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Abstract
Heterogeneous computing is widely used in the System-on-chip
(SoC) processors that power modern mobile devices in order to
reduce power consumption through specialization. However, pro-
gramming such systems can be extremely complex as a single SoC
combines multiple different parallelism models, instruction sets,
and memory hierarchies, and different SoCs use different combi-
nations of these features. We propose hVISC, a new Virtual In-
struction Set Architecture (ISA) that aims to address both func-
tional portability and performance portability across mobile hetero-
geneous SoCs by capturing the wide range of different parallelism
models expected to be available on future SoCs. Our virtual ISA
design uses only two parallelism models to achieve this goal: a hi-
erarchical dataflow graph with side effects and parametric vector
instructions. hVISC is more general than existing ones that focus
heavily on GPUs, such as PTX, HSAIL and SPIR, e.g., it can cap-
ture both streaming pipelined parallelism and general dataflow par-
allelism found in many custom and semi-custom (programmable)
accelerators. We present a compilation strategy to generate code
for a diverse range of target hardware components from the com-
mon virtual ISA. As a first prototype, we have implemented back-
ends for GPUs that use nVidia’s PTX, vector hardware using In-
tel’s AVX, and host code running on X86 processors. Experimental
results show that code generated for vectors and GPUs from a sin-
gle virtual ISA representation achieves performance that is within
about a factor of 2x of separately hand-tuned code, and much closer
in most cases. We further demonstrate qualitatively using a realistic
example that our virtual ISA abstractions are also suited for captur-
ing pipelining and streaming parallelism.

1. Introduction
In computing contexts where energy is an important consideration,
such as in mobile devices like smartphones, tablets, and e-book
readers, or where power and heat dissipation are important, such
as in data centers, traditional homogeneous multicore processors
can be quite inefficient. These contexts are increasingly seeing the
advent of heterogeneous computing systems, which use specialized
computing elements that can deliver much greater efficiency in
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performance-per-Joule or performance-per-Watt. For example, the
“application processor” on a modern smartphone or tablet is a
heterogeneous System-on-chip (SoC) that often includes not just
a multicore host CPU, but also a GPU, a DSP, and several more
specialized processors for tasks such as audio and video decoding,
image processing, digital photography, and speech recognition.

Programming applications for hardware that uses such diverse
combinations of computing elements is extremely challenging. The
challenges include developing portable algorithms, writing efficient
yet portable source-level programs, producing portable object code,
and tuning the programs. At a more fundamental level, these chal-
lenges arise from three root causes: (1) diverse parallelism models;
(2) diverse memory architectures; and (3) diverse hardware instruc-
tion sets. To make use of the full range of available hardware to
maximize performance and energy efficiency, the programming en-
vironment needs to provide common abstractions for all the avail-
able hardware compute units in heterogeneous systems. Not only
are these abstractions required at the level of source-code, but also
at object-code level to make the object-code portable across the
same and different manufacturer’s devices, thus allowing applica-
tion vendors to be able to ship a single software version across a
broad range of devices.

We believe that these issues are best addressed using a virtual in-
struction set layer that abstracts away most of the low-level details
of different hardware components, but provides a small number of
abstractions of parallelism that can be mapped down (or “trans-
lated”) effectively to all the different kinds of parallel hardware on
a wide range of SoCs. The (virtual) object code is translated down
to specific hardware components available on a particular device, at
install time, load time or run-time. This general approach, which we
call Virtual Instruction Set Computing (VISC), has been used very
successfully for GPGPU computing, e.g., through the PTX virtual
ISA for several generations of nVidia GPUs, and more recently
HSAIL [1] and SPIR [8] for other classes of hardware. Although
HSAIL and SPIR can be mapped down to non-GPU hardware, their
design has been heavily influenced by the SIMT parallelism model
of GPUs, which supports both GPU and vector hardware well but
limits their effectiveness for other kinds of parallelism. This is dis-
cussed in more detail in Sections 5.3 and 6.

In this paper, we propose a virtual ISA design that abstracts
away the wide range of parallelism models and the disparate in-
struction sets used within and across SoCs. (In this work, we do not
consider the different memory hierarchy architectures used across
compute units or devices, but it is a subject of our ongoing work.)
In fact, we can represent these different parallelism models using
only two abstractions of parallelism:

• Hierarchical dataflow graphs with side effects, and
• Short-vector SIMD (Single Instruction Multiple Data) instruc-

tions.



Dataflow graphs are a very general model of data parallelism
and, when extended to allow shared memory accesses (side ef-
fects), can capture many forms of parallel computing over data
elements, including vector SIMD parallelism, the SIMT (Single
Instruction Multiple Threads) parallelism model used in general-
purpose GPUs, streaming or pipelined-dataflow parallelism, and
fine-grained data parallelism, which may be synchronous or asyn-
chronous. Although dataflow graphs can capture vector parallelism
too, vector instructions, when applicable, provide a representation
that is far more compact, efficient, and much easier to reason about
and transform; for this reason, we include explicit vector instruc-
tions in our model.

We make the dataflow graphs hierarchical to express multiple
granularities of parallelism in a natural manner, e.g., coarse-grain
parallelism across different compute units vs. fine-grain parallelism
within a single compute unit. In particular, a dataflow graph node
is either an internal node or a leaf node. An internal node itself
contains another dataflow graph within it. A leaf node contains ex-
ecutable code that is some mixture of scalar and vector instructions.
Each leaf node in a dataflow graph includes a parameter value, N ,
which specifies that the node should be replicated N times for in-
dependent parallel execution; the value of N may be computed at
run-time. This allows the graph to capture fine-grain parallelism,
and is similar to how a GPU kernel in CUDA, OpenCL or PTX is
replicated across the threads of a GPU device.

One final feature of our representation is that a dataflow graph
edge may be either an ordinary edge or a “streaming” edge. An
ordinary edge represents a one-time data transfer from a producer
node to a consumer node; implicitly the two nodes connected by the
edge are executed only once. A streaming edge specifies that the
producer and consumer edges execute repeatedly, transferring data
items continuously with the semantics of a bounded FIFO buffer.

