diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/alexnet_cifar10_cpu.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/cpu/alexnet_cifar10_cpu.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/alexnet_cifar10_cpu.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/cpu/alexnet_cifar10_cpu.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/resnet18_cifar10_cpu.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/cpu/resnet18_cifar10_cpu.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/resnet18_cifar10_cpu.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/cpu/resnet18_cifar10_cpu.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/dynamic/blend_pareto.cpp b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/dynamic/blend_pareto.cpp similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/dynamic/blend_pareto.cpp rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/dynamic/blend_pareto.cpp diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/dynamic/canny_pareto.cpp b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/dynamic/canny_pareto.cpp similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/dynamic/canny_pareto.cpp rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/dynamic/canny_pareto.cpp diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/dynamic/fft_pareto.cpp b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/dynamic/fft_pareto.cpp similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/dynamic/fft_pareto.cpp rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/dynamic/fft_pareto.cpp diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc2_clipped.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc2_clipped.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc2_clipped.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc2_clipped.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc2_cpu.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc2_cpu.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc2_cpu.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc2_cpu.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc3_clipped.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc3_clipped.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc3_clipped.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc3_clipped.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc4_clipped.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc4_clipped.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc4_clipped.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc4_clipped.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc4_cpu.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc4_cpu.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/fc4_cpu.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/fp32/fc4_cpu.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GEMO.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GEMO.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GEMO.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GEMO.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GEO.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GEO.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GEO.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GEO.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GEOM.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GEOM.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GEOM.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GEOM.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GSM.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GSM.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GSM.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GSM.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GSME.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GSME.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/pipeline_GSME.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/image_benchs_oopsla19/pipeline_GSME.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/alexnet_cifar10_layers.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/alexnet_cifar10_layers.cc new file mode 100644 index 0000000000000000000000000000000000000000..ac0d727f39df27763fb964d3846a39a4436ba2ef --- /dev/null +++ b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/alexnet_cifar10_layers.cc @@ -0,0 +1,156 @@ + +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <fcntl.