From 1bd470b1e9ac391aecf6224071875ec290fea0e1 Mon Sep 17 00:00:00 2001 From: Yasmin Sarita <ysarita2@tyler.cs.illinois.edu> Date: Sat, 27 Jul 2019 11:04:20 -0500 Subject: [PATCH] fp16 depthwise conv --- .../include/approx_techniques.h | 295 +++++++++++++++++- 1 file changed, 286 insertions(+), 9 deletions(-) diff --git a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques.h b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques.h index 6701760584..e81a78860b 100644 --- a/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques.h +++ b/llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques.h @@ -317,6 +317,91 @@ __global__ void depthwise_convNew8(float* const __restrict__ y, #undef x4d } +__global__ void depthwise_convNew8_half(__half* const __restrict__ y, + const __half* const __restrict__ x, + const __half* const __restrict__ w, + const int B, const int M, + const int H, const int W, const int KH, + const int KW, const int H_out, const int W_out, + const int H_pad, const int W_pad, + const int H_stride, const int W_stride) +{ + + #define y4d(i3, i2, i1, i0) y[(i3) * (M * H_out * W_out) + (i2) * (H_out * W_out) + (i1) * (W_out) + i0] + #define x4d(i3, i2, i1, i0) x[(i3) * (M * H * W) + (i2) * (H * W) + (i1) * (W) + i0] + + const int num = 8; + + const int b = num * blockIdx.x; + const int m = (blockIdx.y * blockDim.x + threadIdx.x)/ (H_out * W_out); + + if(m < M){ + const int tx = (blockIdx.y * blockDim.x + threadIdx.x) % (H_out * W_out); + + const int start_h = (tx / W_out) * H_stride - H_pad; + const int start_w = (tx % W_out) * W_stride - W_pad; + + __half c0 = 0; + __half c1 = 0; + __half c2 = 0; + __half c3 = 0; + __half c4 = 0; + __half c5 = 0; + __half c6 = 0; + __half c7 = 0; + + const __half* weights = &w[m * KH * KW]; + + for (int k = 0; k < KH * KW; k++) { + int p = k / KW; + int q = k % KW; + + if (start_h + p > -1 && start_h + p < H && + start_w + q > -1 && start_w + q < W) { + + c0 = __hfma(x4d(b, m, start_h + p, start_w + q), weights[k], c0); + if(b + 1 < B) + c1 = __hfma(x4d(b + 1, m, start_h + p, start_w + q), weights[k], c1); + if(b + 2 < B) + c2 = __hfma(x4d(b + 2, m, start_h + p, start_w + q), weights[k], c2); + if(b + 3 < B) + c3 = __hfma(x4d(b + 3, m, start_h + p, start_w + q), weights[k], c3); + if(b + 4 < B) + c4 = __hfma(x4d(b + 4, m, start_h + p, start_w + q), weights[k], c4); + if(b + 5 < B) + c5 = __hfma(x4d(b + 5, m, start_h + p, start_w + q), weights[k], c5); + if(b + 6 < B) + c6 = __hfma(x4d(b + 6, m, start_h + p, start_w + q), weights[k], c6); + if(b + 7 < B) + c7 = __hfma(x4d(b + 7, m, start_h + p, start_w + q), weights[k], c7); + + + } + } + + y4d(b, m, 0, tx) = c0; + if(b + 1 < B) + y4d(b + 1, m, 0, tx) = c1; + if(b + 2 < B) + y4d(b + 2, m, 0, tx) = c2; + if(b + 3 < B) + y4d(b + 3, m, 0, tx) = c3; + if(b + 4 < B) + y4d(b + 4, m, 0, tx) = c4; + if(b + 5 < B) + y4d(b + 5, m, 0, tx) = c5; + if(b + 6 < B) + y4d(b + 6, m, 0, tx) = c6; + if(b + 7 < B) + y4d(b + 7, m, 0, tx) = c7; + } + + #undef y4d + #undef x4d +} + + + __global__ void depthwise_convNew12(float* const __restrict__ y, const float* const __restrict__ x, const float* const __restrict__ w, @@ -430,7 +515,7 @@ void* tensorConvCutlass(void* input_ptr, void* filter_ptr, llvm_hpvm_initTensorRt(0); INFO("*** TensorConvolution \n"); - profileEvent("tensorConv"); + profileEvent("Conv"); Tensor* input = (Tensor*)input_ptr; Tensor* filter = (Tensor*)filter_ptr; @@ -442,8 +527,8 @@ void* tensorConvCutlass(void* input_ptr, void* filter_ptr, Tensor* output; - //if(conv_groups < 0) { - if (conv_groups > 1) { + + if (conv_groups > 32) { // TODO: Support other cases; hostToDeviceCopy(input); hostToDeviceCopy(filter); @@ -493,10 +578,7 @@ void* tensorConvCutlass(void* input_ptr, void* filter_ptr, */ int blockSize; - if(h * w > 1023) - blockSize = 256; - else - blockSize = 128; + blockSize = 128; dim3 grid(((n + 7)/ 8), (c * h * w + blockSize - 1)/ blockSize); dim3 block(blockSize); @@ -617,7 +699,7 @@ void* tensorConvCutlass(void* input_ptr, void* filter_ptr, } cudaDeviceSynchronize(); - profileEvent("tensorConv_end", true); + profileEvent("Conv_end", true); #ifdef ERROR_INJECTION_ENABLED @@ -646,11 +728,206 @@ void* tensorConvCutlass(void* input_ptr, void* filter_ptr, } -void* tensorHalfConvCutlass(void* input, void* filter, +void* tensorHalfConvCutlass(void* input_ptr, void* filter_ptr, int vertical_pad, int horizontal_pad, int vertical_stride, int horizontal_stride, int conv_mode, int conv_groups){ + INFO("*** TensorHConvolution \n"); + profileEvent("#Conv"); + + Tensor* input = (Tensor*) input_ptr; + Tensor* filter = (Tensor*) filter_ptr; + + cudnnConvolutionDescriptor_t convDesc; + cudnnConvolutionFwdAlgo_t convAlgo; + cudnnConvolutionMode_t mode; + if(conv_mode == 0) + mode = CUDNN_CONVOLUTION; + else if(conv_mode == 1) + mode = CUDNN_CROSS_CORRELATION; + + // FIXIT: Need to be more aware of the implications of alpha and beta + float alpha = 1.0f, beta = 0.0f; + // NOTE: compute in half precision + cudnnDataType_t computeType = CUDNN_DATA_HALF; + + // NOTE: Moving inputs to GPU global memory + hostToDeviceCopy(input); + hostToDeviceCopy(filter); + + + /***** CONVERSIONS from FP32 to FP16 - on the GPU */ + size_t* input_dims = input->dims.dim_sizes; + size_t* filter_dims = filter->dims.dim_sizes; + + + profileEvent("F2H_start"); + + Tensor* input_half = (Tensor*) create4DTensor(CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, + input_dims[0], input_dims[1], + input_dims[2], input_dims[3]); + + + changeTensorPlacement(input_half, DEVICE); + Tensor* filter_half = (Tensor*) create4DTensor(CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, + filter_dims[0], filter_dims[1], + filter_dims[2], filter_dims[3]); + + + changeTensorPlacement(filter_half, DEVICE); + + + f2h((float*) input->gpu_data, input->num_elems, (half*) input_half->gpu_data); + f2h((float*) filter->gpu_data, filter->num_elems, (half*) filter_half->gpu_data); + + + /******* END OF INPUT DATA CONVERSIONS*/ + profileEvent("F2H_end"); + + Tensor *output; + Tensor *output_half; + + + if(conv_groups > 1){ + int n = input->dims.dim_sizes[0]; + int c = input->dims.dim_sizes[1]; + const int KH = filter->dims.dim_sizes[2]; + const int KW = filter->dims.dim_sizes[3]; + int h = (2 * vertical_pad + input->dims.dim_sizes[2] - KH) / vertical_stride + 1; + int w = (2 * horizontal_pad + input->dims.dim_sizes[3] - KW) / horizontal_stride + 1; + + + DEBUG("**Output Tensor Dims, n = %d, c = %d, h = %d, w = %d \n", n, c, h, w); + + + output = (Tensor*) create4DTensor((cudnnDataType_t) input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w); + // FIXIT: more checks for data types needed + output_half = (Tensor*) create4DTensor(CUDNN_DATA_HALF, + CUDNN_TENSOR_NCHW, n, c, h, w); + + + + // NOTE: Changing output tensor placement from host to device + changeTensorPlacement(output, DEVICE); + // NOTE: Necessary to insert the above call for every output tensor + + int blockSize; + blockSize = 128; + + dim3 grid(((n + 7)/ 8), (c * h * w + blockSize - 1)/ blockSize); + dim3 block(blockSize); + depthwise_convNew8_half<<<grid, block>>> ((__half*)output_half->gpu_data, + (__half*)input_half->gpu_data, (__half*)filter_half->gpu_data, + input->dims.dim_sizes[0], input->dims.dim_sizes[1], input->dims.dim_sizes[2], input->dims.dim_sizes[3], + KH, KW, h, w, vertical_pad, horizontal_pad, vertical_stride, horizontal_stride); + cudaDeviceSynchronize(); + + + } + else{ + checkCUDNN(cudnnCreateConvolutionDescriptor(&convDesc)); + + //FIXME: Current hack to preserve backward compatibilty + if(conv_groups == 0){ + conv_groups = 1; + } + + // NOTE: Adding support for grouped convolution + checkCUDNN(cudnnSetConvolutionGroupCount(convDesc, conv_groups)); + + + // FIXIT: Think if upscaling values need to be configurable? + // IMP-FIXIT: CUDNN Cross correlation is only used in the Lenet context + // IMP-FIXIT: Either make mode configurable OR see if CUDNN_CONVOLUTION MODE should be used? + checkCUDNN(cudnnSetConvolution2dDescriptor(convDesc, + vertical_pad, horizontal_pad, // conv padding + vertical_stride, horizontal_stride, // conv strides + 1, 1, // upscaling values + mode, // mode is configurable + computeType)); // defines compute precision + + int n, c, h, w; // output dimensions + // Find dimension of convolution output + checkCUDNN(cudnnGetConvolution2dForwardOutputDim(convDesc, + input->tensor_desc, + filter->filter_desc, + &n, &c, &h, &w)); + DEBUG("**Output Tensor Dims, n = %d, c = %d, h = %d, w = %d \n", n, c, h, w); + + + output = (Tensor*) create4DTensor((cudnnDataType_t) input->data_type, + CUDNN_TENSOR_NCHW, n, c, h, w); + // FIXIT: more checks for data types needed + output_half = (Tensor*) create4DTensor(CUDNN_DATA_HALF, + CUDNN_TENSOR_NCHW, n, c, h, w); + + + + // NOTE: Changing output tensor placement from host to device + changeTensorPlacement(output, DEVICE); + // NOTE: Necessary to insert the above call for every output tensor + + DEBUG("tensor->data_type = %d, tensor->data_format = %d, N = %d, H = %d, W = %d, C = %d \n", + output->data_type, output->data_format, output->dims.dim_sizes[0], output->dims.dim_sizes[1], + output->dims.dim_sizes[2], output->dims.dim_sizes[3]); + + if(convDesc == NULL || input->tensor_desc == NULL || + filter->filter_desc == NULL || output->tensor_desc == NULL) + ERROR("NULL descriptor! \n"); + + + // NOTE: The following algo works with TRUE half precision + convAlgo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; + //convAlgo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM; + + + size_t workspace_size; + checkCUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnnHandle, + input_half->tensor_desc, + filter_half->filter_desc, + convDesc, + output_half->tensor_desc, + convAlgo, + &workspace_size)); + + // Allocating memory for the convolution workspace + DEBUG("workspace size = %d \n", workspace_size); + void* workspace; + checkCudaErrors(cudaMalloc(&workspace, workspace_size)); + + + + + checkCUDNN(cudnnConvolutionForward(cudnnHandle, + &alpha, + input_half->tensor_desc, + input_half->gpu_data, + filter_half->filter_desc, + filter_half->gpu_data, + convDesc, convAlgo, workspace, workspace_size, + &beta, + output_half->tensor_desc, + output_half->gpu_data)); + + } + profileEvent("H2F_start"); + + // NOTE: Transforming half precision output to single precision + h2f((half*) output_half->gpu_data, output->num_elems, (float*) output->gpu_data); + + profileEvent("H2F_end"); + + profileEvent("#tensorHalfConv_end"); + + + freeTensor(input_half); + freeTensor(filter_half); + freeTensor(output_half); + + return output; + } -- GitLab