, push this node to the current sequence CurrentNodeSequence.push_back(SN->getInstruction()); @@ -884,15 +884,15 @@ void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { // tanh) SN = findNextNodeInSequence(SN); if (!SN) { - errs() << "DID NOT FIND POOLING AND ACTIVATION NODE SEQUENCE\n"; + DEBUG(errs() << "DID NOT FIND POOLING AND ACTIVATION NODE SEQUENCE\n"); // Did not find a node sequence starting at N.Use current sequence. break; } if (getPreferredTarget(SN) != StartNodePreferredTarget) { - errs() << "NODE IN SEQUENCE HAS DIFFERENT HINT\n"; + DEBUG(errs() << "NODE IN SEQUENCE HAS DIFFERENT HINT\n"); break; // Node in sequence has different hint. Use current sequence. } - errs() << "SUCCESSOR IS A ACTIVATION OR POOLING OPERATION\n"; + DEBUG(errs() << "SUCCESSOR IS A ACTIVATION OR POOLING OPERATION\n"); SII = isValidHPVMTensorNode(SN); if ((SII->getIntrinsicID() == Intrinsic::hpvm_tensor_clipped_relu) || @@ -900,15 +900,15 @@ void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { (SII->getIntrinsicID() == Intrinsic::hpvm_tensor_tanh)) { // Successor is activation. Push this node to the current sequence. CurrentNodeSequence.push_back(SN->getInstruction()); - errs() << "SUCCESSOR IS AN ACTIVATION OPERATION\n"; + DEBUG(errs() << "SUCCESSOR IS AN ACTIVATION OPERATION\n"); // Will continue, looking for pooling in the next node SN = findNextNodeInSequence(SN); if (!SN) { - errs() << "DID NOT FIND POOLING NODE SEQUENCE\n"; + DEBUG(errs() << "DID NOT FIND POOLING NODE SEQUENCE\n"); break; // No node in sequence. Use currently found sequence. } if (getPreferredTarget(SN) != StartNodePreferredTarget) { - errs() << "NODE IN SEQUENCE HAS DIFFERENT HINT\n"; + DEBUG(errs() << "NODE IN SEQUENCE HAS DIFFERENT HINT\n"); break; // Node in sequence has different hint. Use current sequence. } SII = isValidHPVMTensorNode(SN); @@ -917,7 +917,7 @@ void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { if ((SII->getIntrinsicID() == Intrinsic::hpvm_tensor_pool_max) || (SII->getIntrinsicID() == Intrinsic::hpvm_tensor_pool_min) || (SII->getIntrinsicID() == Intrinsic::hpvm_tensor_pool_mean)) { - errs() << "SUCCESSOR IS A POOLING OPERATION\n"; + DEBUG(errs() << "SUCCESSOR IS A POOLING OPERATION\n"); // Successor is a pool operation. Use currently found sequence. CurrentNodeSequence.push_back(SN->getInstruction()); } @@ -928,20 +928,20 @@ void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { // Look for bias DFNode *SN = findNextNodeInSequence(N); if (!SN) { - errs() << "DID NOT FIND ADD IN NODE SEQUENCE\n"; + DEBUG(errs() << "DID NOT FIND ADD IN NODE SEQUENCE\n"); return; // Did not find a node sequence starting at N. Simpy return. } if (getPreferredTarget(SN) != StartNodePreferredTarget) { - errs() << "HINT DO NOT MATCH IN NODE SEQUENCE\n"; + DEBUG(errs() << "HINT DO NOT MATCH IN NODE SEQUENCE\n"); return; // Node in sequence has different hint. Simpy return. } IntrinsicInst *SII = isValidHPVMTensorNode(SN); if (SII->getIntrinsicID() != Intrinsic::hpvm_tensor_add) { - errs() << "SUCCESSOR IS NOT IS BIAS OPERATION\n"; + DEBUG(errs() << "SUCCESSOR IS NOT IS BIAS OPERATION\n"); // Successor is not the bias operation, thus does not fit the pattern. return; } - errs() << "SUCCESSOR IS BIAS OPERATION\n"; + DEBUG(errs() << "SUCCESSOR IS BIAS OPERATION\n"); // Otherwise, push this node to the current sequence CurrentNodeSequence.push_back(SN->getInstruction()); // This is a possible fuse target, gemm-add. @@ -958,7 +958,7 @@ void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { if ((SII->getIntrinsicID() == Intrinsic::hpvm_tensor_clipped_relu) || (SII->getIntrinsicID() == Intrinsic::hpvm_tensor_relu) || (SII->getIntrinsicID() == Intrinsic::hpvm_tensor_tanh)) { - errs() << "SUCCESSOR IS ACTIVATION OPERATION\n"; + DEBUG(errs() << "SUCCESSOR IS ACTIVATION OPERATION\n"); // We found activation in sequence. Push in vector as well. CurrentNodeSequence.push_back(SN->getInstruction()); } @@ -980,7 +980,7 @@ void FindFusionTargetsTraversal::codeGen(DFLeafNode *N) { bool FuseHPVMTensorNodesWrapper::runOnModule(Module &M) { - errs() << "\nFUSE HPVM TENSOR NODES PASS\n"; + DEBUG(errs() << "\nFUSE HPVM TENSOR NODES PASS\n"); // Get the BuildDFG Analysis Results: // - Dataflow graph BuildDFG &DFG = getAnalysis<BuildDFG>(); @@ -993,7 +993,7 @@ bool FuseHPVMTensorNodesWrapper::runOnModule(Module &M) { // Visit each DFG only once std::set<Function *> Visited; - errs() << "Find targets\n"; + DEBUG(errs() << "Find targets\n"); // Iterate over all the DFGs and produce code for each one of them for (auto rootNode : Roots) { @@ -1007,7 +1007,7 @@ bool FuseHPVMTensorNodesWrapper::runOnModule(Module &M) { Visited.insert(rootFunc); } - errs() << "Finished visiting DFGs ...\n"; + DEBUG(errs() << "Finished visiting DFGs ...\n"); FuseHPVMTensorNodes::FusionTargets &FTs = FTTVisitor->getFusionTargets(); FuseHPVMTensorNodes Fuse; diff --git a/hpvm/lib/Transforms/GenHPVM/GenHPVM.cpp b/hpvm/lib/Transforms/GenHPVM/GenHPVM.cpp index 12f6abc34005f3ec84a2fbc54e9f8e65e8adbf48..eda655e3196450ee94ab44a70d500a1188007a66 100644 --- a/hpvm/lib/Transforms/GenHPVM/GenHPVM.cpp +++ b/hpvm/lib/Transforms/GenHPVM/GenHPVM.cpp @@ -382,7 +382,7 @@ bool GenHPVM::runOnModule(Module &M) { assert(isa<ConstantInt>(CI->getArgOperand(0)) && "Argument to hint must be constant integer!"); ConstantInt *hint = cast<ConstantInt>(CI->getArgOperand(0)); - errs() << "HINT INSTRUCTION: " << *I << "\n"; + DEBUG(errs() << "HINT INSTRUCTION: " << *I << "\n"); hpvm::Target t = (hpvm::Target)hint->getZExtValue(); addHint(CI->getParent()->getParent(), t); DEBUG(errs() << "Found hpvm hint call: " << *CI << "\n"); diff --git a/hpvm/lib/Transforms/InPlaceDFG/InPlaceDFGAnalysis.cpp b/hpvm/lib/Transforms/InPlaceDFG/InPlaceDFGAnalysis.cpp index db5a1f5fe092ee7757ad0750bb089218c009955b..dcef54fb2662e3f2dff3d09b43b0791799df5ebc 100644 --- a/hpvm/lib/Transforms/InPlaceDFG/InPlaceDFGAnalysis.cpp +++ b/hpvm/lib/Transforms/InPlaceDFG/InPlaceDFGAnalysis.cpp @@ -152,7 +152,7 @@ bool InPlaceDFGAnalysisWrapper::runOnModule(Module &M) { /*** Methods of InPlaceDFGAnalysis ***/ void InPlaceDFGAnalysis::run(Module &M, BuildDFG &DFG, InPlaceDFGParameter &IPP) { - errs() << "\nIN PLACE ANALYSIS PASS\n"; + DEBUG(errs() << "\nIN PLACE ANALYSIS PASS\n"); std::vector<DFInternalNode*> Roots = DFG.getRoots(); diff --git a/hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py b/hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py index 4e91fbbe4a4af2c16b7583443360a09d88b0ac61..baaf645cb9f5a1c0f7f71a9d9b01269206a9cf18 100644 --- a/hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py +++ b/hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py @@ -1,19 +1,18 @@ -from dataclasses import dataclass from pathlib import Path from subprocess import PIPE, CalledProcessError from typing import Iterable, List, Tuple, Union import matplotlib.pyplot as plt -from tqdm import trange PathLike = Union[Path, str] conf_opening, conf_closing = "+++++", "-----" -def profile_configs( +def profile_config_file( binary_path: PathLike, config_path: PathLike, output_config_path: PathLike, + progress_bar: bool = True, profile_filename: str = "profile_info.txt", qos_filename: str = "final_accuracy", ) -> None: @@ -33,39 +32,69 @@ def profile_configs( It contains a single float number as the QoS of this run. This defaults to "final_accuracy" and should not be changed for HPVM binaries. """ - - from subprocess import check_call - from tempfile import NamedTemporaryFile - # Read first line ("the float") and configs in config file header, configs = read_hpvm_configs(Path(config_path)) if not configs: raise ValueError("Config file with no configs is unsupported.") - temp_file = NamedTemporaryFile("w") - baseline_time, baseline_acc = None, None - for idx in trange(len(configs), desc="Configs profiled"): - config = configs[idx] - # Write config to temp config file - write_hpvm_config(header, [config], Path(temp_file.name)) - # Run binary_path binary, - # which generates `profile_filename` and `qos_filename` file in cwd. - try: - check_call([str(binary_path), "-c", str(temp_file.name)]) - except CalledProcessError as e: - print("Output from the program:") - print(e.output) - raise e - # Read these two files for time and QoS info. - time = _read_profile_file(Path(profile_filename)) - acc = _read_qos_file(Path(qos_filename)) - if idx == 0: - baseline_time, baseline_acc = time, acc - continue - assert baseline_time is not None and baseline_acc is not None + # Modifies configs in place. + profile_configs( + binary_path, + configs[1:], + configs[0], + progress_bar, + profile_filename, + qos_filename, + ) + write_hpvm_configs(header, configs, Path(output_config_path)) + + +def profile_configs( + binary_path: PathLike, + configs: Iterable["Config"], + baseline_config: "Config", + progress_bar: bool = True, + profile_filename: str = "profile_info.txt", + qos_filename: str = "final_accuracy", +) -> None: + """Profile a sequence of HPVM configs. + This function modifies argument `configs` in place.""" + + from tqdm import tqdm + + baseline_time, baseline_acc = measure_config(binary_path, baseline_config) + iterable = tqdm(configs, desc="Configs profiled") if progress_bar else configs + for config in iterable: + time, acc = measure_config(binary_path, config, profile_filename, qos_filename) speedup = baseline_time / time config.update_profile_results(speedup, acc, baseline_acc) - write_hpvm_config(header, configs, Path(output_config_path)) + return configs + + +def measure_config( + binary_path: PathLike, + config: "Config", + profile_filename: str = "profile_info.txt", + qos_filename: str = "final_accuracy", +): + from subprocess import check_call + from tempfile import NamedTemporaryFile + import os + + temp_file = NamedTemporaryFile("w") + write_hpvm_configs("0.0", [config], Path(temp_file.name)) + # Run binary_path binary, + # which generates `profile_filename` and `qos_filename` file in cwd. + try: + with open(os.devnull, "w") as f: + check_call([str(binary_path), "-c", str(temp_file.name)], stdout=f) + except CalledProcessError as e: + print("Output from the program:") + print(e.output) + raise e + time = _read_profile_file(Path(profile_filename)) + acc = _read_qos_file(Path(qos_filename)) temp_file.close() + return time, acc def plot_hpvm_configs( @@ -102,19 +131,27 @@ def plot_hpvm_configs( return fig -@dataclass class Config: - conf_name: str - speedup: float - energy: float - qos: float - qos_loss: float - # We don't care about the information in this part, and we don't parse this. - config_body: List[str] + def __init__( + self, + conf_name: str, + speedup: float, + energy: float, + qos: float, + qos_loss: float, + config_body: List[str], + ): + self.conf_name = conf_name + self.speedup = speedup + self.energy = energy + self.qos = qos + self.qos_loss = qos_loss + # We don't care about the information in this part, and we don't parse this. + self.config_body = config_body def update_profile_results(self, speedup: float, qos: float, base_qos: float): recorded_base_qos = self.qos + self.qos_loss - if abs(recorded_base_qos - base_qos) > 0.02: + if abs(recorded_base_qos - base_qos) > 0.025: raise ValueError( f"Baseline QoS mismatch. Original: {recorded_base_qos}, measured: {base_qos}" ) @@ -157,15 +194,13 @@ def read_hpvm_configs(config_file: PathLike) -> Tuple[str, List[Config]]: return header, ret_configs -def write_hpvm_config(header: str, configs: Iterable[Config], to_file: PathLike): - +def write_hpvm_configs(header: str, configs: Iterable[Config], to_file: PathLike): text_segs = [header] + [str(config) for config in configs] with open(to_file, "w") as f: f.write("\n".join(text_segs)) f.flush() - def _read_profile_file(profile_file_path: Path): with profile_file_path.open() as f: target_lines = [line.strip() for line in f if "Total Time" in line] diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/compile.py b/hpvm/projects/torch2hpvm/torch2hpvm/compile.py index 172448a60d4f65fc4aafc09c9a76d9cb492ff7b0..d53776b363595dd10b8f46f792474b941f444f2b 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/compile.py +++ b/hpvm/projects/torch2hpvm/torch2hpvm/compile.py @@ -173,6 +173,8 @@ class ModelExporter: args = [ "hpvm-clang", + "-O3", + "-fno-exceptions", str(self.codefile), str(output_binary), *self.compile_args, diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/graph_ir.py b/hpvm/projects/torch2hpvm/torch2hpvm/graph_ir.py index a088e6eae5c7cd8fb3db62f5046aa5d9ac945726..5c248f829adef15093b853891927f353aca30c4b 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/graph_ir.py +++ b/hpvm/projects/torch2hpvm/torch2hpvm/graph_ir.py @@ -198,12 +198,6 @@ class _Pool2DNode(DFGNode, abc.ABC): [self.pool_type, *self.kernel_shape, *self.pads, *self.strides,], ) - def hpvm_codegen(self): - return ( - "__hpvm__tensor_pool_max", - [*self.kernel_shape, *self.pads, *self.strides], - ) - def get_flops(self) -> int: input0 = self.input_shapes[0] return np.prod(input0) if input0 else 0 @@ -214,12 +208,24 @@ class MaxPool2DNode(_Pool2DNode): op_type = "MaxPool2D" hpvm_op_type = "maxpool" + def hpvm_codegen(self): + return ( + "__hpvm__tensor_pool_max", + [*self.kernel_shape, *self.pads, *self.strides], + ) + class AveragePool2DNode(_Pool2DNode): pool_type = "1" op_type = "AveragePool2D" hpvm_op_type = "avgpool" + def hpvm_codegen(self): + return ( + "__hpvm__tensor_pool_mean", + [*self.kernel_shape, *self.pads, *self.strides], + ) + class BiasAddNode(DFGNode): op_type = "BiasAdd" diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in index 1f6dd875ffa6b39ab57609d7690c9a9ad3944b44..fa252a3e0ce063697d56e771afbfbde69d0c5641 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in +++ b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in @@ -1,6 +1,5 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> {% for node in nodes %} diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in index 94a8e0a534c04b323b4b66f369ab2d624a2a745f..8074704ece0988d7897c1e93b41f1ea3c43deb35 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in +++ b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in @@ -2,7 +2,6 @@ #include <string> #include <array> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> // For writing binary to file descriptors diff --git a/hpvm/scripts/hpvm_installer.py b/hpvm/scripts/hpvm_installer.py index cce8b3f07928d9ab096df3166bd02f4e6f8e1f5d..c9d94523301e1847c7fd8227700d7542a3db1e06 100755 --- a/hpvm/scripts/hpvm_installer.py +++ b/hpvm/scripts/hpvm_installer.py @@ -87,6 +87,9 @@ def parse_args(args=None): parser.add_argument( "-r", "--run-tests", action="store_true", help="Build and run test cases" ) + parser.add_argument( + "--no-pypkg", action="store_true", help="Don't build the HPVM Python Packages" + ) parser.add_argument( "--no-params", action="store_true", help="Don't download DNN model parameters" ) @@ -158,6 +161,9 @@ Arguments: """ if args.cmake_args.strip() != "": args.cmake_args = [f"-{arg}" for arg in args.cmake_args.split(" ")] + args.no_pypkg = not input_with_check( + "Install HPVM Python Packages (recommended)? [y/n]: ", parse_yn, "Please enter y or n" + ) args.no_params = not input_with_check( "Download DNN weights (recommended)? [y/n]: ", parse_yn, "Please enter y or n" ) @@ -337,7 +343,8 @@ def main(): link_and_patch() if not args.no_params: check_download_model_params() - install_py_packages() + if not args.no_pypkg: + install_py_packages() if args.no_build: print( """ diff --git a/hpvm/test/CMakeLists.txt b/hpvm/test/CMakeLists.txt index 3c4f26472317f511edaab98c5e4a4f8ed7ba2dfb..4ff98a5386d91ce50b755d7e507a84e0fbe1c4dd 100644 --- a/hpvm/test/CMakeLists.txt +++ b/hpvm/test/CMakeLists.txt @@ -8,5 +8,6 @@ set(CLANG_CXX ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/clang++) add_subdirectory(hpvm_pass) # Passes test suite add_subdirectory(benchmarks) add_subdirectory(dnn_benchmarks/hpvm-c) # HPVM-C DNN accuracy test suite +add_subdirectory(dnn_benchmarks/pytorch) # Torch frontend test suite add_subdirectory(dnn_benchmarks/tensor-rt-src) # tensor_runtime DNN (build only, no tests) add_subdirectory(dnn_benchmarks/profiling) # hpvm-profiler test suite diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/CMakeLists.txt b/hpvm/test/dnn_benchmarks/hpvm-c/CMakeLists.txt index 9f34317d34157d57468c60cb854828b5c54f1cde..aedf0640025703b62ed5e9a810f5c3d68e800f6f 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/CMakeLists.txt +++ b/hpvm/test/dnn_benchmarks/hpvm-c/CMakeLists.txt @@ -1,18 +1,17 @@ -# Each source file contains a @MODEL_PARAMS_DIR@ waiting to be filled in. +# MODEL_PARAMS_DIR is given as -DMODEL_PARAMS_DIR=<value> to compiler. set(MODEL_PARAMS_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../model_params/") set(test_compile_targets "") function(compile_hpvm_c target_name src_filepath codegen_target) - set(generated_file_path "${CMAKE_CURRENT_BINARY_DIR}/${target_name}.cpp") set(output_bin_path "${CMAKE_CURRENT_BINARY_DIR}/hpvm_${target_name}") - configure_file(${src_filepath} ${generated_file_path}) # Add an "hpvm_" prefix here because Ninja generator doesn't like # the name of output file and custom target to clash. add_custom_command( OUTPUT ${output_bin_path} - DEPENDS ${generated_file_path} hpvm-clang + DEPENDS ${src_filepath} hpvm-clang COMMAND hpvm-clang - ${generated_file_path} ${output_bin_path} -O3 -fno-exceptions - -t ${codegen_target} -I ${CMAKE_CURRENT_SOURCE_DIR}/include ${ARGN} + ${src_filepath} ${output_bin_path} -O3 -fno-exceptions + "-DMODEL_PARAMS_DIR=${MODEL_PARAMS_DIR}" + -t ${codegen_target} ${ARGN} ) add_custom_target(${target_name} DEPENDS ${output_bin_path}) set(test_compile_targets ${test_compile_targets} ${target_name} PARENT_SCOPE) @@ -49,16 +48,17 @@ foreach(dir ${entries}) endforeach(dir) # Install an accuracy comparator under build/bin for test suite. -set(BIN_DIR ${LLVM_BINARY_DIR}/${LLVM_TOOLS_INSTALL_DIR}) +set(BIN_DIR ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}) add_custom_command( OUTPUT ${BIN_DIR}/check_dnn_acc.py COMMAND cp ${CMAKE_CURRENT_SOURCE_DIR}/check_dnn_acc.py ${BIN_DIR} COMMAND chmod +x ${BIN_DIR}/check_dnn_acc.py DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/check_dnn_acc.py ) +add_custom_target(check_dnn_acc DEPENDS ${BIN_DIR}/check_dnn_acc.py) message(STATUS "List of HPVM-C DNN benchmarks: ${test_compile_targets}") -add_custom_target(dnn_benchmarks DEPENDS ${test_compile_targets} ${BIN_DIR}/check_dnn_acc.py) +add_custom_target(dnn_benchmarks DEPENDS ${test_compile_targets}) message(STATUS "Target name for compiling all DNN benchmarks: dnn_benchmarks") # --[ llvm-lit test setup @@ -73,6 +73,6 @@ configure_lit_site_cfg( ) add_lit_testsuite(check-hpvm-dnn "Running HPVM DNNs" ${CMAKE_CURRENT_BINARY_DIR} - DEPENDS dnn_benchmarks # Compile all dnn benchmarks to run them + DEPENDS dnn_benchmarks check_dnn_acc # Compile all dnn benchmarks to run them ARGS "-j1" # Run DNN benchmarks sequentially ) diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10.cpp index 39f49784d76470c4e0bab213127369806e1e2531..255ec86924066beb82e18cf83e7c0b4500ad7287 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -189,7 +196,7 @@ void var_22_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_23_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_softmax(t1); @@ -429,7 +436,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/alexnet2_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/alexnet2_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10_cudnn.cpp index dafd1a6ae084c4e1bf819ce1ac94e667c696eb24..b0a8fe8102dbba10cfe19fa3b825ec7f2d9ba31c 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet2_cifar10/alexnet2_cifar10_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -434,7 +441,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/alexnet2_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/alexnet2_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10.cpp index 64350c590bb181fa4eaab4b2bf5fb37f69e11c09..b37fd71deaeb607545837faf09b133c14b9d8968 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -165,7 +172,7 @@ void var_19_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_20_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_softmax(t1); @@ -380,7 +387,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/alexnet_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/alexnet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); uint8_t *labels = readLabels(labels_path.c_str(), 5000); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10_cudnn.cpp index 72af2ff4a1b33aabac427d203101c32c4a7403c7..48ce0864174f5401e295cdb3c01011009bfe338b 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_cifar10/alexnet_cifar10_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -386,7 +393,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/alexnet_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/alexnet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); uint32_t *labels = readLabels3(labels_path.c_str(), 5000); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet.cpp index 37e7a34a51a14b6903d549f271d3c0c83822fec8..abdf532c7a0417e16a55f4bb7ec57471340837a4 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet.cpp @@ -1,7 +1,14 @@ #include <config.h> + +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) #include <hpvm.h> #include <string> -#include <tensorTypes.h> #include <tensorUtils.h> void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { @@ -213,7 +220,7 @@ void var_25_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_26_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_softmax(t1); @@ -478,7 +485,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/alexnet_imagenet/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/alexnet_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet_cudnn.cpp index 1206d7bac4b9dcff2b4cfd7183f4a3e5f65d73d9..239d4ea5793e010562a7d4963f590fff85b932dc 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/alexnet_imagenet/alexnet_imagenet_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -483,7 +490,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/alexnet_imagenet/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/alexnet_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist.cpp index d7ab4238ebac5598b92c432aced85a602bb5ce89..684c1bfef532c162a7981a12b54b5282c5a1b114 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -117,7 +124,7 @@ void var_13_node(void *t1, size_t bytes_t1) { } void var_14_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_softmax(t1); @@ -282,7 +289,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/lenet_mnist/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/lenet_mnist/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist_cudnn.cpp index 26acc65a99287ea9f20e037dd996635315d76e48..b607e9e653063437b72179ab83ea74921b9bd3ef 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/lenet_mnist/lenet_mnist_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -287,7 +294,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/lenet_mnist/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/lenet_mnist/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10.cpp index 5f8c63dbfbfb800dc6f60f9ed9a6108dee0a9a48..881a9bbaa877aad6c0a4b0d7cbae79d7a60c862c 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -15,7 +22,7 @@ void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_1_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -23,7 +30,7 @@ void var_1_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_2_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -31,7 +38,7 @@ void var_2_node(void *t1, size_t bytes_t1) { } void var_3_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 32); @@ -41,7 +48,7 @@ void var_3_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_4_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -49,7 +56,7 @@ void var_4_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_5_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -67,7 +74,7 @@ void var_6_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_7_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -75,7 +82,7 @@ void var_7_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_8_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -83,7 +90,7 @@ void var_8_node(void *t1, size_t bytes_t1) { } void var_9_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 2, 2, 1, 64); @@ -93,7 +100,7 @@ void var_9_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_10_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -101,7 +108,7 @@ void var_10_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_11_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -119,7 +126,7 @@ void var_12_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_13_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -127,7 +134,7 @@ void var_13_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_14_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -135,7 +142,7 @@ void var_14_node(void *t1, size_t bytes_t1) { } void var_15_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 128); @@ -145,7 +152,7 @@ void var_15_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_16_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -153,7 +160,7 @@ void var_16_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_17_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -171,7 +178,7 @@ void var_18_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_19_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -179,7 +186,7 @@ void var_19_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_20_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -187,7 +194,7 @@ void var_20_node(void *t1, size_t bytes_t1) { } void var_21_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 2, 2, 1, 128); @@ -197,7 +204,7 @@ void var_21_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_22_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -205,7 +212,7 @@ void var_22_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_23_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -223,7 +230,7 @@ void var_24_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_25_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -231,7 +238,7 @@ void var_25_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_26_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -239,7 +246,7 @@ void var_26_node(void *t1, size_t bytes_t1) { } void var_27_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 256); @@ -249,7 +256,7 @@ void var_27_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_28_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -257,7 +264,7 @@ void var_28_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_29_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -275,7 +282,7 @@ void var_30_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_31_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -283,7 +290,7 @@ void var_31_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_32_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -291,7 +298,7 @@ void var_32_node(void *t1, size_t bytes_t1) { } void var_33_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 2, 2, 1, 256); @@ -301,7 +308,7 @@ void var_33_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_34_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -309,7 +316,7 @@ void var_34_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_35_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -327,7 +334,7 @@ void var_36_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_37_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -335,7 +342,7 @@ void var_37_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_38_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -343,7 +350,7 @@ void var_38_node(void *t1, size_t bytes_t1) { } void var_39_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 512); @@ -353,7 +360,7 @@ void var_39_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_40_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -361,7 +368,7 @@ void var_40_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_41_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -379,7 +386,7 @@ void var_42_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_43_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -387,7 +394,7 @@ void var_43_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_44_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -395,7 +402,7 @@ void var_44_node(void *t1, size_t bytes_t1) { } void var_45_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 512); @@ -405,7 +412,7 @@ void var_45_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_46_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -413,7 +420,7 @@ void var_46_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_47_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -431,7 +438,7 @@ void var_48_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_49_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -439,7 +446,7 @@ void var_49_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_50_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -447,7 +454,7 @@ void var_50_node(void *t1, size_t bytes_t1) { } void var_51_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 512); @@ -457,7 +464,7 @@ void var_51_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_52_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -465,7 +472,7 @@ void var_52_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_53_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -483,7 +490,7 @@ void var_54_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_55_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -491,7 +498,7 @@ void var_55_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_56_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -499,7 +506,7 @@ void var_56_node(void *t1, size_t bytes_t1) { } void var_57_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 512); @@ -509,7 +516,7 @@ void var_57_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_58_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -517,7 +524,7 @@ void var_58_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_59_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -535,7 +542,7 @@ void var_60_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_61_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -543,7 +550,7 @@ void var_61_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_62_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -551,7 +558,7 @@ void var_62_node(void *t1, size_t bytes_t1) { } void var_63_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 512); @@ -561,7 +568,7 @@ void var_63_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_64_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -569,7 +576,7 @@ void var_64_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_65_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -587,7 +594,7 @@ void var_66_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_67_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -595,7 +602,7 @@ void var_67_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_68_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -603,7 +610,7 @@ void var_68_node(void *t1, size_t bytes_t1) { } void var_69_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 2, 2, 1, 512); @@ -613,7 +620,7 @@ void var_69_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_70_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -621,7 +628,7 @@ void var_70_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_71_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -639,7 +646,7 @@ void var_72_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_73_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -647,7 +654,7 @@ void var_73_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_74_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -655,7 +662,7 @@ void var_74_node(void *t1, size_t bytes_t1) { } void var_75_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); void *r = __hpvm__tensor_group_convolution(t1, t2, 1, 1, 1, 1, 1, 