From 0ecc55fc41ccf995b37dd33fd5d70ae065e643b7 Mon Sep 17 00:00:00 2001 From: Yifan Zhao <yifanz16@illinois.edu> Date: Mon, 1 Feb 2021 22:53:04 -0600 Subject: [PATCH] Fixed some bug and passed frontend -> binary test --- .../projects/torch2hpvm/torch2hpvm/compile.py | 2 +- .../torch2hpvm/template_hpvm.cpp.in | 26 ++++++---- .../torch2hpvm/template_tensor.cpp.in | 22 ++++++--- .../dnn_benchmarks/pytorch/test_frontend.py | 49 ++++++++++++------- 4 files changed, 66 insertions(+), 33 deletions(-) diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/compile.py b/hpvm/projects/torch2hpvm/torch2hpvm/compile.py index 59925541bb..a94c16e6d4 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/compile.py +++ b/hpvm/projects/torch2hpvm/torch2hpvm/compile.py @@ -63,7 +63,7 @@ class ModelExporter: self.weight_dir.mkdir(exist_ok=True) flavor = HpvmCodeGen if hpvmc else TensorCodeGen - self.codegen = flavor(self.dfg, output_dir, self.dataset_size) + self.codegen = flavor(self.dfg, self.weight_dir, self.dataset_size) def export_source_code(self, output: PathLike, batch_size: Optional[int] = None): self.codegen.compile(output, batch_size) diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in index a7534a7854..d7d62e4216 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in +++ b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm.cpp.in @@ -2,7 +2,6 @@ #include <hpvm.h> #include <tensorTypes.h> #include <tensorUtils.h> -#include <config.h> {% for node in nodes %} void var_{{node.idx}}_node( @@ -22,7 +21,7 @@ t{{n}}{{", " if not loop.last}} {% endfor -%} -void root(void *__output, {%- for n in root_inputs -%} +void root({%- for n in root_inputs -%} void *{{n}}, size_t {{n}}_bytes{{", " if not loop.last}} {%- endfor %}) { __hpvm__hint(hpvm::CPU_TARGET); @@ -34,8 +33,8 @@ void *{{n}}, size_t {{n}}_bytes{{", " if not loop.last}} void* var_{{node.idx}} = __hpvm__createNodeND(0, var_{{node.idx}}_node); {% for edge in node.edges %} {% if edge.is_bindin %} - __hpvm__bindIn(var_{{node.idx}}, {{edge.input_idx * 2 + 1}}, {{edge.edge_idx * 2}}, 0); - __hpvm__bindIn(var_{{node.idx}}, {{edge.input_idx * 2 + 2}}, {{edge.edge_idx * 2 + 1}}, 0); + __hpvm__bindIn(var_{{node.idx}}, {{edge.input_idx * 2}}, {{edge.edge_idx * 2}}, 0); + __hpvm__bindIn(var_{{node.idx}}, {{edge.input_idx * 2 + 1}}, {{edge.edge_idx * 2 + 1}}, 0); {% else %} __hpvm__edge(var_{{edge.input_node}}, var_{{node.idx}}, 1, 0, {{edge.edge_idx * 2}}, 0); __hpvm__edge(var_{{edge.input_node}}, var_{{node.idx}}, 1, 1, {{edge.edge_idx * 2 + 1}}, 0); @@ -53,7 +52,6 @@ struct ret_t { }; typedef struct __attribute__((__packed__)) { - void *__output; {% for n in root_inputs %} void *{{n}}; size_t {{n}}_bytes; @@ -64,10 +62,20 @@ typedef struct __attribute__((__packed__)) { const int batch_size = {{batch_size}}, input_size = {{input_size}}, batch_count = input_size / batch_size; -int main(){ +int main(int argc, char *argv[]){ + if (argc != 2) { + std::cout << "Usage: " << argv[0] << " {tune|test}\n"; + return 1; + } + std::string arg1 = argv[1]; + if (arg1 != "tune" && arg1 != "test") { + std::cout << "Usage: " << argv[0] << " {tune|test}\n"; + return 1; + } + std::string dir_prefix = "{{prefix}}/"; - std::string input_path = dir_prefix + "input.bin"; - std::string labels_path = dir_prefix + "labels32.bin"; + std::string input_path = dir_prefix + arg1 + "_input.bin"; + std::string labels_path = dir_prefix + arg1 + "_labels.bin"; {% for w in weights %} std::string {{w.name}}_path = dir_prefix + "{{w.filename}}"; void* {{w.name}} = readTrainedWeights({{w.name}}_path.c_str(), 0, {{w.shape|join(', ')}}); @@ -88,7 +96,7 @@ int main(){ void* dfg = __hpvm__launch(0, root, (void*) args); __hpvm__wait(dfg); - void *result = static_cast<RootIn*>(args)->__output; + void *result = static_cast<RootIn*>(args)->r.tensor; hpvm_request_tensor(result, 0); uint32_t* labels = readLabelsBatch3(labels_path.c_str(), start, end); diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/template_tensor.cpp.in b/hpvm/projects/torch2hpvm/torch2hpvm/template_tensor.cpp.in index 