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <string.h> + +#include "../../../tensor_runtime/include/tensor_runtime.h" +#include "../../include/utils.h" + + +bool Opentuner_run = false; + +/* NOTE: Reference Architecture to use for profiling */ +void testLenetTanh(){ + + int total_runs = 2; + if(Opentuner_run){ + total_runs = 100000; + } + + printf("********* Lenet-2 Architecture ********** \n"); + // FIXIT: Extend this to batch of images - currently 5 images + + int test_batch_size = 5000; + + uint8_t* labels = readLabels("../model_params/alexnet_cifar10/test_labels.bin", test_batch_size); + + for(int i = 0; i < total_runs; i++){ + + void* input = readTrainedWeights("../model_params/alexnet_cifar10/norm_cifar_input.bin", + float_type, + test_batch_size, 3, 32, 32); + + void* conv1_filter = readTrainedWeights("../model_params/alexnet_cifar10/conv1.bin", + float_type, 64, 3, 11, 11); + void* conv1_bias = readTrainedWeights("../model_params/alexnet_cifar10/conv1_bias.bin", + float_type, 1, 64, 1, 1); + void* conv2_filter = readTrainedWeights("../model_params/alexnet_cifar10/conv2.bin", + float_type, 192, 64, 5, 5); + void* conv2_bias = readTrainedWeights("../model_params/alexnet_cifar10/conv2_bias.bin", + float_type, 1, 192, 1, 1); + + void* conv3_filter = readTrainedWeights("../model_params/alexnet_cifar10/conv3.bin", + float_type, 384, 192, 3, 3); + void* conv3_bias = readTrainedWeights("../model_params/alexnet_cifar10/conv3_bias.bin", + float_type, 1, 384, 1, 1); + void* conv4_filter = readTrainedWeights("../model_params/alexnet_cifar10/conv4.bin", + float_type, 256, 384, 3, 3); + void* conv4_bias = readTrainedWeights("../model_params/alexnet_cifar10/conv4_bias.bin", + float_type, 1, 256, 1, 1); + void* conv5_filter = readTrainedWeights("../model_params/alexnet_cifar10/conv5.bin", + float_type, 256, 256, 3, 3); + void* conv5_bias = readTrainedWeights("../model_params/alexnet_cifar10/conv5_bias.bin", + float_type, 1, 256, 1, 1); + + void* fc1_weights = readTrainedWeights("../model_params/alexnet_cifar10/fc1.bin", + float_type, 1, 1, 4096, 10); + void* fc1_bias = readTrainedWeights("../model_params/alexnet_cifar10/fc1_bias.bin", + float_type, 1, 10, 1, 1); + + + clearTensorMap(); + + if(Opentuner_run){ + + char* myfifo = "/tmp/myfifo"; + int fd = open(myfifo, O_RDONLY); + + int ret_val = fcntl(fd, F_GETFD); + if(ret_val == -1){ + printf("Invalid descriptor \n"); + abort(); + } + + char str[100]; + read(fd, str, 80); + if(strcmp(str, "stop_run") == 0){ + abort(); + } + + close(fd); + } + + + readOpenTunerFlags("opentuner_flags"); // Resets the OpenTuner counters + + // Start power and performance profiling + startProfiling(); + + + void* conv1_out = ConvLayer_GPU(input, conv1_filter, conv1_bias, + 5, 5, 1, 1, 0, 2, 0, -1,1); + + void* conv2_out = ConvLayer_GPU(conv1_out, conv2_filter, conv2_bias, + 2, 2, 1, 1, 0, 2, 0, -1,1); + + void* conv3_out = ConvLayer_GPU(conv2_out, conv3_filter, conv3_bias, + 1, 1, 1, 1, 0, 0, 0, -1,1); + + void* conv4_out = ConvLayer_GPU(conv3_out, conv4_filter, conv4_bias, + 1, 1, 1, 1, 0, 0, 0, -1,1); + + void* conv5_out = ConvLayer_GPU(conv4_out, conv5_filter, conv5_bias, + 1, 1, 1, 1, 0, 2, 0, -1,1); + + void* fc1_out = FCLayer_GPU(conv5_out, fc1_weights, fc1_bias, -1, -1,1); + + void* result = tensorSoftmax(fc1_out); + + // End profiling and dump output to profile.txt + stopProfiling(); + + computeAccuracy2(labels, test_batch_size, result); + + dumpAccuracyNorms(); + freeOutputTensors(); + + if(Opentuner_run){ + + char* myfifo = "/tmp/myfifo"; + int fd_out = open(myfifo, O_WRONLY); + int ret_val = fcntl(fd_out, F_GETFD); + if(ret_val == -1){ + printf("Invalid descriptor \n"); + abort(); + } + + const char* str = "completed***!\n\0"; + write(fd_out, str, 80); + close(fd_out); + } + + } + + + +} + + +int main(int argc, char* argv[]){ + + if(argc > 1) + Opentuner_run = true; + + llvm_hpvm_initTensorRt(1); + + testLenetTanh(); + + llvm_hpvm_cleanupTensorRt(); + + return 0; +} + diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/lenet_layers.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/lenet_layers.cc new file mode 100644 index 0000000000000000000000000000000000000000..77b75add2bf858d56dcb2d427958bf0ea5ff20a0 --- /dev/null +++ b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/lenet_layers.cc @@ -0,0 +1,146 @@ + +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <fcntl.