This code representation can be mapped down and executed ef-
fectively on the full range of parallel hardware on a modern SoC,
including GPUs, vector hardware, multicore host processors, digi-
tal signal processors (DSPs), and semi-custom hardware accelera-
tors. In this work, we describe a first prototype system that trans-
lates a single virtual object code program to nVidia GPUs (using
PTX), Intel’s AVX vector instructions, and X86 host processors.
We present preliminary experimental results comparing the perfor-
mance of the generated code for a set of benchmarks to hand-tuned
code written using OpenCL for the GPU and hand-vectorized for
AVX. Our results show that the code generated by hVISC is close
in performance to the hand-tuned code in many cases, and within
about 2x in all cases. These results were obtained with relatively lit-
tle compiler optimization for either GPU or vector hardware, which
gives us confidence that hVISC can provide object code portability
with relatively low performance cost.

We also present a detailed description of a pipelined streaming
benchmark and how it is represented in hVISC. Representing this
benchmark in PTX, HSAIL or SPIR would be extremely awkward:
it would require manually written tiling and buffering, with com-
plicated synchronization to achieve concurrent execution of differ-
ent pipeline stages. Although we have not yet implemented the
buffered message passing required for streaming parallelism, the
example shows that hVISC can naturally express a broader class of
parallelism than can be expressed with the existing virtual ISAs. We
also briefly discuss an example class of programmable, custom ac-
celerators for machine learning algorithms, which can be naturally
targeted using the parallelism models in hVISC, although capturing
all the details of the hardware is a subject of future work.

The next section describes the high-level design goals of hVISC.
Section 3 then presents the detailed design of the hVISC virtual
ISA, and its implementation as an extension of the LLVM instruc-
tion set [10]. Section 4 describes our general compilation strategy,

and our prototype translators for PTX, AVX, and X86. Section 5
presents our experimental results and our qualitative discussion of
the pipelined benchmark and our future work on the machine learn-
ing accelerator. Section 6 compares our work with the state of the
art, and Section 7 concludes.

2. Virtual ISA Design Goals
Previous work [5, 6] has shown that the approach of a virtual ISA
can achieve both high performance and be commercially viable.
In this work, we aim to design a virtual ISA for the wide range of
parallel hardware configurations found in current and future mobile
SoCs. We briefly summarize the primary design goals of our virtual
ISA:

Object code portability with as good performance as possible:
The key goal of our virtual ISA design is to enable the virtual
object code to be portable across a wide range of different
configurations of heterogeneous parallel SoCs, while obtaining
as good performance as possible on each compute unit. We
emphasize that we do not necessarily aim to match manually
tuned code for individual compute units because such tuning
usually comes at the cost of portability, or at the cost of hurting
performance on other compute units. Object code portability
is an absolute requirement for modern applications running on
mobile hardware. Applications that absolutely require hand-
tuned performance can already use conditionally compiled code
or fat binaries or both to achieve such performance, at the cost
of significantly greater programming and maintenance effort.

Language independence: The virtual ISA should be able to sup-
port a wide range of parallel programming languages, such as
OpenCL, Renderscript, and OpenMP 4.0 accelerator features.
In particular, the virtual ISA is not intended as a source-level
programming language, but the parallelism abstractions must
be easy to reason about by programmers.

Machine independence: The virtual ISA should be able to sup-
port a wide range of hardware instruction sets, application bi-
nary interfaces (ABIs).

As few abstractions of parallelism as possible: The virtual ISA
must use as few parallelism models as possible to capture the
wide range of parallel hardware on a modern SoC. This is im-
portant so that programmers can design and tune algorithms
without having to become experts in a wide range of differ-
ent kinds of parallelism. These few abstractions must be able
to map down effectively to today’s parallel hardware, such as
multicore CPUs, GPUs and vectors, and also to emerging par-
allel hardware, especially semi-custom, programmable acceler-
ators. (Custom, fixed-function accelerators may have high de-
grees of internal parallelism but are usually programmed via
fairly straightforward library interfaces, which do not require
exposing the detailed internal parallelism features.)

Coarse-grain parallelism across compute units: The virtual ISA
must capture relatively large-grain parallelism mapped to dif-
ferent compute units, while compiling down to use as efficient
data transfer mechanisms as possible between those compute
units.

Coarse- and fine-grain parallelism within compute units: The
virtual ISA must also capture both coarse- and fine-grain par-
allelism that can be mapped to a single compute unit, in order
to achieve the highest possible parallel performance for each
compute kernel on a wide range of compute units.

Representation of both explicit and implicit communication: It
must be possible to represent both explicit data copies between
compute units, e.g., between a CPU and an accelerator, and im-



plicit data transfers through shared memory, e.g., for a shared-
memory multicore system or for emerging GPU hardware that
allows direct sharing between CPU and GPU. Both kinds of
memory transfers need to be under careful control of the pro-
grammer because memory accesses are often the primary deter-
mining factor in program performance.

Flexible scheduling support across compute units: It must be
possible to compile kernels represented in the virtual ISA to
multiple different compute units, so that a run-time scheduler
can flexibly map a given kernel to different compute units,
depending on availability constraints and battery conservation
goals.

Offline compilation model: To minimize energy consumption
and perceived application startup time, it should be possible to
compile the virtual ISA ahead-of-time (AOT) to native machine
code. For example, this was one major change from Android’s
Dalvik virtual machine, which uses just-in-time (JIT) compi-
lation every time an application is loaded, to the ART system,
which uses AOT compilation once at install time.

3. Virtual ISA Design
This section presents hVISC, a virtual ISA design that abstracts
away differences between parallelism models in hardware by
exposing only two models of parallelism: hierarchical dataflow
graphs with side effects and vector parallelism.

Figure 1 shows how an example of using hVISC for an image
processing filter, specifically, a non-linear estimate of the Laplacian
of a greyscale image. The estimate is computed by applying a
dilation filter and an erosion filter in the input image and then
computing a linear combination of the initial, the dilated and the
eroded image. This example is used throughout the section to
demonstrate the features of hVISC.

hVISC is implemented as an extension of the LLVM virtual in-
struction set [9], and the code fragments in our examples therefore
use LLVM syntax [10].

3.1 Dataflow Graph
In hVISC, a program is represented as a hierarchical dataflow graph
with side effects, where nodes represent units of execution, and
dataflow edges describe the explicit data transfer requirements be-
tween these units of execution. If a pair of nodes (source and desti-
nation) is connected by a dataflow edge, the destination node logi-
cally must receive data from the source node before beginning ex-
ecution.