1024); @@ -665,7 +672,7 @@ void var_75_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_76_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -673,7 +680,7 @@ void var_76_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_77_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -691,7 +698,7 @@ void var_78_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { void var_79_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, size_t bytes_t3, void *t4, size_t bytes_t4, void *t5, size_t bytes_t5) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(5, t1, t2, t3, t4, t5, 0); void *r = __hpvm__tensor_batchnorm(t1, t2, t3, t4, t5, 0.001); @@ -699,7 +706,7 @@ void var_79_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2, void *t3, } void var_80_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_relu(t1); @@ -707,7 +714,7 @@ void var_80_node(void *t1, size_t bytes_t1) { } void var_81_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_pool_mean(t1, 2, 2, 0, 0, 2, 2); @@ -731,7 +738,7 @@ void var_83_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_84_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_softmax(t1); @@ -1984,7 +1991,7 @@ int main(int argc, char *argv[]) { } std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/mobilenet_cifar10/"; + std::string(MODEL_PARAMS_DIR_STR) + "/mobilenet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10_cudnn.cpp index 2070089053ef0b6e7e0ca33c2c6cc4cea17b8e29..7cfeca00418f2f580227b880cb4d6e63afaaf6f1 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/mobilenet_cifar10/mobilenet_cifar10_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -1989,7 +1996,7 @@ int main(int argc, char *argv[]) { } std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/mobilenet_cifar10/"; + std::string(MODEL_PARAMS_DIR_STR) + "/mobilenet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10.cpp index 5b580f26821e67cc96c8347e485b792f40105176..ce164a16f0c95a6f6dfc141609542a9614e2c994 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10.cpp @@ -1,10 +1,17 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -78,7 +85,7 @@ void var_7_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_8_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(9); @@ -87,7 +94,7 @@ void var_8_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_9_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(10); @@ -141,7 +148,7 @@ void var_14_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_15_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(16); @@ -150,7 +157,7 @@ void var_15_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_16_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(17); @@ -204,7 +211,7 @@ void var_21_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_22_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(23); @@ -213,7 +220,7 @@ void var_22_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_23_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(24); @@ -285,7 +292,7 @@ void var_30_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_31_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(32); @@ -294,7 +301,7 @@ void var_31_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_32_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(33); @@ -348,7 +355,7 @@ void var_37_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_38_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(39); @@ -357,7 +364,7 @@ void var_38_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_39_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(40); @@ -411,7 +418,7 @@ void var_44_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_45_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(46); @@ -420,7 +427,7 @@ void var_45_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_46_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(47); @@ -492,7 +499,7 @@ void var_53_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_54_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(55); @@ -501,7 +508,7 @@ void var_54_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_55_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(56); @@ -555,7 +562,7 @@ void var_60_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_61_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(62); @@ -564,7 +571,7 @@ void var_61_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_62_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(63); @@ -618,7 +625,7 @@ void var_67_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_68_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); __hpvm__node_id(69); @@ -627,7 +634,7 @@ void var_68_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_69_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(70); @@ -636,7 +643,7 @@ void var_69_node(void *t1, size_t bytes_t1) { } void var_70_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(71); @@ -663,7 +670,7 @@ void var_72_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_73_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); __hpvm__node_id(74); @@ -1318,7 +1325,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/resnet18_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/resnet18_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10_cudnn.cpp index 735e2c9abab91f00560faa5496e234321027b82c..7eb4acc44ac6c7061c0a500bd8f68e1ea6a1a7d7 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet18_cifar10/resnet18_cifar10_cudnn.cpp @@ -1,10 +1,17 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -1249,7 +1256,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/resnet18_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/resnet18_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); uint32_t *labels = readLabels3(labels_path.c_str(), 5000); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet.cpp index 160563064cc47effd463c4915b0c7f0d93bff56f..54d008932687a895a1819c5480af2b39b87aadf6 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -5151,7 +5158,7 @@ int main(int argc, char *argv[]) { } std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/resnet50_imagenet/"; + std::string(MODEL_PARAMS_DIR_STR) + "/resnet50_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet_cudnn.cpp index c5cf2cb3a0177a5cce9ad0cf460484e63ded0ecd..fa1e616156683131b40d25ee243d5925bab9cf42 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/resnet50_imagenet/resnet50_imagenet_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -4927,7 +4934,7 @@ int main(int argc, char *argv[]) { } std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/resnet50_imagenet/"; + std::string(MODEL_PARAMS_DIR_STR) + "/resnet50_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10.cpp index bec6139c2d089e90d09fa239e1b15c9a835fd4ea..ddd015a63a3284f2c78a57a8173544d233fd2772 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -397,7 +404,7 @@ void var_48_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_49_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_softmax(t1); @@ -845,7 +852,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10_cudnn.cpp index 4fa7d5c121bacff122821fe983ed443e3c6db249..79970b6395c3d02c9fca1810e06dfd636fd682f8 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar10/vgg16_cifar10_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -850,7 +857,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100.cpp index 8666030fba4390d29d9324f5a5c7d60324325f05..7a8fbbc9b3a5de110996b56e8f5ee06fc761ef41 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -397,7 +404,7 @@ void var_48_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_49_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_softmax(t1); @@ -845,7 +852,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_cifar100/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_cifar100/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100_cudnn.cpp index 6d01caa3b7c0875cff4f3e16131ddd09195e92b7..7c6fd3ff4048d6e7a9c1317abd484a0f9c990d9c 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_cifar100/vgg16_cifar100_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -850,7 +857,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_cifar100/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_cifar100/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet.cpp index b1b2b4f2e312b6372e10a2fce3ef12eab2dddded..2fdf36965da100843f69e2ca6ba975bcae4a13ff 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -421,7 +428,7 @@ void var_51_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { } void var_52_node(void *t1, size_t bytes_t1) { - __hpvm__hint(hpvm::CUDNN_TARGET); + __hpvm__hint(hpvm::TENSOR_TARGET); __hpvm__attributes(1, t1, 0); void *r = __hpvm__tensor_softmax(t1); @@ -893,7 +900,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_imagenet/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet_cudnn.cpp b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet_cudnn.cpp index eb29e45805671072428318412f27b05d0da90199..e516b9117b816cc0cc29d21527e7873eb04e33ac 100644 --- a/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet_cudnn.cpp +++ b/hpvm/test/dnn_benchmarks/hpvm-c/benchmarks/vgg16_imagenet/vgg16_imagenet_cudnn.cpp @@ -1,9 +1,16 @@ #include <string> #include <hpvm.h> -#include <tensorTypes.h> #include <tensorUtils.h> #include <config.h> +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + void var_0_node(void *t1, size_t bytes_t1, void *t2, size_t bytes_t2) { __hpvm__hint(hpvm::CUDNN_TARGET); __hpvm__attributes(2, t1, t2, 0); @@ -898,7 +905,7 @@ int main(int argc, char *argv[]) { } } - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_imagenet/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorTypes.h b/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorTypes.h deleted file mode 100644 index 726080efe7e1a06363e7fca191f9708219d5baeb..0000000000000000000000000000000000000000 --- a/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorTypes.h +++ /dev/null @@ -1,39 +0,0 @@ - -#ifndef TYPES_HEADER -#define TYPES_HEADER - - -/*struct Dimension_t{ - int num_dims; - size_t* dim_sizes; -}; - - -struct Tensor_t{ - int tensor_id; // used for indexing (in the tensor runtime) - int data_type; // {float_type, double_type, half_type, int_type} - int data_format; // {nchw, nhwc} - void* host_data; - size_t num_elems; // Total elements - size_t size_in_bytes; // Total size in bytes - struct Dimension_t dims; -}; - - -enum Tensor_type_t{ - float_type, - double_type, - half_type, - int_type -}; - - -// NOTE: Currently only NCHW is supported due to limited cuDNN support -enum Tensor_format_t{ - nchw, - nhwc -}; - -*/ - -#endif diff --git a/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorUtils.h