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <string.h> + +#include "../../../tensor_runtime/include/tensor_runtime.h" +#include "../../include/utils.h" + + +bool Opentuner_run = false; + +/* NOTE: Reference Architecture to use for profiling */ +void testLenetTanh(){ + + int total_runs = 10; + if(Opentuner_run){ + total_runs = 100000; + } + + printf("********* Lenet-2 Architecture ********** \n"); + // FIXIT: Extend this to batch of images - currently 5 images + + int test_batch_size = 10000; + + uint8_t* labels = readLabels("../model_params/lenet_params/datasets/t10k-labels-idx1-ubyte", test_batch_size); + + for(int i = 0; i < total_runs; i++){ + + void* input = readInputTensor("../model_params/lenet_params/datasets/t10k-images-idx3-ubyte", + CUDNN_DATA_FLOAT, + test_batch_size, 1, 28, 28); + + // NOTE: Filter descriptors do NOT have batch size + // NOTE: First two dims are output channels (configurable), input channels (MUST match input channels) + // IMP: The output channels matches the trained model - not the Lenet arch proposed in Andrew Ng's class + void* conv1_filter = readTrainedWeights("../model_params/lenet_keras/conv1.bin", + float_type, 32, 1, 5, 5); + void* conv1_bias = readTrainedWeights("../model_params/lenet_keras/conv1_bias.bin", + float_type, 1, 32, 1, 1); + void* conv2_filter = readTrainedWeights("../model_params/lenet_keras/conv2.bin", + float_type, 64, 32, 5, 5); + void* conv2_bias = readTrainedWeights("../model_params/lenet_keras/conv2_bias.bin", + float_type, 1, 64, 1, 1); + void* fc1_weights = readTrainedWeights("../model_params/lenet_keras/fc1.bin", + float_type, 1, 1, 7*7*64, 1024); + void* fc1_bias = readTrainedWeights("../model_params/lenet_keras/fc1_bias.bin", + float_type, 1, 1024, 1, 1); + void* fc2_weights = readTrainedWeights("../model_params/lenet_keras/fc2.bin", + float_type, 1, 1, 1024, 10); + void* fc2_bias = readTrainedWeights("../model_params/lenet_keras/fc2_bias.bin", + float_type, 1, 10, 1, 1); + + + + clearTensorMap(); + + + if(Opentuner_run){ + + char* myfifo = "/tmp/myfifo"; + int fd = open(myfifo, O_RDONLY); + + int ret_val = fcntl(fd, F_GETFD); + if(ret_val == -1){ + printf("Invalid descriptor \n"); + abort(); + } + + char str[100]; + read(fd, str, 80); + if(strcmp(str, "stop_run") == 0){ + abort(); + } + + close(fd); + } + + + readOpenTunerFlags("opentuner_flags"); // Resets the OpenTuner counters + + // Start power and performance profiling + startProfiling(); + + void* conv1_out = ConvLayer_GPU(input, conv1_filter, conv1_bias, + 2, 2, 1, 1, 0, 2, 0, -1,1); + + void* conv2_out = ConvLayer_GPU(conv1_out, conv2_filter, + conv2_bias, + 2, 2, 1, 1, 0, 2, 0, -1,1); + + void* fc1_out = FCLayer_GPU(conv2_out, fc1_weights, fc1_bias, + 0, -1,1); + + void* fc2_out = FCLayer_GPU(fc1_out, fc2_weights, fc2_bias, + 0, -1,1); + + void* result = tensorSoftmax(fc2_out); + + // End profiling and dump output to profile.txt + stopProfiling(); + + computeAccuracy2(labels, test_batch_size, result); + + dumpAccuracyNorms(); + freeOutputTensors(); + + if(Opentuner_run){ + + char* myfifo = "/tmp/myfifo"; + int fd_out = open(myfifo, O_WRONLY); + int ret_val = fcntl(fd_out, F_GETFD); + if(ret_val == -1){ + printf("Invalid descriptor \n"); + abort(); + } + + const char* str = "completed***!\n\0"; + write(fd_out, str, 80); + close(fd_out); + } + + } + + + +} + + +int main(int argc, char* argv[]){ + + if(argc > 1) + Opentuner_run = true; + + llvm_hpvm_initTensorRt(0); + + testLenetTanh(); + + llvm_hpvm_cleanupTensorRt(); + + return 0; +} + diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/lenet_layers2.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/lenet_layers2.cc new file mode 100644 index 0000000000000000000000000000000000000000..c1345ff24083a0ce20f3274afc74916968be4c06 --- /dev/null +++ b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/lenet_layers2.cc @@ -0,0 +1,141 @@ + +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <fcntl.