The dataflow graph is a static representation. However, in order
to express data parallelism we may have to represent a statically
unknown number of node instances and/or edge instances, depend-
ing possibly on the size of the input. To that end, we allow a single
static dataflow node to represent multiple dynamic instances of the
node, i.e., a static node can be replicated at runtime and the result-
ing dynamic nodes can be executed independently of each other,
subject only to the dependencies imposed by the dataflow edges.
As described in Section 3.4.1, nodes may be replicated to form an
n-dimensional grid; our current implementation allows up to three
dimensions. Similarly, a static dataflow edge between two static
dataflow nodes may represent multiple dynamic dataflow edges be-
tween dynamic instances of the two dataflow nodes.

For example, for an iterative four-point nearest-neighbor Jacobi
solver that computes

Anew[i, j] = 0.25 ∗ (Aold[i− 1, j] +Aold[i+ 1, j] +

Aold[i, j − 1] +Aold[i, j + 1])

on N × N matrices in each iteration, the static graph node could
represent a single element-wise evaluation of the above equation

and would be replicated to create N × N independent dynamic
instances.

Figure 1 demonstrates the components of the non-linear Lapla-
cian estimate as seperate dataflow nodes: DilationFilter, ErosionFilter
and LinearCombination.

3.1.1 Dataflow Node Hierarchy
To allow for modularity and to capture multiple granularities of par-
allelism, the dataflow graph is hierarchical, i.e. each dataflow node
can either be a leaf node or an internal node. A leaf node contains
plain LLVM IR, expressing actual computations, which may be a
mixture of scalar and vector operations. Vector parallelism is the
only form of parallelism available in leaf nodes.

An internal node contains a complete dataflow graph, called
a child graph of the current graph, and the child graph itself can
have internal nodes and leaf nodes. This design allows for the pro-
grammer to represent logically connected operations performed in
several dataflow nodes as a single dataflow node. This enhances
the effectiveness of potential analyses by providing hints about
closely related operations, and allows for the scheduler to effi-
ciently orchestrate the execution of the dataflow graph by grouping
together appropriate sets of dataflow nodes. For example, the run-
time scheduler may choose to map a single top-level internal node
to a GPU or to each core of a multicore CPU, instead of having to
manage potentially large numbers of finer-grain nodes.

Leaf nodes may contain instructions to query about the structure
of the underlying dataflow graph, as explained in more detail in
Section 3.4.2. Also, they may contain side effects, i.e., load and
store instructions accessing global shared memory, which express
implicit data movement through a memory hierarchy. Because of
these side effects, hVISC is not a “pure dataflow” model.

In Figure 1, the nodes comprising the Laplacian computation
are children, in the hierarchy, of a top level node, LaplacianEstimate.
DilationFilter, ErosionFilter, and LinearCombination are leaf dataflow
nodes. The dilation and erosion filters compute the maximum and
minimum, respectively, brightness in an area of a pixel defined by
the binary structuring element B. The LinearCombination dataflow
node performs the final computation. Figure 1 shows the LLVM
instructions for this node, demonstrating the use of side effects and
instructions querying the structure of the dataflow graph.

Note that the LaplacianEstimate dataflow node, although it is a
top level node in this computation, it may itself become a child of a
higher level dataflow node performing an image processing compu-
tation that requires the operation of a Laplacian. This highlights the
importance of hierarchy for providing modularity and code reuse.

3.1.2 Dataflow Edges and Bindings
Explicit data movement between compute nodes is expressed with
dataflow edges. A dataflow edge has the semantics of copying the
corresponding data from the source to the destination dataflow
node. Depending on where the execution of the source and des-
tination is scheduled, the dataflow edge may be translated down to
an explicit copy between compute units, or communication through
shared memory.

As with dataflow nodes, static dataflow edges also represent
multiple dynamic instances of dataflow edges between the dy-
namic instances of the source and the destination dataflow nodes. A
dataflow edge between two static dataflow nodes can be instantiated
at runtime using two different replication mechanisms: “all-to-all”,
where all dynamic instances of the source node are connected with
all the dynamic instances of the destination node, thus expressing
a barrier between the two groups of nodes, or “one-to-one” where
a single dynamic instance of the source dataflow node is connected
with the corresponding instance of the destination node. One-to-
one replication requires that the grid structure (number of dimen-



Figure 1. Non-linear Laplacian computation in hVISC

sions and the extents in each dimension) of the dynamic instances
of the source and destination nodes is identical. One-to-one replica-
tion enables various optimizations at the dataflow graph level by ex-
pressing the exact dependency between the instances of the source
and destination dataflow nodes. For example, an graph transforma-
tion pass could chose to merge two consequtive dataflow nodes,
since the “one-to-one” replication denotes that a dynamic instance
of the second node depends only on data generated from the corre-
sponding instance of the first node.

Figure 1 shows the dataflow edges describing the data move-
ment of input image I , dilated image Id, eroded image Ie, and ma-
trix B between dataflow nodes.

When an internal (“parent”) graph node contains an inner graph,
the incoming edges of the parent node may provide the inputs
to the one or more nodes of the child graph, and conversely
with the outgoing edges. For example, in Figure 1, the inputs
labeled I and B to node Laplacian Estimate provide inputs
to the nodes Dilation Filter, Erosion Filter and Linear
Combination of the child graph. Similarly, the output labeled L
of node Linear Combination provides the output of the parent
node. Semantically, these are not dataflow edges because no ex-
plicit data movement is implied: rather, these simply represent a
binding between the input of a dataflow node to the input of a node
within it, and the same for the outputs. We show these bindings as
undirected edges in our diagrams, as in the figure. Dataflow edges
always connect two nodes within the same graph, representing data
transfer between the two nodes. Bindings always connect inputs or
outputs of a parent node with those of the nodes in a child graph,
and they represent a local assignment or renaming of input and
output data.

