From 02596df1ccf6f1663dd07e32e1114f8d1c814e5f Mon Sep 17 00:00:00 2001 From: Yifan Zhao <yifanz16@illinois.edu> Date: Wed, 3 Feb 2021 23:44:14 -0600 Subject: [PATCH] Added a mode to generate 'inspected' binary in frontend --- .../torch2hpvm/torch2hpvm/codegen_hpvm.py | 11 +- .../projects/torch2hpvm/torch2hpvm/compile.py | 9 +- .../torch2hpvm/template_hpvm_inspect.cpp.in | 151 ++++++++++++++++++ .../dnn_benchmarks/pytorch/test_tuning.py | 70 ++++++++ 4 files changed, 234 insertions(+), 7 deletions(-) create mode 100644 hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in create mode 100644 hpvm/test/dnn_benchmarks/pytorch/test_tuning.py diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/codegen_hpvm.py b/hpvm/projects/torch2hpvm/torch2hpvm/codegen_hpvm.py index cdba5f327f..7a5ea0cb0f 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/codegen_hpvm.py +++ b/hpvm/projects/torch2hpvm/torch2hpvm/codegen_hpvm.py @@ -6,10 +6,10 @@ import jinja2 from .graph_builder import DFG from .graph_ir import DFGNode, TensorNode, WeightTensor -TEMPLATE_FILE = "template_hpvm.cpp.in" +PLAIN_TEMPLATE_FILE = "template_hpvm.cpp.in" +INSPECT_TEMPLATE_FILE = "template_hpvm_inspect.cpp.in" loader = jinja2.FileSystemLoader(searchpath=Path(__file__).parent) template_env = jinja2.Environment(loader=loader, trim_blocks=True) -template = template_env.get_template(TEMPLATE_FILE) PathLike = Union[str, Path] @@ -69,11 +69,14 @@ class HpvmCodeGen(CodeGen): # Variable indicator is always int for hpvm gen variables: Dict[DFGNode, Tuple[int, bool]] - def __init__(self, dfg: DFG, prefix: PathLike, input_size: int, target: str): + def __init__(self, dfg: DFG, prefix: PathLike, input_size: int, target: str, inspectable: bool): super().__init__(dfg, prefix, input_size) if target not in ("tensor", "cudnn"): raise ValueError(f"Unsupported target {target}") self.target = target + self.template = template_env.get_template( + INSPECT_TEMPLATE_FILE if inspectable else PLAIN_TEMPLATE_FILE + ) def _emit_hpvm_node_edges(self, input_vars: List[DFGNode]) -> List[dict]: ret = [] @@ -133,7 +136,7 @@ class HpvmCodeGen(CodeGen): weights = self.emit_weights(self.weights) with Path(output).open("w") as f: f.write( - template.render( + self.template.render( nodes=nodes, input_name=self.input_name, input_size=self.input_size, diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/compile.py b/hpvm/projects/torch2hpvm/torch2hpvm/compile.py index 5e27224298..25b3fff292 100644 --- a/hpvm/projects/torch2hpvm/torch2hpvm/compile.py +++ b/hpvm/projects/torch2hpvm/torch2hpvm/compile.py @@ -62,12 +62,15 @@ class ModelExporter: self.weight_dir = self.output_dir / self.weight_dir_name self.weight_dir.mkdir(exist_ok=True) + args3 = self.dfg, self.weight_dir, self.dataset_size if target == "hpvm_tensor": - self.codegen = HpvmCodeGen(self.dfg, self.weight_dir, self.dataset_size, "tensor") + self.codegen = HpvmCodeGen(*args3, "tensor", False) + elif target == "hpvm_tensor_inspect": + self.codegen = HpvmCodeGen(*args3, "tensor", True) elif target == "hpvm_cudnn": - self.codegen = HpvmCodeGen(self.dfg, self.weight_dir, self.dataset_size, "cudnn") + self.codegen = HpvmCodeGen(*args3, "cudnn", False) elif target == "tensor": - self.codegen = TensorCodeGen(self.dfg, self.weight_dir, self.dataset_size) + self.codegen = TensorCodeGen(*args3) else: raise ValueError(f"Target {target} not recognized") diff --git a/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in new file mode 100644 index 0000000000..d481da1944 --- /dev/null +++ b/hpvm/projects/torch2hpvm/torch2hpvm/template_hpvm_inspect.cpp.in @@ -0,0 +1,151 @@ +#include <string> +#include <hpvm.h> +#include <tensorTypes.h> +#include <tensorUtils.h> + +// Linux C API for FIFO files +#include <errno.h> +#include <unistd.h> +#include <sys/types.h> +#include <sys/stat.h> + +/**** Routines for Handling Piped Execution ***/ +bool fifo_wait(const std::string &filename) { + std::ifstream file{filename}; + std::string line; + std::getline(file, line); + if (line == "next") + return true; + if (line == "stop") + return false; + std::cout << "Invalid fifo file content \"" << line << "\"\n"; + abort(); +} + +void fifo_write_finished(const std::string &filename) { + std::ofstream file{filename}; + file << "finished\n\0"; +} + +void make_fifo(const std::string &filename) { + if (mkfifo(filename.c_str(), 0666) == 0) + return; + if (errno == EEXIST) { + if (unlink(filename.c_str()) < 0) { + std::cout << "Error removing existing file: " << strerror(errno) << '\n'; + abort(); + } + make_fifo(filename); + } + std::cout << "Error making FIFO file: " << strerror(errno) << '\n'; + abort(); +} + +{% for node in nodes %} +void var_{{node.idx}}_node( +{%- for n in range(node.input_size) -%} +void *t{{n}}, size_t bytes_t{{n}}{{", " if not loop.last}} +{%- endfor %}) { + __hpvm__hint(hpvm::{{target.upper()}}_TARGET); + __hpvm__attributes({{node.input_size}}, {% for n in range(node.input_size) -%} +t{{n}}{{", " if not loop.last}} +{%- endfor %}, 0); + __hpvm__node_id({{node.idx + 1}}); + void *r = {{node.call_name}}({% for n in range(node.input_size) -%} +t{{n}}{{", " if not loop.last}} +{%- endfor %}{{", " if node.call_args}}{{node.call_args|join(", ")}}); + __hpvm__return(2, r, (size_t) 0); +} + +{% endfor -%} + +void root({%- for n in root_inputs -%} +void *{{n}}, size_t {{n}}_bytes{{", " if not loop.last}} +{%- endfor %}) { + __hpvm__hint(hpvm::CPU_TARGET); + __hpvm__attributes({{root_inputs|length}}, {% for n in root_inputs -%} +{{n}}{{", " if not loop.last}} +{%- endfor %}, 0); + +{% for node in nodes %} + void* var_{{node.idx}} = __hpvm__createNodeND(0, var_{{node.idx}}_node); +{% for edge in node.edges %} +{% if edge.is_bindin %} + __hpvm__bindIn(var_{{node.idx}}, {{edge.input_idx * 2}}, {{edge.edge_idx * 2}}, 0); + __hpvm__bindIn(var_{{node.idx}}, {{edge.input_idx * 2 + 1}}, {{edge.edge_idx * 2 + 1}}, 0); +{% else %} + __hpvm__edge(var_{{edge.input_node}}, var_{{node.idx}}, 1, 0, {{edge.edge_idx * 2}}, 0); + __hpvm__edge(var_{{edge.input_node}}, var_{{node.idx}}, 1, 1, {{edge.edge_idx * 2 + 1}}, 0); +{% endif %} +{% endfor %} + +{% endfor %} + __hpvm__bindOut(var_{{root_output_idx}}, 0, 0, 0); + __hpvm__bindOut(var_{{root_output_idx}}, 1, 1, 0); +} + +struct ret_t { + void* tensor; + size_t bytes; +}; + +typedef struct __attribute__((__packed__)) { +{% for n in root_inputs %} + void *{{n}}; + size_t {{n}}_bytes; +{% endfor %} + struct ret_t r; +} RootIn; + + +const int batch_size = {{batch_size}}, input_size = {{input_size}}, batch_count = input_size / batch_size; + +int main(int argc, char *argv[]){ + if (argc != 2) { + std::cout << "Usage: " << argv[0] << " {tune|test}\n"; + return 1; + } + std::string arg1 = argv[1]; + if (arg1 != "tune" && arg1 != "test") { + std::cout << "Usage: " << argv[0] << " {tune|test}\n"; + return 1; + } + + std::string dir_prefix = "{{prefix}}/"; + std::string input_path = dir_prefix + arg1 + "_input.bin"; + std::string labels_path = dir_prefix + arg1 + "_labels.bin"; +{% for w in weights %} + std::string {{w.name}}_path = dir_prefix + "{{w.filename}}"; + void* {{w.name}} = readTrainedWeights({{w.name}}_path.c_str(), 0, {{w.shape|join(', ')}}); +{% endfor %} + + RootIn* args = static_cast<RootIn*>(malloc(sizeof(RootIn))); + void* {{input_name}} = create4DTensor(0, nchw, batch_size, {{input_shape|join(', ')}}); +{% for n in root_inputs %} + args->{{n}} = {{n}}; + args->{{n}}_bytes = 0; +{% endfor %} + + make_fifo("/tmp/hpvm_fifo"); + while (fifo_wait("/tmp/hpvm_fifo")) { + __hpvm__init(); + startMemTracking(); + for (int i = 0; i < batch_count; i++){ + int start = i * batch_size, end = start + batch_size; + copyInputBatch(input_path.c_str(), start, end, {{input_shape|join(', ')}}, {{input_name}}); + + void* dfg = __hpvm__launch(0, root, (void*) args); + __hpvm__wait(dfg); + void *result = static_cast<RootIn*>(args)->r.tensor; + hpvm_request_tensor(result, 0); + + uint32_t* labels = readLabelsBatch3(labels_path.c_str(), start, end); + computeAccuracy3(labels, result); + freeBatchMemory(); + } + __hpvm__cleanup(); + fifo_write_finished("/tmp/hpvm_fifo"); + } + + return 0; +} diff --git a/hpvm/test/dnn_benchmarks/pytorch/test_tuning.py b/hpvm/test/dnn_benchmarks/pytorch/test_tuning.py new file mode 100644 index 0000000000..1c4e8120ef --- /dev/null +++ b/hpvm/test/dnn_benchmarks/pytorch/test_tuning.py @@ -0,0 +1,70 @@ +import shutil +from pathlib import Path +from subprocess import run +import torch + +from torch2hpvm import BinDataset, ModelExporter +from torch.nn import Module +from predtuner.pipedbin import PipedBinaryApp + + +import os +import shutil +import site +from pathlib import Path +from subprocess import run +import torch + +from torch2hpvm import BinDataset, ModelExporter +from torch.nn import Module + +site.addsitedir(os.path.dirname(__file__)) +import dnn + +benchmarks = [ + (dnn.LeNet, 1, 28, 5000, "lenet_mnist"), + (dnn.AlexNet, 3, 32, 5000, "alexnet_cifar10"), + (dnn.AlexNet2, 3, 32, 5000, "alexnet2_cifar10"), + (dnn.AlexNetImageNet, 3, 224, 500, "alexnet_imagenet"), + (dnn.MobileNet, 3, 32, 5000, "mobilenet_cifar10"), + (dnn.ResNet18, 3, 32, 5000, "resnet18_cifar10"), + (dnn.ResNet50, 3, 224, 100, "resnet50_imagenet"), + (dnn.VGG16Cifar10, 3, 32, 5000, "vgg16_cifar10"), + (dnn.VGG16Cifar100, 3, 32, 5000, "vgg16_cifar100"), + (dnn.VGG16ImageNet, 3, 224, 100, "vgg16_imagenet"), +] + +self_folder = Path(__file__).parent +model_cls, nch, img_size, batch_size, pathname = benchmarks[0] +codegen_dir = Path(f"/tmp/{pathname}_tune") +print(f"Generating {pathname} to {codegen_dir}") +if codegen_dir.exists(): + shutil.rmtree(codegen_dir) + +params = self_folder / "../model_params" / pathname +dataset_shape = 5000, nch, img_size, img_size +bin_tuneset = BinDataset( + params / "tune_input.bin", params / "tune_labels.bin", dataset_shape +) +bin_testset = BinDataset( + params / "test_input.bin", params / "test_labels.bin", dataset_shape +) +model: Module = model_cls() +checkpoint = self_folder / "../model_params" / f"{pathname}.pth.tar" +model.load_state_dict(torch.load(checkpoint.as_posix())) + +exporter = ModelExporter(model, bin_tuneset, bin_testset, codegen_dir, target="hpvm_tensor_inspect") +exporter.export_all(batch_size=batch_size) + +conf_file = self_folder / "../hpvm-c/benchmarks" / pathname / "data/tuner_confs.txt" +build_dir = codegen_dir / "build" +target_binary = build_dir / pathname +run([ + "approxhpvm.py", str(codegen_dir / ModelExporter.source_file_name), str(target_binary), + "-d", str(build_dir), + "-t", "tensor", "--conf-file", str(conf_file) +], check=True) +# run([str(target_binary), "test"], check=True) + +# build_dir = codegen_dir / "build" +# print(PipedBinaryApp("test", codegen_dir / "ops.json", build_dir / "lenet_mnist", build_dir)) -- GitLab