b/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorUtils.h deleted file mode 100644 index 1d5ac7d908b0990f21de885c645786997640264c..0000000000000000000000000000000000000000 --- a/hpvm/test/dnn_benchmarks/hpvm-c/include/tensorUtils.h +++ /dev/null @@ -1,758 +0,0 @@ - -// Header guards -#ifndef UTILS_HEADER -#define UTILS_HEADER - -#include <sstream> -#include <vector> -#include <bits/stdc++.h> -#include <tensor_runtime.h> -#include <tensor.h> -#include <cmath> - -std::vector<float> run_accuracies; - -void printTensorInfo(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - if (tensor->gpu_data != NULL) { - printf("Successful cudaMalloc \n"); - } - - printf("tensor dims = %d \n", tensor->dims.num_dims); - printf("dim1_size = %lu \n", tensor->dims.dim_sizes[0]); - printf("dim2_size = %lu \n", tensor->dims.dim_sizes[1]); - printf("num_elems = %lu \n", tensor->num_elems); -} - -// FIXIT: Move this to debug.h and include in all files -void dumpWeightsToFile(char *file_name, void *weights_ptr) { - - struct Tensor *weights = (Tensor *)weights_ptr; - // Move data back to host - hpvm_request_tensor(weights, 0); - - FILE *fp = fopen(file_name, "wb"); - if (fp == NULL) { - printf("File %s could not be created. Check if directory exists \n", - file_name); - abort(); - } - - // printf("size_in_bytes = %lu \n", weights->size_in_bytes); - size_t bytes_written = - fwrite(weights->host_data, 1, weights->size_in_bytes, fp); - // printf("bytes_written = %lu \n", bytes_written); - fclose(fp); -} - -void fillTensorWithOnes(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - data_arr[i] = 1.0; - } - } -} - -void fillWithOnesAndTwos(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems / 2; i++) { - data_arr[i] = 1.0; - } - - for (unsigned int i = tensor->num_elems / 2; i < tensor->num_elems; i++) { - data_arr[i] = 2.0; - } - } -} - -void fillTensorWithVal(void *tensor_ptr, float target_value) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - data_arr[i] = target_value; - } - } -} - -void fillTensorWithNegOnes(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - data_arr[i] = -1.0; - } - } -} - -void fillTensorVals(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - // initialization is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - data_arr[i] = i + 1; - } - } -} - -void printTensorValues(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - // printing is specific to the floating point type - if (tensor->data_type == CUDNN_DATA_FLOAT) { - float *data_arr = (float *)tensor->host_data; - for (unsigned int i = 0; i < tensor->num_elems; i++) { - printf("%f,", data_arr[i]); - } - } - - printf("\n"); -} - -void printTensorDims(void *tensor_ptr) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - printf("Num_elems = %lu \n", tensor->num_elems); - for (int i = 0; i < tensor->dims.num_dims; i++) { - printf("dim[%d] = %lu \n", i, tensor->dims.dim_sizes[i]); - } -} - -void compareTensors(void *tensor1_ptr, void *tensor2_ptr) { - - struct Tensor *tensor1 = (struct Tensor *)tensor1_ptr; - struct Tensor *tensor2 = (struct Tensor *)tensor2_ptr; - - hpvm_request_tensor(tensor1, 0); - hpvm_request_tensor(tensor2, 0); - - float *tensor_data1 = (float *)tensor1->host_data; - float *tensor_data2 = (float *)tensor2->host_data; - - for (unsigned int i = 0; i < tensor1->num_elems; i++) { - if (tensor_data1[i] != tensor_data2[i]) { - printf("Tensor data mismatch at index %d \n", i); - abort(); - } - } -} - -void compareValues(void *tensor_ptr, float *data, size_t num_elems) { - - struct Tensor *tensor = (struct Tensor *)tensor_ptr; - - hpvm_request_tensor(tensor, 0); - - float *tensor_data = (float *)tensor->host_data; - for (unsigned int i = 0; i < num_elems; i++) { - if (tensor_data[i] != data[i]) { - printf("Tensor data mismatch"); - abort(); - } - } -} - -void *readInputTensor(const char *file_name, int data_type, int dim1_size, - int dim2_size, int dim3_size, int dim4_size) { - - int type_size = 4; // NOTE: Assuming floating point tensors - int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - int size_in_bytes = type_size * dim1_size * dim2_size * dim3_size * dim4_size; - uint8_t *file_data = (uint8_t *)malloc(sizeof(char) * num_elems); - float *tensor_data = (float *)malloc(sizeof(float) * num_elems); - int file_header_size = 16; - - FILE *file = fopen(file_name, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting... \n", file_name); - abort(); - } - - fseek(file, file_header_size, SEEK_CUR); // Skipping the file header - size_t bytes_read = fread(file_data, 1, sizeof(uint8_t) * num_elems, file); - - fclose(file); - - for (size_t i = 0; i < num_elems; ++i) { - tensor_data[i] = (float)file_data[i] / 255.0f; - } - - // NOTE: Using NCHW format - struct Tensor *input = (struct Tensor *)create4DTensor( - data_type, nchw, dim1_size, dim2_size, dim3_size, dim4_size); - - initTensorData(input, tensor_data, size_in_bytes); - // compareValues(input, tensor_data, num_elems); - - return input; -} - -//*** FIXIT: Move this to CPU-only -struct Tensor *readTrainedWeightsCPU(const char *file_name, int data_type, - int dim1_size, int dim2_size, - int dim3_size, int dim4_size) { - - // FIXIT: Don't assume floating point types - int type_size = 4; // NOTE: Assuming floating point tensors - long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - long int size_in_bytes = - type_size * dim1_size * dim2_size * dim3_size * dim4_size; - float *tensor_data = (float *)malloc(sizeof(float) * num_elems); - int file_header_size = 0; - - FILE *file = fopen(file_name, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting... \n", file_name); - abort(); - } - - fseek(file, file_header_size, SEEK_CUR); // Skipping the file header - size_t bytes_read = fread(tensor_data, 1, size_in_bytes, file); - - printf("size in bytes = %lu, bytes read = %lu \n", size_in_bytes, bytes_read); - - fclose(file); - - struct Tensor *weights = (struct Tensor *)create4DTensor( - data_type, nchw, dim1_size, dim2_size, dim3_size, dim4_size); - - initTensorData(weights, tensor_data, size_in_bytes); - // compareValues(weights, tensor_data, num_elems); - free(tensor_data); - - return weights; -} - -struct Tensor *readTrainedWeights(const char *file_name, int data_type, - long int dim1_size, long int dim2_size, - long int dim3_size, long int dim4_size) { - - // FIXIT: Don't assume floating point types - int type_size = 4; // NOTE: Assuming floating point tensors - long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - long int size_in_bytes = - type_size * dim1_size * dim2_size * dim3_size * dim4_size; - float *tensor_data = (float *)malloc(sizeof(float) * num_elems); - printf("size_in_bytes = %lu \n", size_in_bytes); - - int file_header_size = 0; - - FILE *file = fopen(file_name, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting... \n", file_name); - abort(); - } - - fseek(file, file_header_size, SEEK_CUR); // Skipping the file header - size_t bytes_read = fread(tensor_data, 1, size_in_bytes, file); - - // printf("size in bytes = %lu, bytes read = %lu \n", size_in_bytes, - // bytes_read); - - fclose(file); - - struct Tensor *weights = (struct Tensor *)create4DTensor( - data_type, nchw, dim1_size, dim2_size, dim3_size, dim4_size); - - initTensorData(weights, tensor_data, size_in_bytes); - // compareValues(weights, tensor_data, num_elems); - free(tensor_data); - - return weights; -} - -struct Tensor *readInputBatch(const char *file_name, long data_type, long start, - long end, long dim2_size, long dim3_size, - long dim4_size) { - - long int dim1_size = end - start; - // FIXIT: Don't assume floating point types - long int type_size = 4; // NOTE: Assuming floating point tensors - long int num_elems = dim1_size * dim2_size * dim3_size * dim4_size; - long int size_in_bytes = - type_size * dim1_size * dim2_size * dim3_size * dim4_size; - float *tensor_data = (float *)malloc(sizeof(float) * num_elems); - long int file_header_size = - type_size * start * dim2_size * dim3_size * dim4_size; - - FILE *file = fopen(file_name, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting... \n", file_name); - abort(); - } - - fseek(file, file_header_size, SEEK_SET); // Skipping the file header - size_t bytes_read = fread(tensor_data, 1, size_in_bytes, file); - - fclose(file); - - // printf ("FIXED input BATCH read \n"); - - struct Tensor *weights = (struct Tensor *)create4DTensor( - data_type, nchw, dim1_size, dim2_size, dim3_size, dim4_size); - - initTensorData(weights, tensor_data, size_in_bytes); - free(tensor_data); - - return weights; -} - -uint8_t *readLabels(const char *labels_file, int num_labels) { - - uint8_t *labels = (uint8_t *)malloc(sizeof(uint8_t) * num_labels); - FILE *file = fopen(labels_file, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting...\n", labels_file); - abort(); - } - - size_t bytes_read = fread(labels, 1, sizeof(uint8_t) * num_labels, file); - - fclose(file); - - return labels; -} - -uint32_t *readLabels3(const char *labels_file, int num_labels) { - - uint32_t *labels = (uint32_t *)malloc(sizeof(uint32_t) * num_labels); - FILE *file = fopen(labels_file, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting...\n", labels_file); - abort(); - } - - size_t bytes_read = fread(labels, 1, sizeof(uint32_t) * num_labels, file); - - fclose(file); - - return labels; -} - -uint8_t *readLabelsBatch(const char *labels_file, int start, int end) { - - int num_labels = end - start; - int file_header_size = sizeof(uint8_t) * start; - - uint8_t *labels = (uint8_t *)malloc(sizeof(uint8_t) * num_labels); - FILE *file = fopen(labels_file, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting...\n", labels_file); - abort(); - } - - fseek(file, file_header_size, SEEK_SET); // Skipping the file header - - size_t bytes_read = fread(labels, 1, sizeof(uint8_t) * num_labels, file); - - fclose(file); - - // printf("--labels bytes_read = %lu \n", bytes_read); - return labels; -} - -uint32_t *readLabelsBatch3(const char *labels_file, int start, int end) { - - int num_labels = end - start; - int file_header_size = sizeof(uint32_t) * start; - - uint32_t *labels = (uint32_t *)malloc(sizeof(uint32_t) * num_labels); - FILE *file = fopen(labels_file, "rb"); - if (file == NULL) { - printf("Data file %s is not found. Aborting...