3.1.3 Streaming Edges
Additionally, hVISC defines a special type of dataflow edge which
we call a streaming edge, shown as dashed arrows instead of solid
ones. Instead of a one-time data transfer that is expressed using
ordinary dataflow edges, a streaming edge denotes that data items
will be repeatedly transferred though this edge, and thus will need
to be processed by the destination dataflow node. This allows the
dataflow graph to express pipelining, as all nodes with incoming
streaming edges will continue executing until the stream of data is
finished. The stream processing is initiated and terminated by the
code that sets up and initiates execution of the dataflow graph.

In Figure 1, the node Laplacian Estimate is a stage in an
image processing pipeline that operates on a stream of incoming
images. The edge I represents this stream. Correspondingly, Id, Ie
and the Laplacian estimate L are all streaming edges: they compute
intermediate results and outputs for the Laplacian for each input
image.

If a node has both streaming and ordinary input dataflow edges
(e.g., I and B to node Laplacian Estimate), the simple edges
repeatedly transfer the same data for each node execution, which in
practice can be treated as a constant across node executions. This
optimization allows unnecessary data transfers to be avoided.

3.2 Vector Instructions
The leaf nodes of a dataflow graph express the single-threaded
parts of the computation. They contain ordinary LLVM IR, which
includes both scalar and vector instructions. The LLVM virtual
instruction set can be translated down for execution on a wide range
of hardware, which provides a high degree of retargetability for
hVISC.

We extend the LLVM vector instruction set with parametric
vector lengths to enable better performance portability, i.e., more
efficient execution of the same code on various vector hardware.
Evaluating the effect of parametric vector length on performance
is out of the scope of this paper, as for now we only support one
vector target.

The LLVM IR provided for the LinearComputation in Figure 1
contains vector instructions, showing vector parallelism at the leaf
level. The vector lengths are parametric, and are computed from the
hardware vector length returned by %llvm.visc.getVectorLength(i32
sz), which is a translation-time constant for a given hardware com-
pute unit.

3.3 Integration with Host Code
hVISC is aimed to represent operations whose execution would
benefit from executing on data-parallel hardware such as GPUs,
vectors, and other accelerators. It is not intended for code that
performs operations that are typically executed as host code. The
host code contains ordinary LLVM IR for performing operations
that cannot or should not be executed in accelerators such as file
I/O, operations or calls to external libraries that may contain these
operations, as well as initialization, memory allocation, or high
level control flow decisions.



To integrate hVISC, the host code creates one or more Root
dataflow nodes, each with a single dynamic instance, each contain-
ing a dataflow graph. Instantiating a root node at runtime translates
to launching the execution of the contained dataflow graph. The
result of this operation is the result of the dataflow graph execu-
tion, and can be accessed by the host code. The launch operation
is asynchronous, allowing the host code to continue executing con-
currently with the dataflow graph. The host code can also wait on
the result of a dataflow graph execution at any point after launch-
ing the execution of that graph, ensuring that the computation is
complete before accessing the result.

3.4 Implementation
We have implemented hVISC as an extension of the LLVM virtual
instruction set. We define new instructions for manipulating and
querying the structure of the data flow graph, as well as initiating
execution of a dataflow graph. To minimize interference with ex-
isting LLVM compiler passes, we express the new instructions as
function calls to intrinsic functions, a standard LLVM mechanism
to extend the instruction set and communicate back end-specific
information to a particular back end. A call to an intrinsic function
appears to existing LLVM passes as a function call to an exter-
nal function, i.e., it can only have side effects on externally visible
global variables and on memory reachable through pointer argu-
ments. This mechanism ensures that they do not perform any trans-
formations that interfere with these instructions.

The functionality of each dataflow node is described by an
explicit LLVM function. Functions describing internal nodes may
only contain calls to hVISC intrinsics. Functions describing leaf
nodes contain LLVM code with scalar and vector instructions and
may also contain hVISC intrinsics used to query information about
the structure of the dataflow graph; in particular, leaf nodes cannot
use the intrinsics to define new graphs.

The LLVM dataflow intrinsics must refer to graph nodes and
edges, in order to manipulate or query information about them. We
represent dataflow nodes with opaque handles (pointers) and in-
put and output edges of a node as integer indices. This allows the
backend translator to define the structure and runtime representa-
tion of the nodes and edges. The LLVM type i8* is used for the
opaque node handles. The hVISC intrinsics, divided according to
their functionality, are described briefly in the following subsec-
tions.

3.4.1 hVISC Graph Intrinsics
hVISC intrinsics manipulating the structure of the dataflow graph:

• i8* llvm.visc.createNode1D(Function* F, int n): Create a
dataflow node with n dynamic instances, all associated with
the function F. Returns the opaque handle for the node. There
are also 2D and 3D versions of this intrinsic, which take two
and three integer arguments instead of one.

• void llvm.visc.createEdge (i8* Src, i8* Dst, i32 sp, i32 dp,
i1 ReplType): Create a dataflow edge from node Src to node
Dst in the static dataflow graph. The ReplType argument speci-
fies the pattern of replication for the static edge: OneToOne or
AllToAll. sp and dp specify the indices of the output of node
Src and the input of node Dst that are connected by the edge;
these connections are the same for all dynamic instances of the
nodes, in either pattern of replication.

• void llvm.visc.createStreamingEdge (i8* Src, i8* Dst, i32 sp,
i32 dp, i1 ReplType): Similarly, but create a streaming dataflow
edge.

• void llvm.visc.bind.input (i8* N, i32 ip, i32 ic): Map input ip
of current dataflow node to input ic of child node N.

• void llvm.visc.bind.output (i8* N, i32 ic, i32 ip): Map output
ic of child node N to output ip of current dataflow node. N.

3.4.2 hVISC Query Intrinsics
hVISC intrinsics quering the structure of the dataflow graph:

• i8* llvm.visc.getNode(): Return a handle to the dataflow graph
node associated with the calling function, i.e. the current node.

• i8* llvm.visv.getParentNode (i8* N): Return a handle to the
hierarchical parent of dataflow graph node N.

• i32 llvm.visc.getNodeInstanceID.[xyz] (i8* N): Return the in-
dex of the dynamic node instance of dataflow node N with re-
spect to its parent node in dimension x, y or z. (z is only valid
if node N is replicated in 3D, and y in 2D or 3D.)

• i32 llvm.visc.getNumNodeInstances.[xyz] (i8* N): Return the
number of dynamic instances of dataflow node N in dimension
x, y or z.

