diff --git a/llvm/projects/keras/src/resnet50_imagenet.py b/llvm/projects/keras/src/resnet50_imagenet.py index b4d9925a085e6e510c4d2707f9564cfe28a53765..689709d27595ae78ad46f7b356c179f10f534ef2 100644 --- a/llvm/projects/keras/src/resnet50_imagenet.py +++ b/llvm/projects/keras/src/resnet50_imagenet.py @@ -29,7 +29,7 @@ data_format = 'channels_first' IMAGENET_DIR = '/home/nz11/ILSVRC2012/' -OUTPUT_DIR = 'data/resnet50_imagenet_tune/' +OUTPUT_DIR = 'data/resnet50_imagenet_tune_regenerate/' WEIGHTS_PATH = 'data/resnet50_imagenet/weights.h5' NUM_CLASSES = 200 @@ -217,6 +217,9 @@ y_true = np.array(y_true) X_tune = np.array(X_tune) y_tune = np.array(y_tune) +print ('tune size', len(X_tune)) +print ('test size', len(X_test)) + @@ -267,19 +270,20 @@ model.compile(optimizer=keras.optimizers.Adam(lr=0.00001), loss='categorical_cro if os.path.exists(WEIGHTS_PATH): model.load_weights(WEIGHTS_PATH) else: - model.fit_generator(generate(), steps_per_epoch=1000, validation_data=(X_test, to_categorical(y_true, num_classes=1000)), epochs=6) - model.save_weights(OUTPUT_DIR + 'weights.h5') + pass +# model.fit_generator(generate(), steps_per_epoch=1000, validation_data=(X_test, to_categorical(y_true, num_classes=1000)), epochs=6) +# model.save_weights(OUTPUT_DIR + 'weights.h5') -translate_to_approxhpvm(model, OUTPUT_DIR, X_tune, y_tune, 1000) +translate_to_approxhpvm(model, OUTPUT_DIR, X_tune, y_tune, 1000, dump_weights=False) -# dumpCalibrationData2(OUTPUT_DIR + 'test_input_10K.bin', X_test, OUTPUT_DIR + 'test_labels_10K.bin', y_true) -dumpCalibrationData2(OUTPUT_DIR + 'tune_input.bin', X_tune, OUTPUT_DIR + 'tune_labels.bin', y_tune) -dumpCalibrationData2(OUTPUT_DIR + 'test_input.bin', X_test, OUTPUT_DIR + 'test_labels.bin', y_true) +# # dumpCalibrationData2(OUTPUT_DIR + 'test_input_10K.bin', X_test, OUTPUT_DIR + 'test_labels_10K.bin', y_true) +# dumpCalibrationData2(OUTPUT_DIR + 'tune_input.bin', X_tune, OUTPUT_DIR + 'tune_labels.bin', y_tune) +# dumpCalibrationData2(OUTPUT_DIR + 'test_input.bin', X_test, OUTPUT_DIR + 'test_labels.bin', y_true) pred = np.argmax(model.predict(X_test), axis=1) print ('val accuracy', np.sum(pred == y_true.ravel()) / len(X_test)) -pred = np.argmax(model.predict(X_tune), axis=1) -print ('val accuracy', np.sum(pred == y_tune.ravel()) / len(X_tune)) +# pred = np.argmax(model.predict(X_tune), axis=1) +# print ('val accuracy', np.sum(pred == y_tune.ravel()) / len(X_tune)) \ No newline at end of file