\n", labels_file); - abort(); - } - - fseek(file, file_header_size, SEEK_SET); // Skipping the file header - - size_t bytes_read = fread(labels, 1, sizeof(uint32_t) * num_labels, file); - - fclose(file); - - return labels; -} - -void computeAccuracy(const char *labels_file, int num_labels, - void *result_ptr) { - - struct Tensor *result = (struct Tensor *)result_ptr; - - uint8_t *labels = readLabels(labels_file, num_labels); - size_t batch_dim = result->dims.dim_sizes[0]; - size_t channels = result->dims.dim_sizes[1]; - float *data = (float *)result->host_data; - int num_errors = 0; - - for (int i = 0; i < batch_dim; i++) { - int chosen = 0; - for (int id = 1; id < 10; ++id) { - if (data[i * channels + chosen] < data[i * channels + id]) - chosen = id; - } - - // printf("chosen = %d, label = %d \n", chosen, labels[i]); - if (chosen != labels[i]) - num_errors++; - } - - float accuracy = ((batch_dim - num_errors) * 1.0 / batch_dim * 1.0) * 100.0; - printf("****** Accuracy = %f \n\n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - fclose(fp); - } -} - -// NOTE: batch_size and num_classes are Unused arguments -float computeAccuracy2(uint8_t *labels, int batch_size, void *result_ptr, - size_t num_classes = 10) { - - struct Tensor *result = (struct Tensor *)result_ptr; - - size_t batch_dim = result->dims.dim_sizes[0]; - num_classes = result->dims.dim_sizes[1]; - float *data = (float *)result->host_data; - int num_errors = 0; - - printf("batch_dim = %lu, channels = %lu \n", batch_dim, num_classes); - - for (unsigned int i = 0; i < batch_dim; i++) { - - int chosen = 0; - for (int id = 1; id < num_classes; ++id) { - if (data[i * num_classes + chosen] < data[i * num_classes + id]) - chosen = id; - } - - if (chosen != labels[i]) - num_errors++; - } - - float accuracy = ((batch_dim - num_errors) * 1.0 / batch_dim * 1.0) * 100.0; - printf("****** Accuracy = %f \n\n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); - - return accuracy; -} - -float computeAccuracy3(uint32_t *labels, void *result_ptr) { - - struct Tensor *result = (struct Tensor *)result_ptr; - - size_t batch_dim = result->dims.dim_sizes[0]; - size_t num_classes = result->dims.dim_sizes[1]; - float *data = (float *)result->host_data; - int num_errors = 0; - - printf("batch_dim = %lu, num_classes = %lu \n", batch_dim, num_classes); - - for (int i = 0; i < batch_dim; i++) { - - int chosen = 0; - for (int id = 1; id < num_classes; ++id) { - if (data[i * num_classes + chosen] < data[i * num_classes + id]) - chosen = id; - } - - if (chosen != labels[i]) - num_errors++; - } - - float accuracy = ((batch_dim - num_errors) * 1.0 / batch_dim * 1.0) * 100.0; - printf("****** Accuracy = %f \n\n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); - - return accuracy; -} - -struct ClassProb { - float prob; - int index; -}; - -bool descendFloatComp(ClassProb obj1, ClassProb obj2) { - return obj1.prob > obj2.prob; -} - -float computeTop5Accuracy(uint8_t *labels, int num_labels, void *result_ptr, - unsigned num_classes = 10) { - - struct Tensor *result = (struct Tensor *)result_ptr; - - size_t batch_dim = result->dims.dim_sizes[0]; - size_t channels = result->dims.dim_sizes[1]; - float *data = (float *)result->host_data; - int num_errors = 0; - - printf("batch_dim = %lu, channels = %lu \n", batch_dim, channels); - - for (int i = 0; i < num_labels; i++) { - - std::vector<ClassProb> elem_probs; - for (int id = 0; id < num_classes; ++id) { - ClassProb cProb; - cProb.prob = data[i * channels + id]; - cProb.index = id; - elem_probs.push_back(cProb); - } - - std: - sort(elem_probs.begin(), elem_probs.end(), descendFloatComp); - // Check if any of top-5 predictions matches - bool matched = false; - for (int j = 0; j < 5; j++) { - ClassProb cProb = elem_probs[j]; - if (cProb.index == labels[i]) - matched = true; - } - - if (!matched) - num_errors += 1; - } - - float accuracy = ((batch_dim - num_errors) * 1.0 / batch_dim * 1.0) * 100.0; - printf("****** Accuracy = %f \n\n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); - - return accuracy; -} - -void dumpFinalAccuracy(float accuracy) { - - printf("\n\n **** Final Accuracy = %f \n", accuracy); - - FILE *fp = fopen("final_accuracy", "w+"); - if (fp != NULL) { - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); - - run_accuracies.push_back(accuracy); -} - -void dumpAvgPSNR(float avg_psnr) { - - FILE *fp = fopen("avg_psnr", "w+"); - if (fp != NULL) { - std::ostringstream ss; - ss << std::fixed << avg_psnr; - std::string print_str = ss.str(); - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); -} - -void dumpPSNRStd(float psnr_std) { - - FILE *fp = fopen("psnr_std.txt", "w+"); - if (fp != NULL) { - std::ostringstream ss; - ss << std::fixed << psnr_std; - std::string print_str = ss.str(); - fwrite(print_str.c_str(), 1, print_str.length(), fp); - } - - fclose(fp); -} - -void dumpExecutionAccuracies() { - - FILE *fp = fopen("run_accuracies.txt", "w+"); - if (fp != NULL) { - for (int i = 0; i < run_accuracies.size(); i++) { - float accuracy = run_accuracies[i]; - std::ostringstream ss; - ss << std::fixed << accuracy; - std::string print_str = ss.str(); - fwrite(print_str.c_str(), 1, print_str.length(), fp); - fwrite("\n", 1, 1, fp); - } - } - - fclose(fp); -} - -float readPSNRFromFile(const char *file_name) { - - float psnr; - FILE *pFile = fopen(file_name, "r"); - if (pFile == NULL) { - printf("ERROR: psnr.txt not found! \n"); - abort(); - } - - fscanf(pFile, "%f", &psnr); - printf("**** PSNR read = %f \n\n", psnr); - return psnr; -} - -float computePSNRViolation(void *gold_ptr, void *approx_ptr, - float PSNR_threshold) { - - PSNR_threshold = readPSNRFromFile("psnr.txt"); - std::vector<float> psnr_list; - - struct Tensor *gold_tensor = (struct Tensor *)gold_ptr; - struct Tensor *approx_tensor = (struct Tensor *)approx_ptr; - - size_t *dim_sizes = gold_tensor->dims.dim_sizes; - size_t batch_dim = dim_sizes[0]; - size_t image_size = dim_sizes[1] * dim_sizes[2] * dim_sizes[3]; - - printf("batch_dim = %lu, image_size = %lu \n", batch_dim, image_size); - - float *gold_data = (float *)gold_tensor->host_data; - float *approx_data = (float *)approx_tensor->host_data; - - FILE *fp = fopen("img_psnr.txt", "w+"); - - float sum_psnr = 0.0; - int num_errors = 0; - for (size_t i = 0; i < batch_dim; i++) { - float mse_sum = 0.0; - float max_val = -999999; - size_t offset = i * image_size; - - for (size_t j = 0; j < image_size; j++) { - float diff = gold_data[offset + j] - approx_data[offset + j]; - float diff_square = diff * diff; - mse_sum += diff_square; - - if (max_val < gold_data[offset + j]) { - max_val = gold_data[offset + j]; - } - } - - mse_sum = mse_sum / image_size; - float psnr = 20 * log10(255 / sqrt(mse_sum)); - - sum_psnr += psnr; - if (psnr < PSNR_threshold) - num_errors += 1; - - printf("PSNR value = %f \n", psnr); - psnr_list.push_back(psnr); - - std::ostringstream ss; - ss << std::fixed << psnr; - std::string print_str = ss.str(); - fwrite(print_str.c_str(), 1, print_str.length(), fp); - fwrite("\n", 1, 1, fp); - } - - float violation_rate = (num_errors * 1.0) / batch_dim * 100.0; - printf("*** violation_rate= %f \n\n", violation_rate); - - float avg_psnr = sum_psnr / batch_dim; - printf("*** avg_psnr = %f \n\n", avg_psnr); - dumpAvgPSNR(avg_psnr); - - float success_rate = 100.0 - violation_rate; - dumpFinalAccuracy(success_rate); - - fclose(fp); - - float var = 0.0; - for (size_t i = 0; i < batch_dim; i++) { - var = var + (psnr_list[i] - avg_psnr) * (psnr_list[i] - avg_psnr); - } - - var /= batch_dim; - float std = sqrt(var); - - dumpPSNRStd(std); - - return violation_rate; -} - -void dumpOutput(void *output_ptr, const char *file_name) { - - struct Tensor *out_tensor = (struct Tensor *)output_ptr; - size_t size_in_bytes = out_tensor->size_in_bytes; - printf("** Output size = %lu \n", size_in_bytes); - - float *host_data = (float *)out_tensor->host_data; - FILE *fd = fopen(file_name, "w+"); - fwrite(host_data, 1, size_in_bytes, fd); - fclose(fd); -} - -#endif diff --git a/hpvm/test/dnn_benchmarks/profiling/test_hpvm_c_profiling.py b/hpvm/test/dnn_benchmarks/profiling/test_hpvm_c_profiling.py index 230fdf8b73dfd7959cfaa98fe06eafe6a75087b1..853b0dc3e23a3ea847748ecaeda62650e99ee430 100755 --- a/hpvm/test/dnn_benchmarks/profiling/test_hpvm_c_profiling.py +++ b/hpvm/test/dnn_benchmarks/profiling/test_hpvm_c_profiling.py @@ -2,7 +2,7 @@ from pathlib import Path from sys import argv -from hpvm_profiler import profile_configs, read_hpvm_configs +from hpvm_profiler import profile_configs, read_hpvm_configs, write_hpvm_configs # relative to cwd() benchmarks_bindir = Path("../hpvm-c") @@ -17,4 +17,6 @@ dnn = argv[1] bench_bin_file = benchmarks_bindir / f"hpvm_{dnn}" config_file = benchmarks_srcdir / dnn / "data/tuner_confs.txt" out_config_file = f"./{dnn}.txt" -profile_configs(bench_bin_file, config_file, out_config_file) +header, configs = read_hpvm_configs(config_file) +profile_configs(bench_bin_file, configs[1:6], configs[0], progress_bar=False) +write_hpvm_configs(header, configs[:6], out_config_file) diff --git a/hpvm/test/dnn_benchmarks/pytorch/CMakeLists.txt b/hpvm/test/dnn_benchmarks/pytorch/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..778593a57ddfc3a6abcc4ed045f02614535739f8 --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/CMakeLists.txt @@ -0,0 +1,18 @@ +# --[ llvm-lit test setup +# lit.cfg.py looks for tests in CMAKE_CURRENT_BINARY_DIR (see lit.cfg.py) +# as most of the tests require some kind of compilation / generation +# which is best done over there. +configure_lit_site_cfg( + ../../lit.site.cfg.py.in + ${CMAKE_CURRENT_BINARY_DIR}/lit.site.cfg.py + MAIN_CONFIG + ${CMAKE_CURRENT_SOURCE_DIR}/lit.cfg.py +) +add_lit_testsuite(check-hpvm-torch2hpvm "Run tests for package torch2hpvm" + ${CMAKE_CURRENT_BINARY_DIR} + # We depend on check_dnn_acc.py defined in ../hpvm-c/ + # to compare the inference accuracy of our frontend-generated binary + # to that of the baseline. + DEPENDS check_dnn_acc + ARGS "-j1" # Run frontend generation sequentially +) diff --git a/hpvm/test/dnn_benchmarks/pytorch/alexnet2_cifar10.test b/hpvm/test/dnn_benchmarks/pytorch/alexnet2_cifar10.test new file mode 100644 index 0000000000000000000000000000000000000000..4adf30226b19179be066f150b36ef3bd4a010636 --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/alexnet2_cifar10.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py alexnet2_cifar10 +RUN: check_dnn_acc.py final_accuracy alexnet2_cifar10 diff --git a/hpvm/test/dnn_benchmarks/pytorch/alexnet_cifar10.test b/hpvm/test/dnn_benchmarks/pytorch/alexnet_cifar10.test new file mode 100644 index 0000000000000000000000000000000000000000..cffec91e415cda256a72de5a04abb956336519d7 --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/alexnet_cifar10.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py alexnet_cifar10 +RUN: check_dnn_acc.py final_accuracy alexnet_cifar10 diff --git a/hpvm/test/dnn_benchmarks/pytorch/alexnet_imagenet.test b/hpvm/test/dnn_benchmarks/pytorch/alexnet_imagenet.test new file mode 100644 index 0000000000000000000000000000000000000000..126de1bfe80106bbd803ace37534cd38ab54a67c --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/alexnet_imagenet.