948bba9321..02dff0eb02 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/template_tensor.cpp.in +++ b/hpvm/projects/torch2hpvm/torch2hpvm/template_tensor.cpp.in @@ -7,13 +7,23 @@ #include <sys/types.h> #include <unistd.h> -#include "../../tensor_runtime/include/tensor_runtime.h" -#include "../include/utils.h" +#include "tensor_runtime.h" +#include "utils.h" -int main() { - std::string dir_prefix = "{{prefix}}"; - std::string input_path = dir_prefix + "input.bin"; - std::string labels_path = dir_prefix + "labels.bin"; +int main(int argc, char *argv[]){ + if (argc != 2) { + std::cout << "Usage: " << argv[0] << " {tune|test}\n"; + return 1; + } + std::string arg1 = argv[1]; + if (arg1 != "tune" && arg1 != "test") { + std::cout << "Usage: " << argv[0] << " {tune|test}\n"; + return 1; + } + + std::string dir_prefix = "{{prefix}}/"; + std::string input_path = dir_prefix + arg1 + "_input.bin"; + std::string labels_path = dir_prefix + arg1 + "_labels.bin"; {% for w in weights %} std::string {{w.name}}_path = dir_prefix + std::string("{{w.filename}}"); void* {{w.name}} = readTrainedWeights({{w.name}}_path.c_str(), 0, {{w.shape|join(', ')}}); diff --git a/hpvm/test/dnn_benchmarks/pytorch/test_frontend.py b/hpvm/test/dnn_benchmarks/pytorch/test_frontend.py index 1ca46cd702..96de3db2ed 100644 --- a/hpvm/test/dnn_benchmarks/pytorch/test_frontend.py +++ b/hpvm/test/dnn_benchmarks/pytorch/test_frontend.py @@ -1,31 +1,34 @@ import os +import shutil import site from pathlib import Path -import shutil +from subprocess import run +import torch from torch2hpvm import BinDataset, ModelExporter +from torch.nn import Module site.addsitedir(os.path.dirname(__file__)) import dnn benchmarks = [ - (dnn.LeNet, 1, 28, "lenet_mnist"), - (dnn.AlexNet, 3, 32, "alexnet_cifar10"), - (dnn.AlexNet2, 3, 32, "alexnet2_cifar10"), - (dnn.AlexNetImageNet, 3, 224, "alexnet_imagenet"), - (dnn.MobileNet, 3, 32, "mobilenet_cifar10"), - (dnn.ResNet18, 3, 32, "resnet18_cifar10"), - (dnn.ResNet50, 3, 224, "resnet50_imagenet"), - (dnn.VGG16Cifar10, 3, 32, "vgg16_cifar10"), - (dnn.VGG16Cifar100, 3, 32, "vgg16_cifar100"), - (dnn.VGG16ImageNet, 3, 224, "vgg16_imagenet"), + (dnn.LeNet, 1, 28, 5000, "lenet_mnist"), + (dnn.AlexNet, 3, 32, 5000, "alexnet_cifar10"), + (dnn.AlexNet2, 3, 32, 5000, "alexnet2_cifar10"), + (dnn.AlexNetImageNet, 3, 224, 500, "alexnet_imagenet"), + (dnn.MobileNet, 3, 32, 5000, "mobilenet_cifar10"), + (dnn.ResNet18, 3, 32, 5000, "resnet18_cifar10"), + (dnn.ResNet50, 3, 224, 100, "resnet50_imagenet"), + (dnn.VGG16Cifar10, 3, 32, 5000, "vgg16_cifar10"), + (dnn.VGG16Cifar100, 3, 32, 5000, "vgg16_cifar100"), + (dnn.VGG16ImageNet, 3, 224, 100, "vgg16_imagenet"), ] self_folder = Path(__file__).parent -for model_cls, nch, img_size, pathname in benchmarks: - target = Path(f"/tmp/{pathname}") - print(f"Generating {pathname} to {target}") - if target.exists(): - shutil.rmtree(target) +for model_cls, nch, img_size, batch_size, pathname in benchmarks: + codegen_dir = Path(f"/tmp/{pathname}") + print(f"Generating {pathname} to {codegen_dir}") + if codegen_dir.exists(): + shutil.rmtree(codegen_dir) prefix = self_folder / "../model_params" / pathname dataset_shape = 5000, nch, img_size, img_size bin_tuneset = BinDataset( @@ -34,4 +37,16 @@ for model_cls, nch, img_size, pathname in benchmarks: bin_testset = BinDataset( prefix / "test_input.bin", prefix / "test_labels.bin", dataset_shape ) - ModelExporter(model_cls(), bin_tuneset, bin_testset, target, True).export_all() + model: Module = model_cls() + checkpoint = self_folder / "../model_params" / f"{pathname}.pth.tar" + model.load_state_dict(torch.load(checkpoint.as_posix())) + exporter = ModelExporter(model, bin_tuneset, bin_testset, codegen_dir, True) + exporter.export_all(batch_size=batch_size) + build_dir = codegen_dir / "build" + target_binary = build_dir / pathname + run([ + "approxhpvm.py", str(codegen_dir / ModelExporter.source_file_name), str(target_binary), + "-d", str(build_dir), + "-t", "cudnn" + ], check=True) + run([str(target_binary), "test"], check=True) -- GitLab