• i32 llvm.visc.getVectorLength(i32 typeSz): Return a sym-
bolic constant representing the vector register length in the
underlying architecture for a type of size typeSz.

3.4.3 hVISC Launch Intrinsics
hVISC intrinsics integrating a dataflow graph in the host code:

• i8* llvm.visc.launch(Function* F, argList, struct OutType*
out) : This is a variation of i8* llvm.visc.createNode (Func-
tion* F) designed to allow for host variables to be passed to
graph node inputs and results to be returned (unlike dataflow
edges, which pass node outputs to other node inputs). It creates
a single dynamic instance of a Root dataflow node and asso-
ciates it with the function F, using argList as arguments. The
struct out is allocated by the caller and is used to return results
from the execution of the Root node; its type OutType must
match the return type of F. The new node is marked as ready
for asynchronous execution and control is returned to the host.
Returns an opaque handle for the node.

• void llvm.visc.wait(i8* N): Block until execution of dataflow
node N is complete.

4. Compilation Strategy
The goal of our compilation strategy is to generate native code from
a single virtual ISA format, allowing parts of an application to map
flexibly to different compute units. Our goal, in this paper, is not
to develop new optimization techniques on this virtual ISA; we are
developing those techniques in our ongoing research. In this paper,
we show how the virtual ISA design lends itself to be compiled
piecewise to different hardware compute units.

We use simple annotations on the node functions to specify
to which compute unit a given graph node should be translated,
e.g., the annotation may specify one or more of {GPU, Vector,
None}. Typically, the annotations would be chosen by a language
front-end, a programmer, or (in future) a run-time scheduler that
decided when a new version of native code was needed for a
given subgraph. If an entire hierarchical graph will be compiled
as a single kernel mapped to a single compute unit, then only the
parent node of that graph needs to be annotated. The compiler
will generate code for each such graph using the compilation flow
described below.

Device-specific “translators” use this information to generate
native code for a particular compute unit. Once mapping of nodes
to different hardware components is done, the code generation for
transfer of data between corresponding hardware components is
generated. In future, virtual ISA compilers can allow more flexible



define {float*, i64} @laplacian(float* in %I, i64 %sizeI, float* in %B, i64 %sizeB, i32 %dimX, i32 %dimY) {
; Create dataflow nodes in child graph
%erode_node = call i8* @llvm.visc.createNode(@erode)
%dilate_node = call i8* @llvm.visc.createNode(@dilate)
%lincomb_node = call i8* @llvm.visc.createNode2D(@lincomb, i32 %dimX, i32 %dimY)
; Bind inputs of parent node Laplacian with child nodes Dilate, Erode and lincomb
call void @llvm.visc.bind.input(i8* %dilate_node, i32 0, i32 0)
call void @llvm.visc.bind.input(i8* %dilate_node, i32 1, i32 1)
call void @llvm.visc.bind.input(i8* %dilate_node, i32 2, i32 2)
call void @llvm.visc.bind.input(i8* %dilate_node, i32 3, i32 3)
call void @llvm.visc.bind.input(i8* %erode_node, i32 0, i32 0)
call void @llvm.visc.bind.input(i8* %erode_node, i32 1, i32 1)
call void @llvm.visc.bind.input(i8* %erode_node, i32 2, i32 2)
call void @llvm.visc.bind.input(i8* %erode_node, i32 3, i32 3)
call void @llvm.visc.bind.input(i8* %lincomb_node, i32 0, i32 0)
call void @llvm.visc.bind.input(i8* %lincomb_node, i32 1, i32 1)
call void @llvm.visc.bind.input(i8* %lincomb_node, i32 2, i32 6)
call void @llvm.visc.bind.input(i8* %lincomb_node, i32 3, i32 7)
; Create edges between child nodes for sending output of Erode and Dilate to lincomb node
call void @llvm.visc.createEdge(i8* %dilate_node, i8* %lincomb_node, i32 0, i32 2)
call void @llvm.visc.createEdge(i8* %dilate_node, i8* %lincomb_node, i32 1, i32 3)
call void @llvm.visc.createEdge(i8* %erode_node, i8* %lincomb_node, i32 0, i32 4)
call void @llvm.visc.createEdge(i8* %erode_node, i8* %lincomb_node, i32 1, i32 5)
; Bind output of lincomb node with output of parent node Laplacian
call void @llvm.visc.bind.output(i8* %lincomb_node, i32 0, i32 0)
call void @llvm.visc.bind.output(i8* %lincomb_node, i32 1, i32 1)
ret {float*, i64} zeroinitializer

}

Listing 1. hVISC code for Laplacian node in Figure 1

mapping by generating native code for multiple targets for the same
subgraph, and relying on the runtime and scheduler to perform
data transfers when mapping of source and destination nodes of
a dataflow edge are known at runtime.

Our current compilation strategy does not support cycles in
a dataflow graph, although loops within leaf nodes present no
problems. Outer-level cycles must be expressed in the host code
outside the dataflow graphs, as we do for iterative algorithms (like
stencil) and streaming computations (like the image processing
pipeline described in Section 5.3).

4.1 Compilation Flow
The compilation flow for a virtual ISA program can be divided
into three phases: (1) Mapping and code generation of distinct
subgraphs to hardware accelerators, specifically, compute code for
the annotated nodes. (2) Calls to the run-time library for data
movement for the DFG edges. (3) Generating sequential code for
the remaining unmapped parts of the graph. The latter phase –
sequential code – is straightforward and is only briefly described
in Section 4.2. The other two phases are described below.

The translation to native code is carried out for one annotated
node at a time. The compilation requires traversal of the dataflow
graph to find the annotated nodes and to translate each of them
into native code for the selected compute unit. We use Algorithm 1
to traverse the hierarchical graph at find the annotated nodes. This
algorithm is a simple depth-first traversal of the graph, translating
each annotated node as it is encountered, as described below. The
edges in the hierarchical graph between nodes belonging to the
same child graph express dataflow edges that require run-time
support for the data transfers.

4.1.1 Mapping Subgraphs to Accelerators
The annotations described earlier identify distinct subgraphs that
should be mapped to specific compute units. For example, the sub-
graph containing Laplacian node in Figure 1 expresses paral-
lelism well suited for a GPU, and assuming it is marked as such,
the GPU translator would translate it for execution on an available
GPU. It would first collapse the hierarchical graph at the node, N ,

Algorithm 1 Hierarchical Dataflow Graph Traversal
procedure VISIT(Node N )

if N was visited before then return
end if
if N is an annotated node then

NN = CollapseToLeaf(N )
Translate(NN)

else . N is an internal node
G← child graph of node N
L← list of all nodes of G in topological order
while L is non-empty do

remove a node n from L
VISIT(n)

end while
end if

end procedure

into a single leaf node, NN, and then translate node NN to the spec-
ified compute unit. Collapsing a graph into a single node is concep-
tually straightforward, though it involves many steps, and the de-
tails are omitted here. To translate the leaf node, the translator iso-
lates the functions associated with the node into a separate LLVM
module and generates native code for it. The specific details of the
translation are implementation specific, and are described below in
Section 4.2. The final result of this phase is a new graph where all
leaf nodes have been translated for execution on individual com-
pute units.

4.1.2 Data Movement and Internal Nodes’ Code Generation
The input to this phase is a graph where all leaf nodes have been
mapped to hardware accelerators and contain target specific code.
The compiler performs code generation of all the internal nodes
of this graph, and for dataflow edges between nodes. The child
graph of any internal node is traversed in topological order and
function calls are inserted to the corresponding leaf node. For CPU
code (e.g., targeting vector hardware), loops are inserted around a



function call if a static child node maps to multiple instances in the
dynamic dataflow graph.

For data flow edges where the source and destination node exe-
cute on the same compute unit, or if they execute on two different
compute units that share memory, passing a pointer between the
nodes would be enough. Such pointer passing is safe even with
copy semantics because a dataflow edge implies that the source
node must have completed execution before the sink node can be-
gin, so the source code will not overwrite the data once the sink
node begins execution. However, several accelerators today have
separate memory hierarchy and data needs to be explicitly brought
into the accelerator memory before starting the execution. In such
cases explicit data copy instructions are generated using calls to the
accelerator API. For example, we use OpenCL API calls to move
data to and from the GPU.

4.2 Implementation
Our current compiler has functional translators for compiling the
hVISC virtual ISA to PTX, AVX and host code for x86-64 (host
code should also work for other architectures for which an LLVM
backend and the OpenCL run-time are available). To reduce im-
plementation effort for our prototype, we leverage existing back-
ends in the mainline LLVM infrastructure for PTX (the open source
NVPTX back end) and for AVX (the LLVM-to-SPIR back-end with
Intel’s OpenCL SPIR-to-AVX translator). Our implementation then
mainly has to translate our virtual ISA to the input code expected
by each of these back-ends.

4.2.1 Translators
Our PTX translator takes the subgraph where an internal node has
a single leaf node in its child graph, which is replicated into several
dynamic instances. The PTX translator generates NVVM IR [13]
for the leaf node. NVVM IR is a subset of the LLVM IR, together
with a set of intrinsic functions, which the open source NVPTX
backend can translate into PTX [6] assembly. For the internal node,
our translator generates code to load and run the PTX assembly of
the leaf node on the target nVidia GPU using the nVidia OpenCL
runtime to execute the internal node.

In a similar fashion, our AVX translator generates SPIR [8] code
for the leaf node and uses the Intel OpenCL [7] runtime to execute
it on multicore CPUs supporting AVX extensions. The Intel SPIR
translator to AVX has significant autovectorization capabilities that
take advantage of the independence of SPIR kernel instances to
produce vector code. Note that it is reasonable for us to reuse In-
tel’s vectorizor instead of writing our own because our goal is not
to invent new vectorization and vector code generation technology:
rather, our goal is to show that the hVISC virtual ISA is a suit-
able input code representation for enabling effective vectorization,
which we can accomplish by feeding Intel’s SPIR translator from
our virtual ISA.

OpenCL does not allow dynamic memory allocation inside the
kernel. As a result, dataflow nodes which perform dynamic mem-
ory allocation cannot be compiled for GPUs. For nodes generating
a data array as output, pointers to pre-allocated arrays are passed as
inputs to a node. Thus, pointer arguments to a node can be point-
ers to both input or output data array. The general idiom we use to
pass arrays is to provide a pointer to the array and the array size as
arguments.

To differentiate between pointers to input/output data arrays, we
add attributes in, out, and inout to node arguments as shown for
input pointer I in Listing 1. These attributes enable us to avoid
extra memory copies, when executing on GPUs. For example, in
the iterative stencil benchmark, the main kernel is executed a
fairly large number of times, and only one of the two arrays it
operates needs to be copied back to the host every time and the

other one is then copied back from host to the GPU. By marking
one of the array arguments as in and the other one as out, we avoid
the extra copy in each direction.

4.2.2 Launch/Wait Intrinsic Code Generation
The launch intrinsic is used to asynchronously start a dataflow
graph execution from host code. The wait intrinsic blocks until
the dataflow graph execution is complete. The compiler replaces
the launch intrinsic with a runtime API call to start the dataflow
graph execution in a new thread, using the Posix pthreads library.
The wait intrinsic is implemented using pthread join.

4.2.3 hVISC Runtime
Previous subsections describe the static code generation of key
features of the virtual ISA. Two specific features, however, require
runtime support.

First, the virtual ISA design allows a leaf node to query node
instance and dimension queries to any ancestor. When such a query
can be addressed by hardware registers, the query intrinsic is re-
placed by the corresponding accelerator API call. However, when
it is not supported, the runtime maintains a stack to keep track of
the instance ID, and dimension limit of the dynamic instance of the
ancestors and responds when a query arrives.

Second, the dataflow graph semantics of the virtual ISA as-
sumes a globally addressable memory model. However, in the
present form, many accelerators present in a SoC do not support
this model. For example, many of today’s GPUs cannot address
CPU memory directly (although this capability is emerging and
may be more common in future). In such a scenario, the data has to
be explicitly transferred to the accelerator memory before one ini-
tiates computation on the accelerator. To perform these data trans-
fers, the translator inserts static API calls to the accelerator run-
time in the generated native binary. These data copies are expensive
and critical to application performance. It may happen that such a
copy is unnecessary because the data is already present on the de-
vice. This would happen because the data was brought in the device
memory by a prior node executing on the device. Thus, as an op-
timization, the hVISC runtime incorporates a feature we call the
“memory tracker,” which keeps track of the latest copy of data ar-
rays to avoid unnecessary copies to and from the accelerator.

5. Evaluation
In our experiments, we evaluate the suitability of the virtual ISA de-
sign in two ways. (1) The virtual ISA design should be portable. For
this, we use the same virtual ISA binary of an application to com-
pile to different compute units. (2) When compared to current het-
erogeneous programming technologies such as OpenCL, CUDA,
and others, the virtual ISA design should be able to capture the par-
allelism expressed using these languages, and thus achieve reason-
able performance when compiled to target architectures for these
source-level languages.

5.1 Experimental Setup and Benchmarks
We modified the OpenCL front-end in the Clang compiler to gen-
erate the virtual ISA for OpenCL applications. We use annotations
as hints to identify the subgraphs in the virtual ISA that are suitable
for accelerators. We then used the compilation strategy described in
Section 4 to translate the virtual ISA to two different target units:
the AVX instruction set in an Intel Xeon E5 core i7 and a discrete
nVidia GeForce GTX 680 GPU card with 2GB of memory. The In-
tel Xeon also served as the host processor, running at 3.6 GHz, with
16 GB RAM.

For our experimental evaluation, we used four applications from
the Parboil [18] benchmark suite: Sparse Matrix Vector Multiple



(spmv), Single-precision Matrix Multiply (sgemm), Stencil PDE
solver (stencil), and a Lattice-Boltzmann solver (lbm).

In the GPU experiments, our baseline for comparison is the
best available OpenCL implementation in Parboil that does not
use local memory (since our virtual ISA does not yet support lo-
cal memory). For spvm and lbm, that is the Parboil version labeled
opencl nvidia, which has been hand-tuned for the Tesla NVidia
GPUs [11]. For sgemm, the hand tuned version was utilizing local
memory, thus preventing us from using it. Instead, using that ver-
sion as a starting point, we implemented a version that is similar in
every way except that the accesses to local memory were replaced
by accesses to global GPU memory instead, and that we tuned the
work group sizes to achieve the best performance. Finally, for sten-
cil, we use the basic version since following the same practice did
not improve the execution time. All the applications are compiled
using nVidia’s proprietary OpenCL compiler.

In the vector experiments, our baseline is the same OpenCL
implementations that we chose as GPU baselines, but compiled
using the Intel OpenCL compiler, as we found that these versions
achieved the best performance compared to the other available
OpenCL versions on vector hardware as well.

The hVISC binaries were also generated using the same versions
of OpenCL.

We use two input sizes for each benchmark, labeled ’Small’ and
’Large’ below. Each data point we report is an average of ten runs
for the small test cases and an average of five runs for the large test
cases; we repeated the experiments multiple times to verify their
stability.

5.2 Experimental Results
Figures 2 and 3 show the normalized execution time of these appli-
cations against GPU baseline for each of the two sizes. Similarly,
figures 4 and 5 compare the performance of hVISC programs with
the vector baseline. The execution times are broken down to seg-
ments corresponding to time spent in the compute kernel of the
application (kernel), copying data (copy) and remaining time spent
on the host side. The total execution time for the baseline is de-
picted on the corresponding bar to give an indication of the actual
numbers.

Comparing hVISC code with the GPU baseline, the perfor-
mance is within about 25% of the baseline in most cases and within
a factor of 1.8 in the worst case. We see that the hVISC applica-
tion spends more time in the kernel execution relative to the GPU
baseline. However, inspection of the generated PTX files generated
by nVidia OpenCL compiler for OpenCL applications and hVISC
compiler for hVISC applications has shown that they are almost
identical, with the only difference being a minor number of instruc-
tions being reordered. Also, we notice increased, sometimes to a
significant factor, data copy times, despite the fact the data copied
in both applications are similar and that the hVISC runtime makes
use of a memory tracking mechanism to avoid unnecessary data
copies. We are working on getting a clear picture of the overheads
that the hVISC representation or compilation may be imposing on
the program execution.

In the vector case, we see that the performance of hVISC is
within about 30% in all cases, and within a factor of 1.6x in the
worst case. We again observe the same inefficiencies in kernel and
copy time, albeit less pronounced due to the fact that the total
running times are generally larger, which minimizes the effect of
constant overheads to the total execution time.

Finally, we note that none of our benchmarks made use of vector
code at the leaf dataflow nodes. This choice was made after compar-
ing the performance of two hVISC versions: (a) the hVISC object
code as generated from the modified Clang frontend, and (b) the
hVISC code after altering the number of dynamic instances of the

leaf nodes as well as their code, in order to perform a bigger amount
of computation so that vectorization can be achieved. This transfor-
mation may have improved the performance in some cases for one
of the two targets, but it never achieved reasonable performance
on both. This is due to the competing representation required to
achieve good performance for GPUs and vector units. In the GPU
case, code executing by a thread should perform carefully strided
memory accesses in order to achieve coalescing of the memory re-
quests performed by multiple threads, and vector instructions get
serialized at the hardware thus no performance gain occurs from
their use. In the vector case, a thread aims to access consecutive
locations so as to perform vectorized memory operations and com-
putations. Thus, a simple code where all threads perform indepen-
dent operations and access consecutive locations has the potential
to achieve good performance on both targets, by allowing memory
coalescing on the GPU side and vectorization across work items in
the vector case. To conclude, for simple benchmarks where vector-
ization across work items can be achieved automatically, our exper-
iment shows that the presence of vector instructions does not im-
prove performance on both targets. We expect the vector instruc-
tions to lead to performance gains for more complicated kernels
where automatic vectorization will not be effective.

5.3 Expressing parallelism beyond GPUs
hVISC is aimed to be extensible beyond the devices that are most
commonly found in today’s accelerators and represent parallelism
models in a broad class of available hardware. Apart from data par-
allelism, many accelerators expose a streaming paallelism model
and would benefit greatly by a representation that can capture this
feature. hVISC presents the unique advantages of representing a
program as a dataflow graph, which is a natural way of repre-
senting the communication between producers and consumers, as
well as describing the repeated transfer of multiple data items via
streaming edges. This section uses an image processing pipeline to
demonstrate the benefits of expressing a streaming application in
hVISC.

Figure 6 presents an application for Edge Detection in gray
scale images in hVISC. At a high level, this application is a dataflow
node that acceps a greyscale image I and a binary structuring ele-
ment B and computes a binary image E that represents the edges
of I . The application begins by computing an estimate of the Lapla-
cian L of I , as depicted in figure 6, and proceeds by computing its
zerocrossings, i.e. points of sign change in L. A different dataflow
node computes the gradient G of I , operation that can proceed in
parallel with the remaining computations. The final dataflow node
uses the output of the Gradient and the ZeroCrossings to perform a
thresholding operation that will allow it to reject small variations in
the brightness of the image and only detect more significant varia-
tions that actually constitute edges.

We implemented this pipeline using OpenCV computer vision
library. We used C++ thread library to create threads for each top
level node in this example, and implemented fixed size circular
buffers for each streaming edge between these nodes to pass data
between them. The pipeline, streaming and dataflow parallelism ex-
pressed in this example is easy to capture in hVISC. The streaming
edges, dataflow nodes simply map to key features of hVISC. Our
current implementation of hVISC is only missing the implemen-
tation of circular buffers for streaming edges, and thus we do not
have a working hVISC version of this example.

However, mapping pipeline and streaming parallelism model to
SPIR, HSAIL parallelism models of one kernel replicated across
several cores, is non-intuitive and difficult to achieve. OpenCL
supports concurrent execution of kernels running in two different
streams, Expressing concurrency across kernels working on dif-
ferent image sections would require complex synchronization and



Figure 2. GPU Experiments - Small Test Normalized Execution Time Figure 3. GPU Experiments - Large Test Normalized Execution Time

Figure 4. Vector Experiments - Small Test Normalized Execution Time Figure 5. Vector Experiments - Large Test Normalized Execution Time

Figure 6. Edge Detection in gray scale images in hVISC

an iimplementation of programmer managed scheduling of nodes.
This is a tedious and error-prone task, which is unlikely to scale to
bigger and more complex pipelines.

Expressing this example in hVISC, would have the added ad-
vantage of flexibly mapping computationally heavy parts of the
pipeline to accelerators. The Laplacian node is the pipeline bot-
tleneck. Mapping Laplacian to GPU, achieved 2x speedup, as it
balances the two branches of the pipeline. However, mapping both
Laplacian and Gradient to GPU achieves a modest 1.1x speedup.
This further shows the advantage of flexible mapping, which al-
lows the programmer or auto-tuner to easily tune an application.

6. Related Work
Virtual ISAs: PTX virtual ISA was deleveloped by nVidia to pro-
vide portability across GPUs of different sizes and across multiple
GPU generations. It is however designed to target nVidia GPUs
specifically and does not aim to support other hardware. There are
currently a few projects with the goal to develop a portable object
code distribution format for heterogeneous systems. HSAIL [1] and
SPIR [8] are two such standards which map well to GPUs and mul-
ticore CPUs. However, they support only a restrictive throughput-
oriented SIMT parallelism model, which is not general enough to
capture other models of parallelism like pipeline or streaming par-
allelism (as explained in Section 5.3), whereas these are captured
naturally in our dataflow graph model.



Source Languages: Source-level programming languages for
heterogeneous systems such as OpenCL [16] and CUDA [12], and
the accelerator extensions in OpenACC [2] and in recent versions
of OpenMP [17], all support a common programming model where
a single-threaded kernel function is replicated across a large num-
ber of cores, usually with explicit copying of data between host
and device. Intel ISPC [14] is a set of language extensions to C,
and an optimizing LLVM-based compiler, that effectively uses the
SPMD programming model to deliver performance using both mul-
tiprocessor and SIMD vector units. Like PTX and SPIR, all these
languages map well to GPUs and vector parallelism. None of them
address object code portability. Moreover, they all have the same
limitations of being unable to express more general models of data
parallelism, like streaming parallelism.

RenderScript [3] aims to provide performance and portabil-
ity across heterogeneous SoC architectures for Android devices.
Like SPIR, it uses LLVM bitcode as its on-device portable object
code format. This format, however, does not have well-defined par-
allelism abstractions, instead using some ad hoc combination of
LLVM (scalar and vector) code and run-time operations.

Domain Specific Languages (DSLs) such as Delite [19] and
Halide [15] can potentially target different architectures efficiently
using tuning based on domain specific knowledge, but the tech-
niques are largely limited to the intended domain.

Compiler and Autotuning Approaches: Besides virtual ISAs
and source level languages, a number of autotuning frameworks ex-
plore interesting methods to distribute computation between com-
pute units in a heteregenous system. Petabricks [4] explores the
search space of different algorithm choices and how they map to
CPU and GPU processors. Similarly, in Tangram [20] a program is
written in interchangeable, composable building blocks, which en-
ables architecture-specific algorithm and implementation selection.
Exploring algorithm choices is orthogonal to, and can be combined
with, our approach. Moreover, these techniques though effective,
put a huge burden on compiler and runtime system to explore a po-
tentially large search space to find the correct tuning parameters,
and it is not clear how such search strategies will scale up to more
realistic applications.

7. Conclusion
We present hVISC, a new Virtual ISA that aims to address the
functional and performance portability challenges arising in today’s
SoC’s. hVISC is designed as a hierarchical dataflow graph with side
effects and parametric vector instructions. We argue that these two
models of parallelism exposed by hVISC successfully capture the
diverse parallelism models exposed by a wide range of parallel
hardware. We also presented a compilation strategy that uses a
single object code to target a wide range of parallel hardware,
and implemented backend translators for nVidia’s GPUs targeting
PTX, vector hardware using Intel’s AVX, and host code for X86
processors.

We evaluate our design by (a) using a single hVISC represen-
tation of four applications from the Parboil Benchmark Suite to
generate code for both nVidia’s GPUs and vector hardware, and
comparing with baselines that are each seperately tuned for their
respective target device. The achieved performance is within a fac-
tor of 2x at the worst case, demonstrating the achieved performance
portability from a single hVISC representation, and (b) demonstrat-
ing that hVISC can naturally capture streaming parallelism due to
its dataflow representation.
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