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py alexnet_imagenet +RUN: check_dnn_acc.py final_accuracy alexnet_imagenet diff --git a/hpvm/test/dnn_benchmarks/pytorch/lenet_mnist.test b/hpvm/test/dnn_benchmarks/pytorch/lenet_mnist.test new file mode 100644 index 0000000000000000000000000000000000000000..b87a976bcd1bfa8d637f1298d5259bccb8781419 --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/lenet_mnist.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py lenet_mnist +RUN: check_dnn_acc.py final_accuracy lenet_mnist diff --git a/hpvm/test/dnn_benchmarks/pytorch/lit.cfg.py b/hpvm/test/dnn_benchmarks/pytorch/lit.cfg.py new file mode 100644 index 0000000000000000000000000000000000000000..34473d24bea3565d0e2865c7026b43538f927ce7 --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/lit.cfg.py @@ -0,0 +1,36 @@ +# -*- Python -*- + +# Configuration file for the 'lit' test runner. + +import os + +import lit.formats +from lit.llvm import llvm_config + +# name: The name of this test suite. +config.name = "HPVM-Torch2HPVM" + +# testFormat: The test format to use to interpret tests. +config.test_format = lit.formats.ShTest(False) + +# suffixes: A list of file extensions to treat as test files. This is overriden +# by individual lit.local.cfg files in the test subdirectories. +config.suffixes = [".test"] + +# test_source_root: The root path where tests are located. +config.test_source_root = os.path.dirname(__file__) + +# test_exec_root: The root path where tests should be run. +current_source_dir = os.path.dirname(os.path.relpath(__file__, config.llvm_src_root)) +current_binary_dir = os.path.join(config.llvm_obj_root, current_source_dir) +config.test_exec_root = current_binary_dir + +# Tweak the PATH to include the tools dir. +llvm_config.with_environment("PATH", config.llvm_tools_dir, append_path=True) + +# Add substitution for check_dnn_acc.py which goes under build/bin. +llvm_config.add_tool_substitutions( + ["check_dnn_acc.py"], os.path.join(config.llvm_obj_root, "bin") +) +# Add substitution for our main script in this directory. +llvm_config.add_tool_substitutions(["test_frontend.py"], config.test_source_root) diff --git a/hpvm/test/dnn_benchmarks/pytorch/mobilenet_cifar10.test b/hpvm/test/dnn_benchmarks/pytorch/mobilenet_cifar10.test new file mode 100644 index 0000000000000000000000000000000000000000..9964887b420a3896c83eff0114a419ad10740dc1 --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/mobilenet_cifar10.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py mobilenet_cifar10 +RUN: check_dnn_acc.py final_accuracy mobilenet_cifar10 diff --git a/hpvm/test/dnn_benchmarks/pytorch/resnet18_cifar10.test b/hpvm/test/dnn_benchmarks/pytorch/resnet18_cifar10.test new file mode 100644 index 0000000000000000000000000000000000000000..71e0881a3f6d81a2982ac3fbd2dddd849f23a08b --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/resnet18_cifar10.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py resnet18_cifar10 +RUN: check_dnn_acc.py final_accuracy resnet18_cifar10 diff --git a/hpvm/test/dnn_benchmarks/pytorch/resnet50_imagenet.test b/hpvm/test/dnn_benchmarks/pytorch/resnet50_imagenet.test new file mode 100644 index 0000000000000000000000000000000000000000..b1ff2e6a92f506da299c1f94ebec10ddd1958159 --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/resnet50_imagenet.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py resnet50_imagenet +RUN: check_dnn_acc.py final_accuracy resnet50_imagenet diff --git a/hpvm/test/dnn_benchmarks/pytorch/test_frontend.py b/hpvm/test/dnn_benchmarks/pytorch/test_frontend.py old mode 100644 new mode 100755 index 2fb1de17ee226571e6cd6b808640bf35280932db..3c20c6ea5a472a693156b4881b58d4e0f1fc8575 --- a/hpvm/test/dnn_benchmarks/pytorch/test_frontend.py +++ b/hpvm/test/dnn_benchmarks/pytorch/test_frontend.py @@ -1,52 +1,56 @@ +#!/usr/bin/env python3 import os import shutil import site from pathlib import Path from subprocess import run -import torch +from sys import argv +import torch from torch2hpvm import BinDataset, ModelExporter from torch.nn import Module site.addsitedir(os.path.dirname(__file__)) import dnn -benchmarks = [ - (dnn.LeNet, 1, 28, 5000, "lenet_mnist"), - (dnn.AlexNet, 3, 32, 5000, "alexnet_cifar10"), - (dnn.AlexNet2, 3, 32, 5000, "alexnet2_cifar10"), - (dnn.AlexNetImageNet, 3, 224, 500, "alexnet_imagenet"), - (dnn.MobileNet, 3, 32, 5000, "mobilenet_cifar10"), - (dnn.ResNet18, 3, 32, 5000, "resnet18_cifar10"), - (dnn.ResNet50, 3, 224, 100, "resnet50_imagenet"), - (dnn.VGG16Cifar10, 3, 32, 5000, "vgg16_cifar10"), - (dnn.VGG16Cifar100, 3, 32, 5000, "vgg16_cifar100"), - (dnn.VGG16ImageNet, 3, 224, 100, "vgg16_imagenet"), -] +benchmarks = { + "lenet_mnist": (dnn.LeNet, 1, 28, 1000), + "alexnet_cifar10": (dnn.AlexNet, 3, 32, 500), + "alexnet2_cifar10": (dnn.AlexNet2, 3, 32, 500), + "alexnet_imagenet": (dnn.AlexNetImageNet, 3, 224, 500), + "mobilenet_cifar10": (dnn.MobileNet, 3, 32, 500), + "resnet18_cifar10": (dnn.ResNet18, 3, 32, 500), + "resnet50_imagenet": (dnn.ResNet50, 3, 224, 25), + "vgg16_cifar10": (dnn.VGG16Cifar10, 3, 32, 500), + "vgg16_cifar100": (dnn.VGG16Cifar100, 3, 32, 500), + "vgg16_imagenet": (dnn.VGG16ImageNet, 3, 224, 10), +} self_folder = Path(__file__).parent -for model_cls, nch, img_size, batch_size, pathname in benchmarks: - codegen_dir = Path(f"/tmp/{pathname}") - print(f"Generating {pathname} to {codegen_dir}") - if codegen_dir.exists(): - shutil.rmtree(codegen_dir) +netname = argv[1] +model_cls, nch, img_size, batch_size = benchmarks[netname] +codegen_dir = Path(f"./{netname}") +print(f"Generating {netname} to {codegen_dir}") +if codegen_dir.exists(): + shutil.rmtree(codegen_dir) - params = self_folder / "../model_params" / pathname - dataset_shape = 5000, nch, img_size, img_size - bin_tuneset = BinDataset( - params / "tune_input.bin", params / "tune_labels.bin", dataset_shape - ) - bin_testset = BinDataset( - params / "test_input.bin", params / "test_labels.bin", dataset_shape - ) - model: Module = model_cls() - checkpoint = self_folder / "../model_params/pytorch" / f"{pathname}.pth.tar" - model.load_state_dict(torch.load(checkpoint.as_posix())) +params = self_folder / "../model_params" / netname +dataset_shape = 5000, nch, img_size, img_size +bin_tuneset = BinDataset( + params / "tune_input.bin", params / "tune_labels.bin", dataset_shape +) +bin_testset = BinDataset( + params / "test_input.bin", params / "test_labels.bin", dataset_shape +) +model: Module = model_cls() +checkpoint = self_folder / "../model_params/pytorch" / f"{netname}.pth.tar" +model.load_state_dict(torch.load(checkpoint.as_posix())) +print(model) - build_dir = codegen_dir / "build" - target_binary = build_dir / pathname - conf_file = self_folder / "../hpvm-c/benchmarks" / pathname / "data/tuner_confs.txt" - exporter = ModelExporter( - model, bin_tuneset, bin_testset, codegen_dir, config_file=conf_file - ) - exporter.generate(batch_size=batch_size).compile(target_binary, build_dir) - run([str(target_binary), "test"], check=True) +build_dir = codegen_dir / "build" +target_binary = build_dir / netname +conf_file = self_folder / "../hpvm-c/benchmarks" / netname / "data/tuner_confs.txt" +exporter = ModelExporter( + model, bin_tuneset, bin_testset, codegen_dir, config_file=conf_file +) +exporter.generate(batch_size=batch_size).compile(target_binary, build_dir) +run([str(target_binary), "test"], check=True) diff --git a/hpvm/test/dnn_benchmarks/pytorch/vgg16_cifar10.test b/hpvm/test/dnn_benchmarks/pytorch/vgg16_cifar10.test new file mode 100644 index 0000000000000000000000000000000000000000..5544c75d2823fb31da6624e109c81567770d18ad --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/vgg16_cifar10.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py vgg16_cifar10 +RUN: check_dnn_acc.py final_accuracy vgg16_cifar10 diff --git a/hpvm/test/dnn_benchmarks/pytorch/vgg16_cifar100.test b/hpvm/test/dnn_benchmarks/pytorch/vgg16_cifar100.test new file mode 100644 index 0000000000000000000000000000000000000000..66bd69ee377b4dd84071e3c63ec631f3c041512a --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/vgg16_cifar100.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py vgg16_cifar100 +RUN: check_dnn_acc.py final_accuracy vgg16_cifar100 diff --git a/hpvm/test/dnn_benchmarks/pytorch/vgg16_imagenet.test b/hpvm/test/dnn_benchmarks/pytorch/vgg16_imagenet.test new file mode 100644 index 0000000000000000000000000000000000000000..6529998ec4e4d62d14fc6b99d42474f3161d2eb7 --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/vgg16_imagenet.test @@ -0,0 +1,2 @@ +RUN: test_frontend.py vgg16_imagenet +RUN: check_dnn_acc.py final_accuracy vgg16_imagenet diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/CMakeLists.txt b/hpvm/test/dnn_benchmarks/tensor-rt-src/CMakeLists.txt index 6e22eba67471855971005bf9e57ed0aa38dafff8..1cadb68b801186316e90a9ff1a5f8880925b2ac8 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/CMakeLists.txt +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/CMakeLists.txt @@ -2,13 +2,13 @@ # Don't put binaries in build/bin. This doesn't affect global setting. set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) +# MODEL_PARAMS_DIR is given as -DMODEL_PARAMS_DIR=<value> to compiler. set(MODEL_PARAMS_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../model_params/") set(test_compile_targets "") function(add_trt_source target_name filepath) - set(generated_file_path "${CMAKE_CURRENT_BINARY_DIR}/${target_name}.cpp") - configure_file(${filepath} ${generated_file_path}) - add_executable(${target_name} ${generated_file_path}) + add_executable(${target_name} ${filepath}) target_link_libraries(${target_name} tensor_runtime_online) + target_compile_definitions(${target_name} PRIVATE "-DMODEL_PARAMS_DIR=${MODEL_PARAMS_DIR}") set(test_compile_targets ${test_compile_targets} ${target_name} PARENT_SCOPE) endfunction(add_trt_source) diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/alexnet2_cifar10_half.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/alexnet2_cifar10_half.cc index ab80718fd33d0b9787be4a0f183e3a7a65dc76e7..5bc3ea6428382c93ccf77cd16056f9ed8cbae542 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/alexnet2_cifar10_half.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/alexnet2_cifar10_half.cc @@ -1,8 +1,13 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) /* NOTE: Reference Architecture to use for profiling */ void testCifarNet() { @@ -10,7 +15,7 @@ void testCifarNet() { printf("********* Alexnet2 CIFAR-10 DNN ********** \n"); std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/alexnet2_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); + std::string(MODEL_PARAMS_DIR_STR) + "/alexnet2_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/alexnet_cifar10_half.