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <string.h> + +#include "../../../tensor_runtime/include/tensor_runtime.h" +#include "../../include/utils.h" + + +bool Opentuner_run = false; + +/* NOTE: Reference Architecture to use for profiling */ +void testLenetTanh(){ + + int total_runs = 1; + if(Opentuner_run){ + total_runs = 100000; + } + + printf("********* Lenet-2 Architecture ********** \n"); + // FIXIT: Extend this to batch of images - currently 5 images + + int test_batch_size = 10000; + uint8_t* labels = readLabels("../model_params/lenet_params/datasets/t10k-labels-idx1-ubyte", test_batch_size); + + for(int i = 0; i < total_runs; i++){ + + void* input = readInputTensor("../model_params/lenet_params/datasets/t10k-images-idx3-ubyte", + CUDNN_DATA_FLOAT, + test_batch_size, 1, 28, 28); + + // NOTE: Filter descriptors do NOT have batch size + // NOTE: First two dims are output channels (configurable), input channels (MUST match input channels) + // IMP: The output channels matches the trained model - not the Lenet arch proposed in Andrew Ng's class + void* conv1_filter = readTrainedWeights("../model_params/lenet_keras2/conv1.bin", + float_type, 32, 1, 5, 5); + void* conv1_bias = readTrainedWeights("../model_params/lenet_keras2/conv1_bias.bin", + float_type, 1, 32, 1, 1); + void* conv2_filter = readTrainedWeights("../model_params/lenet_keras2/conv2.bin", + float_type, 64, 32, 5, 5); + void* conv2_bias = readTrainedWeights("../model_params/lenet_keras2/conv2_bias.bin", + float_type, 1, 64, 1, 1); + void* fc1_weights = readTrainedWeights("../model_params/lenet_keras2/fc1.bin", + float_type, 1, 1, 7*7*64, 1024); + void* fc1_bias = readTrainedWeights("../model_params/lenet_keras2/fc1_bias.bin", + float_type, 1, 1024, 1, 1); + void* fc2_weights = readTrainedWeights("../model_params/lenet_keras2/fc2.bin", + float_type, 1, 1, 1024, 10); + void* fc2_bias = readTrainedWeights("../model_params/lenet_keras2/fc2_bias.bin", + float_type, 1, 10, 1, 1); + + + clearTensorMap(); + + if(Opentuner_run){ + char* myfifo = "/tmp/myfifo"; + int fd = open(myfifo, O_RDONLY); + + int ret_val = fcntl(fd, F_GETFD); + if(ret_val == -1){ + printf("Invalid descriptor \n"); + abort(); + } + + char str[100]; + read(fd, str, 80); + if(strcmp(str, "stop_run") == 0){ + abort(); + } + + close(fd); + } + + + readOpenTunerFlags("opentuner_flags"); // Resets the OpenTuner counters + // Start power and performance profiling + startProfiling(); + + void* conv1_out = ConvLayer_GPU(input, conv1_filter, conv1_bias, + 2, 2, 1, 1, 0, 2, 0, -1,1); + + void* conv2_out = ConvLayer_GPU(conv1_out, conv2_filter, + conv2_bias, + 2, 2, 1, 1, 0, 2, 0, -1,1); + + void* fc1_out = FCLayer_GPU(conv2_out, fc1_weights, fc1_bias, + 0, -1,1); + + void* fc2_out = FCLayer_GPU(fc1_out, fc2_weights, fc2_bias, + 0, -1,1); + + void* result = tensorSoftmax(fc2_out); + + // End profiling and dump output to profile.txt + stopProfiling(); + + computeAccuracy2(labels, test_batch_size, result); + + dumpAccuracyNorms(); + freeOutputTensors(); + + if(Opentuner_run){ + + char* myfifo = "/tmp/myfifo"; + int fd_out = open(myfifo, O_WRONLY); + int ret_val = fcntl(fd_out, F_GETFD); + if(ret_val == -1){ + printf("Invalid descriptor \n"); + abort(); + } + + const char* str = "completed***!\n\0"; + write(fd_out, str, 80); + close(fd_out); + } + + } + + + +} + + +int main(int argc, char* argv[]){ + + if(argc > 1) + Opentuner_run = true; + + llvm_hpvm_initTensorRt(0); + + testLenetTanh(); + + llvm_hpvm_cleanupTensorRt(); + + return 0; +} + diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/test_layers.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/test_layers.cc new file mode 100644 index 0000000000000000000000000000000000000000..df663a81759f9e096e067859f8aa487882d8835f --- /dev/null +++ b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/test_layers.cc @@ -0,0 +1,148 @@ + +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <fcntl.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <string.h> + +#include "../../../tensor_runtime/include/tensor_runtime.h" +#include "../../include/utils.h" + + +bool Opentuner_run = false; + +/* NOTE: Reference Architecture to use for profiling */ +void testLenetTanh(){ + + int total_runs = 1; + if(Opentuner_run){ + total_runs = 100000; + } + + printf("********* Test Layer source ********** \n"); + // FIXIT: Extend this to batch of images - currently 5 images + + int test_batch_size = 10000; + + uint8_t* labels = readLabels("../model_params/lenet_params/datasets/t10k-labels-idx1-ubyte", test_batch_size); + + for(int i = 0; i < total_runs; i++){ + + void* input = readInputTensor("../model_params/lenet_params/datasets/t10k-images-idx3-ubyte", + CUDNN_DATA_FLOAT, + test_batch_size, 1, 28, 28); + + //void* conv1_filter = readTrainedWeights("../model_params/lenet_keras/conv1.bin", + // float_type, 32, 1, 5, 5); + //void* conv1_bias = readTrainedWeights("../model_params/lenet_keras/conv1_bias.bin", + // float_type, 1, 32, 1, 1); + //void* conv2_filter = readTrainedWeights("../model_params/lenet_keras/conv2.bin", + // float_type, 64, 32, 5, 5); + //void* conv2_bias = readTrainedWeights("../model_params/lenet_keras/conv2_bias.bin", + // float_type, 1, 64, 1, 1); + //void* fc1_weights = readTrainedWeights("../model_params/lenet_keras/fc1.bin", + // float_type, 1, 1, 7*7*64, 1024); + //void* fc1_bias = readTrainedWeights("../model_params/lenet_keras/fc1_bias.bin", + // float_type, 1, 1024, 1, 1); + + void* fc1_weights = readTrainedWeights("../model_params/test_keras/fc1.bin", + float_type, 1, 1, 784, 500); + void* fc1_bias = readTrainedWeights("../model_params/test_keras/fc1_bias.bin", + float_type, 1, 500, 1, 1); + + void* fc2_weights = readTrainedWeights("../model_params/test_keras/fc2.bin", + float_type, 1, 1, 500, 10); + void* fc2_bias = readTrainedWeights("../model_params/test_keras/fc2_bias.bin", + float_type, 1, 10, 1, 1); + + + clearTensorMap(); + + if(Opentuner_run){ + + char* myfifo = "/tmp/myfifo"; + int fd = open(myfifo, O_RDONLY); + + int ret_val = fcntl(fd, F_GETFD); + if(ret_val == -1){ + printf("Invalid descriptor \n"); + abort(); + } + + char str[100]; + read(fd, str, 80); + if(strcmp(str, "stop_run") == 0){ + abort(); + } + + close(fd); + } + + + readOpenTunerFlags("opentuner_flags"); // Resets the OpenTuner counters + + // Start power and performance profiling + startProfiling(); + + //- void* conv1_out = ConvLayer_GPU(input, conv1_filter, conv1_bias, + // 2, 2, 1, 1, 0, 2, 0, -1,1); + + //void* conv2_out = ConvLayer_GPU(conv1_out, conv2_filter, + // conv2_bias, + // 2, 2, 1, 1, 0, 2, 0, -1,1); + + //void* fc1_out = FCLayer_GPU(conv2_out, fc1_weights, fc1_bias, + // 0, -1,1); + + void* fc1_out = FCLayer_GPU(input, fc1_weights, fc1_bias, 0, -1,1); + + void* fc2_out = FCLayer_GPU(fc1_out, fc2_weights, fc2_bias, 0, -1,1); + + void* result = tensorSoftmax(fc2_out); + + // End profiling and dump output to profile.txt + stopProfiling(); + + computeAccuracy2(labels, test_batch_size, result); + + dumpAccuracyNorms(); + freeOutputTensors(); + + if(Opentuner_run){ + + char* myfifo = "/tmp/myfifo"; + int fd_out = open(myfifo, O_WRONLY); + int ret_val = fcntl(fd_out, F_GETFD); + if(ret_val == -1){ + printf("Invalid descriptor \n"); + abort(); + } + + const char* str = "completed***!\n\0"; + write(fd_out, str, 80); + close(fd_out); + } + + } + + + +} + + +int main(int argc, char* argv[]){ + + if(argc > 1) + Opentuner_run = true; + + llvm_hpvm_initTensorRt(0); + + testLenetTanh(); + + llvm_hpvm_cleanupTensorRt(); + + return 0; +} + diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/layers/cifar10_layers.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/test_layers2.cc similarity index 77% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/layers/cifar10_layers.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/test_layers2.cc index 4d083f58ba0d9db4ac2f1794be97b5409c7e1508..168025d42579e7b2bced6d7c34866e7c275cd739 100644 --- a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/layers/cifar10_layers.cc +++ b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/layers/test_layers2.cc @@ -16,21 +16,20 @@ bool Opentuner_run = false; /* NOTE: Reference Architecture to use for profiling */ void testLenetTanh(){ - int total_runs = 2; + int total_runs = 1; if(Opentuner_run){ total_runs = 100000; } printf("********* Lenet-2 Architecture ********** \n"); - // FIXIT: Extend this to batch of images - currently 5 images - - int test_batch_size = 5000; + + int test_batch_size = 10000; - uint8_t* labels = readLabels("../model_params/cifar10/labels.bin", test_batch_size); + uint8_t* labels = readLabels("../model_params/test_keras/test_labels.bin", test_batch_size); for(int i = 0; i < total_runs; i++){ - void* input = readTrainedWeights("../model_params/cifar10/input.bin", + void* input = readTrainedWeights("../model_params/cifar_keras/input.bin", float_type, test_batch_size, 3, 32, 32); @@ -52,13 +51,13 @@ void testLenetTanh(){ float_type, 1, 128, 1, 1); - void* fc1_weights = readTrainedWeights("../model_params/cifar10/fc1.bin", - float_type, 1, 1, 2048, 1024); - void* fc1_bias = readTrainedWeights("../model_params/cifar10/fc1_bias.bin", - float_type, 1, 1024, 1, 1); - void* fc2_weights = readTrainedWeights("../model_params/cifar10/fc2.bin", - float_type, 1, 1, 1024, 10); - void* fc2_bias = readTrainedWeights("../model_params/cifar10/fc2_bias.bin", + void* fc1_weights = readTrainedWeights("../model_params/test_keras/cifar_fc1.bin", + float_type, 1, 1, 3*32*32, 10); + void* fc1_bias = readTrainedWeights("../model_params/test_keras/cifar_fc1_bias.bin", + float_type, 1, 10, 1, 1); + void* fc2_weights = readTrainedWeights("../model_params/test_keras/cifar_fc2.bin", + float_type, 1, 1, 500, 10); + void* fc2_bias = readTrainedWeights("../model_params/test_keras/cifar_fc2_bias.bin", float_type, 1, 10, 1, 1); @@ -87,12 +86,10 @@ void testLenetTanh(){ readOpenTunerFlags("opentuner_flags"); // Resets the OpenTuner counters - // Start power and performance profiling startProfiling(); - - + /* void* conv1_out = ConvLayer_GPU(input, conv1_filter, conv1_bias, 1, 1, 1, 1, 0, 0, 0, -1,1); @@ -104,12 +101,15 @@ void testLenetTanh(){ void* conv4_out = ConvLayer_GPU(conv3_out, conv4_filter, conv4_bias, 1, 1, 1, 1, 0, 2, 0, -1,1); + */ + + void* fc1_out = FCLayer_GPU(input, fc1_weights, NULL, -1, -1,1); + //-- void* fc1_out = tensorGemmGPU(input, fc1_weights); - void* fc1_out = FCLayer_GPU(conv4_out, fc1_weights, fc1_bias, 0, -1,1); - void* fc2_out = FCLayer_GPU(fc1_out, fc2_weights, fc2_bias, 0, -1,1); + //void* fc2_out = FCLayer_GPU(fc1_out, fc2_weights, fc2_bias, 0, -1,1); - void* result = tensorSoftmax(fc2_out); + void* result = tensorSoftmax(fc1_out); // End profiling and dump output to profile.txt stopProfiling(); @@ -132,11 +132,9 @@ void testLenetTanh(){ const char* str = "completed***!\n\0"; write(fd_out, str, 80); close(fd_out); - } - + } } - } diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/alexnet2_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/alexnet2_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/alexnet2_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/alexnet2_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/alexnet2_profiling_tensors.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/alexnet2_profiling_tensors.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/alexnet2_profiling_tensors.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/alexnet2_profiling_tensors.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/alexnet_cifar10_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/alexnet_cifar10_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/alexnet_cifar10_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/alexnet_cifar10_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/blend_profiling.cpp b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/blend_profiling.cpp similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/blend_profiling.cpp rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/blend_profiling.cpp diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/canny_profiling.cpp b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/canny_profiling.cpp similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/canny_profiling.cpp rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/canny_profiling.cpp diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/fft_profiling.cpp b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/fft_profiling.cpp similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/fft_profiling.cpp rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/fft_profiling.cpp diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/lenet_keras_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/lenet_keras_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/lenet_keras_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/lenet_keras_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/mobilenet_cifar10_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/mobilenet_cifar10_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/mobilenet_cifar10_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/mobilenet_cifar10_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/mobilenet_depthwise_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/mobilenet_depthwise_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/mobilenet_depthwise_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/mobilenet_depthwise_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/mobilenet_shallow_depthwise_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/mobilenet_shallow_depthwise_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/mobilenet_shallow_depthwise_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/mobilenet_shallow_depthwise_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/mobilenet_shallow_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/mobilenet_shallow_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/mobilenet_shallow_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/mobilenet_shallow_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/resnet18_cifar10_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/resnet18_cifar10_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/resnet18_cifar10_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/resnet18_cifar10_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/vgg16_cifar100_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/vgg16_cifar100_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/vgg16_cifar100_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/vgg16_cifar100_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/vgg16_cifar10_profiling.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/vgg16_cifar10_profiling.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/profiling/vgg16_cifar10_profiling.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/profiling/vgg16_cifar10_profiling.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/mio_test.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/mio_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..646582146e1fd4b4819ee47a071d630428ed7f70 --- /dev/null +++ b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/mio_test.cc @@ -0,0 +1,98 @@ + +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <fcntl.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <string.h> +#include "../../tensor_runtime/include/tensor_runtime.h" +#include "../include/utils.h" + +int main(){ + + llvm_hpvm_initTensorRt(0); + + + std::string dir_prefix = std::string("../model_params/hpvm_mio/"); + std::string input_path = dir_prefix + std::string("input.bin"); + std::string labels_path = dir_prefix + std::string("labels.bin"); + std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin"); + void* conv2d_1_w = readTrainedWeights(conv2d_1_w_path.c_str(), 0,32,3,3,3); + std::string conv2d_1_b_path = dir_prefix + std::string("conv2d_1_b.bin"); + void* conv2d_1_b = readTrainedWeights(conv2d_1_b_path.c_str(), 0,1,32,1,1); + std::string conv2d_2_w_path = dir_prefix + std::string("conv2d_2_w.bin"); + void* conv2d_2_w = readTrainedWeights(conv2d_2_w_path.c_str(), 0,32,32,3,3); + std::string conv2d_2_b_path = dir_prefix + std::string("conv2d_2_b.bin"); + void* conv2d_2_b = readTrainedWeights(conv2d_2_b_path.c_str(), 0,1,32,1,1); + std::string conv2d_3_w_path = dir_prefix + std::string("conv2d_3_w.bin"); + void* conv2d_3_w = readTrainedWeights(conv2d_3_w_path.c_str(), 0,64,32,3,3); + std::string conv2d_3_b_path = dir_prefix + std::string("conv2d_3_b.bin"); + void* conv2d_3_b = readTrainedWeights(conv2d_3_b_path.c_str(), 0,1,64,1,1); + std::string conv2d_4_w_path = dir_prefix + std::string("conv2d_4_w.bin"); + void* conv2d_4_w = readTrainedWeights(conv2d_4_w_path.c_str(), 0,64,64,3,3); + std::string conv2d_4_b_path = dir_prefix + std::string("conv2d_4_b.bin"); + void* conv2d_4_b = readTrainedWeights(conv2d_4_b_path.c_str(), 0,1,64,1,1); + std::string dense_1_w_path = dir_prefix + std::string("dense_1_w.bin"); + void* dense_1_w = readTrainedWeights(dense_1_w_path.c_str(), 0,1,1,1600,256); + std::string dense_1_b_path = dir_prefix + std::string("dense_1_b.bin"); + void* dense_1_b = readTrainedWeights(dense_1_b_path.c_str(), 0,1,256,1,1); + std::string dense_2_w_path = dir_prefix + std::string("dense_2_w.bin"); + void* dense_2_w = readTrainedWeights(dense_2_w_path.c_str(), 0,1,1,256,5); + std::string dense_2_b_path = dir_prefix + std::string("dense_2_b.bin"); + void* dense_2_b = readTrainedWeights(dense_2_b_path.c_str(), 0,1,5,1,1); + + + + startMemTracking(); + + int test_input_size = 5000; + int batch_size = 5000; + int batch_count = test_input_size / batch_size; + float final_accuracy = 0.0; + + for(int i = 0; i < batch_count; i++){ + + int start = i * batch_size; + int end = (i + 1) * batch_size; + + void* input = readInputBatch(input_path.c_str(),0,start,end,3,32,32); + + void* var_0 = tensorConvolution(input, conv2d_1_w, 0, 0, 1, 1, 1, 1); + void* var_1 = tensorAdd(var_0, conv2d_1_b); + void* var_2 = tensorRelu(var_1); + void* var_3 = tensorConvolution(var_2, conv2d_2_w, 0, 0, 1, 1, 1, 1); + void* var_4 = tensorAdd(var_3, conv2d_2_b); + void* var_5 = tensorRelu(var_4); + void* var_6 = tensorPooling(var_5,0,2,2,0,0,2,2); + void* var_8 = tensorConvolution(var_6, conv2d_3_w, 0, 0, 1, 1, 1, 1); + void* var_9 = tensorAdd(var_8, conv2d_3_b); + void* var_10 = tensorRelu(var_9); + void* var_11 = tensorConvolution(var_10, conv2d_4_w, 0, 0, 1, 1, 1, 1); + void* var_12 = tensorAdd(var_11, conv2d_4_b); + void* var_13 = tensorRelu(var_12); + void* var_14 = tensorPooling(var_13,0,2,2,0,0,2,2); + void* var_17 = tensorGemmGPU(var_14, dense_1_w); + void* var_18 = tensorAdd(var_17, dense_1_b); + void* var_19 = tensorRelu(var_18); + void* var_21 = tensorGemmGPU(var_19, dense_2_w); + void* var_22 = tensorAdd(var_21, dense_2_b); + void* var_23 = tensorSoftmax(var_22); + + uint32_t* labels = readLabelsBatch3(labels_path.c_str(),start,end); + + float accuracy = computeAccuracy3(labels, var_23); + final_accuracy += accuracy; + freeBatchMemory(); + + } + + final_accuracy = final_accuracy / batch_count; + dumpFinalAccuracy(final_accuracy); + + + llvm_hpvm_cleanupTensorRt(); + + return 0; + +} diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/test_alexnet.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/test_alexnet.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/test_alexnet.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/test_alexnet.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/test_fc_half.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/test_fc_half.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/test_fc_half.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/test_fc_half.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/test_ops.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/test_ops.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/test_ops.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/test/test_ops.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/alexnet2_cifar10_tuner.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/alexnet2_cifar10_tuner.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/alexnet2_cifar10_tuner.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/alexnet2_cifar10_tuner.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/alexnet_cifar10_tuner.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/alexnet_cifar10_tuner.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/alexnet_cifar10_tuner.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/alexnet_cifar10_tuner.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/resnet18_cifar10_tuner.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/resnet18_cifar10_tuner.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/resnet18_cifar10_tuner.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/resnet18_cifar10_tuner.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar100_top5_tuner.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/vgg16_cifar100_top5_tuner.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar100_top5_tuner.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/vgg16_cifar100_top5_tuner.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar100_tuner.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/vgg16_cifar100_tuner.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar100_tuner.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/vgg16_cifar100_tuner.cc diff --git a/llvm/projects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar10_tuner.cc b/llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/vgg16_cifar10_tuner.cc similarity index 100% rename from llvm/projects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar10_tuner.cc rename to llvm/projects/hpvm-tensor-rt/dnn_sources/src/legacy/tuner/vgg16_cifar10_tuner.cc