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/alexnet_cifar10_half.cc index b3b69d6b695eca9286b90685f3e071e234887d27..bf01835c2e6a23ca9e0916b6747096905788004c 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/alexnet_cifar10_half.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/alexnet_cifar10_half.cc @@ -1,14 +1,19 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/alexnet_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/alexnet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/lenet_mnist_half.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/lenet_mnist_half.cc index 44b78b9169707fd6c7b9ff6503a4a9aa8d2ec947..2e80dd98f9406b216af29ef5f843b84655ea1d86 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/lenet_mnist_half.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/lenet_mnist_half.cc @@ -1,8 +1,13 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) /* NOTE: Reference Architecture to use for profiling */ void testLenetTanh() { @@ -12,7 +17,7 @@ void testLenetTanh() { int test_batch_size = 5000; - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/lenet_mnist/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/lenet_mnist/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/mobilenet_cifar10_half.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/mobilenet_cifar10_half.cc index d4423bf4345756e72ad46b140ae8cafc26eae264..5ecb8618f8db55da5e4cc435d07d799cd98beaca 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/mobilenet_cifar10_half.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/mobilenet_cifar10_half.cc @@ -1,15 +1,20 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/mobilenet_cifar10/"; + std::string(MODEL_PARAMS_DIR_STR) + "/mobilenet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/resnet18_cifar10_half.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/resnet18_cifar10_half.cc index 76dea5ef08713d22fe7086b678bb3274378d0fd9..1e1bc36f79d022cc8c8fa4289de68e2817dda8b3 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/resnet18_cifar10_half.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/resnet18_cifar10_half.cc @@ -1,15 +1,20 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/resnet18_cifar10/"; + std::string(MODEL_PARAMS_DIR_STR) + "/resnet18_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/vgg16_cifar100_half.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/vgg16_cifar100_half.cc index 2772fd3da42d50aa2ff5391d1e3c85c610a4960a..73b057c0971102c709e2f4c5fce141e9146c45f7 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/vgg16_cifar100_half.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/vgg16_cifar100_half.cc @@ -1,14 +1,19 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_cifar100/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_cifar100/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/vgg16_cifar10_half.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/vgg16_cifar10_half.cc index 954f6778b899d2cefb2b28d68a32fad33d52f70c..1928398c43ef19c626a80636018d8e50d969e3c7 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/vgg16_cifar10_half.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp16/vgg16_cifar10_half.cc @@ -1,14 +1,19 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet2_cifar10.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet2_cifar10.cc index e7431234d705449efa0fc5aafe23238e89be1d30..8f08e80d1f722060e89437e3a0c5e7963b58eb9d 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet2_cifar10.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet2_cifar10.cc @@ -2,7 +2,13 @@ #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) /* NOTE: Reference Architecture to use for profiling */ void testCifarNet() { @@ -10,7 +16,7 @@ void testCifarNet() { printf("********* Alexnet2 CIFAR-10 DNN ********** \n"); std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/alexnet2_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); + std::string(MODEL_PARAMS_DIR_STR) + "/alexnet2_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet_cifar10.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet_cifar10.cc index 12c304c9b401c586a0da4658b092f2b791268983..9f23cc656678f01bc9eea9611b943264d1b848f2 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet_cifar10.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet_cifar10.cc @@ -1,14 +1,19 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/alexnet_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/alexnet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); // std::string labels_path = dir_prefix + std::string("labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet_imagenet.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet_imagenet.cc index b57e60c0fef41b283ad57a7b203759a8f014252d..74de9507e540a620299068624a5a6b6d8efdbe6a 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet_imagenet.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/alexnet_imagenet.cc @@ -1,15 +1,20 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/alexnet_imagenet/"; + std::string(MODEL_PARAMS_DIR_STR) + "/alexnet_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/lenet_mnist.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/lenet_mnist.cc index 9777670722b69c8b23a82a77312d17386f2d5c3f..e973f712c9e06ced1a37a721fcc7d5eb27126350 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/lenet_mnist.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/lenet_mnist.cc @@ -1,8 +1,13 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int total_runs = 1; @@ -11,7 +16,7 @@ void testLenetTanh() { int test_batch_size = 5000; - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/lenet_mnist/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/lenet_mnist/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/mobilenet_cifar10.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/mobilenet_cifar10.cc index 3e37bf7feb6641af3afdeb8fb9f3a65fdfcbdce3..36f90e4954d4ad885cb56b1e36cf516e72c65cb2 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/mobilenet_cifar10.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/mobilenet_cifar10.cc @@ -1,14 +1,20 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + int main() { llvm_hpvm_initTensorRt(0); std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/mobilenet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); + std::string(MODEL_PARAMS_DIR_STR) + "/mobilenet_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); void *conv2d_1_w = diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/resnet18_cifar10.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/resnet18_cifar10.cc index c8a99419a81d19b374642c21c977a511413f9ae2..6cfcfbfbe183d894ed4ebba79e709de8d9523205 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/resnet18_cifar10.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/resnet18_cifar10.cc @@ -1,15 +1,20 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/resnet18_cifar10/"; + std::string(MODEL_PARAMS_DIR_STR) + "/resnet18_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/resnet50_imagenet.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/resnet50_imagenet.cc index 3aeabc22736e6955a9ad5ad07144fc38057616ea..56e02cc4aa4e353739637e0ece46f1193a66cd15 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/resnet50_imagenet.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/resnet50_imagenet.cc @@ -1,15 +1,20 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); std::string dir_prefix = - std::string("@MODEL_PARAMS_DIR@") + "/resnet50_imagenet/"; + std::string(MODEL_PARAMS_DIR_STR) + "/resnet50_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_cifar10.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_cifar10.cc index f7fffadfc36ba0fd248371efb35a1b7dfede68d3..a7b05ee731542e0fb6ccd5c4ae29fb4789890224 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_cifar10.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_cifar10.cc @@ -1,13 +1,19 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) + int main() { llvm_hpvm_initTensorRt(0); - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_cifar10/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_cifar10/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_cifar100.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_cifar100.cc index d3949c7cc568063f3b344d8497551fa1f4f4102c..b908f4201bf4bccb9f947de7fc703be764bdc15d 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_cifar100.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_cifar100.cc @@ -1,14 +1,19 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_cifar100/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_cifar100/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_imagenet.cc b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_imagenet.cc index 2bb1be2821a8d33062bf1cfd83bb978f59884fa9..a881e7905f6b52a77da9a48e7dc0fe7d29af93cb 100644 --- a/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_imagenet.cc +++ b/hpvm/test/dnn_benchmarks/tensor-rt-src/fp32/vgg16_imagenet.cc @@ -1,14 +1,19 @@ - - #include "tensor_runtime.h" #include "tensorUtils.h" +#ifndef MODEL_PARAMS_DIR +#error MODEL_PARAMS_DIR is not defined +#endif + +#define STR_VALUE(X) #X +#define STRINGIFY(X) STR_VALUE(X) +#define MODEL_PARAMS_DIR_STR STRINGIFY(MODEL_PARAMS_DIR) int main() { llvm_hpvm_initTensorRt(0); - std::string dir_prefix = std::string("@MODEL_PARAMS_DIR@") + "/vgg16_imagenet/"; + std::string dir_prefix = std::string(MODEL_PARAMS_DIR_STR) + "/vgg16_imagenet/"; std::string input_path = dir_prefix + std::string("test_input.bin"); std::string labels_path = dir_prefix + std::string("test_labels.bin"); diff --git a/hpvm/tools/hpvm-clang/main.py.in b/hpvm/tools/hpvm-clang/main.py.in index e2bc5cbafa23bd64094a3198ad8466f682f6bbdc..b20af0b80f192fe3c87b004c05a72b034aee098d 100644 --- a/hpvm/tools/hpvm-clang/main.py.in +++ b/hpvm/tools/hpvm-clang/main.py.in @@ -36,6 +36,7 @@ def compile_hpvm_c( link_libs: List[str] = None, working_dir: PathLike = None, conf_file: PathLike = None, + verbose: bool = False, ): from subprocess import check_output @@ -84,7 +85,8 @@ def compile_hpvm_c( link_binary(hpvm_rt_linked_file, output_file, link_dirs, link_libs) ) for command in commands: - print(" ".join(command)) + if verbose: + print(" ".join(command)) check_output(command) @@ -245,6 +247,10 @@ See option -b for that.""" help="[clang linker] Link library (such as -lpthread)" ) + parser.add_argument( + "-v", "--verbose", action="store_true", help="Print out all clang/opt/llvm-link commands used" + ) + args = parser.parse_args() if args.tensor_target == "tensor": if args.conf_file is None: