diff --git a/Cargo.lock b/Cargo.lock
index 13cadc9592c8e1d95e21c013f465919ffcf6c5ec..7b70c0b028a2ebcd5ca1f99ac68b192fbec83b98 100644
--- a/Cargo.lock
+++ b/Cargo.lock
@@ -741,6 +741,15 @@ dependencies = [
  "phf",
 ]
 
+[[package]]
+name = "juno_implicit_clone"
+version = "0.1.0"
+dependencies = [
+ "async-std",
+ "juno_build",
+ "with_builtin_macros",
+]
+
 [[package]]
 name = "juno_matmul"
 version = "0.1.0"
diff --git a/Cargo.toml b/Cargo.toml
index 1db806f41befe6b20d89b8484e069a4674276d6d..dc0c64789c6ce2abdc8ec53757c05f64010738bf 100644
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -25,5 +25,5 @@ members = [
 	"juno_samples/casts_and_intrinsics",
 	"juno_samples/nested_ccp",
 	"juno_samples/antideps",
-	#"juno_samples/implicit_clone",
+	"juno_samples/implicit_clone",
 ]
diff --git a/hercules_cg/src/cpu.rs b/hercules_cg/src/cpu.rs
index a09eacfa621876a570d37bd96e1d1f534e94fa4e..7c67af538b81946f67786a8133b9f670b7138f9e 100644
--- a/hercules_cg/src/cpu.rs
+++ b/hercules_cg/src/cpu.rs
@@ -24,7 +24,6 @@ pub fn cpu_codegen<W: Write>(
     reverse_postorder: &Vec<NodeID>,
     typing: &Vec<TypeID>,
     control_subgraph: &Subgraph,
-    antideps: &Vec<(NodeID, NodeID)>,
     bbs: &BasicBlocks,
     w: &mut W,
 ) -> Result<(), Error> {
@@ -36,7 +35,6 @@ pub fn cpu_codegen<W: Write>(
         reverse_postorder,
         typing,
         control_subgraph,
-        antideps,
         bbs,
     };
     ctx.codegen_function(w)
@@ -50,7 +48,6 @@ struct CPUContext<'a> {
     reverse_postorder: &'a Vec<NodeID>,
     typing: &'a Vec<TypeID>,
     control_subgraph: &'a Subgraph,
-    antideps: &'a Vec<(NodeID, NodeID)>,
     bbs: &'a BasicBlocks,
 }
 
@@ -524,12 +521,6 @@ impl<'a> CPUContext<'a> {
                         self.get_value(data, true),
                         index_ptr_name
                     )?;
-                    write!(
-                        body,
-                        "  {} = bitcast {} to ptr\n",
-                        self.get_value(id, false),
-                        self.get_value(collect, true)
-                    )?;
                 } else {
                     // If the data item being written is not a primitive type,
                     // then perform a memcpy from the data collection to the
@@ -543,6 +534,12 @@ impl<'a> CPUContext<'a> {
                         data_size
                     )?;
                 }
+                write!(
+                    body,
+                    "  {} = bitcast {} to ptr\n",
+                    self.get_value(id, false),
+                    self.get_value(collect, true)
+                )?;
             }
             _ => panic!("PANIC: Can't lower {:?}.", self.function.nodes[id.idx()]),
         }
@@ -732,7 +729,7 @@ impl<'a> CPUContext<'a> {
                 // the dynamic constant bounds.
                 let mut acc_size = self.codegen_type_size(elem, body)?;
                 for dc in bounds {
-                    acc_size = Self::multiply(&acc_size, &format!("dc{}", dc.idx()), body)?;
+                    acc_size = Self::multiply(&acc_size, &format!("%dc{}", dc.idx()), body)?;
                 }
                 Ok(acc_size)
             }
diff --git a/hercules_cg/src/lib.rs b/hercules_cg/src/lib.rs
index c579b7e9af641d0ee8912b52e92a9f0328b8ffe1..77cfa5404ddbb368ea7e30506bba1b9890663ec6 100644
--- a/hercules_cg/src/lib.rs
+++ b/hercules_cg/src/lib.rs
@@ -12,6 +12,18 @@ extern crate hercules_ir;
 
 use self::hercules_ir::*;
 
+/*
+ * Basic block info consists of two things:
+ *
+ * 1. A map from node to block (named by control nodes).
+ * 2. For each node, which nodes are in its own block.
+ *
+ * Note that for #2, the structure is Vec<NodeID>, meaning the nodes are ordered
+ * inside the block. This order corresponds to the traversal order of the nodes
+ * in the block needed by the backend code generators.
+ */
+pub type BasicBlocks = (Vec<NodeID>, Vec<Vec<NodeID>>);
+
 /*
  * The alignment of a type does not depend on dynamic constants.
  */
diff --git a/hercules_cg/src/rt.rs b/hercules_cg/src/rt.rs
index 890c898d75841c85756f3b6e2dd0011678e7789b..e484729d78e4f4c077f70145ab74d25041d785e8 100644
--- a/hercules_cg/src/rt.rs
+++ b/hercules_cg/src/rt.rs
@@ -19,7 +19,6 @@ pub fn rt_codegen<W: Write>(
     reverse_postorder: &Vec<NodeID>,
     typing: &Vec<TypeID>,
     control_subgraph: &Subgraph,
-    antideps: &Vec<(NodeID, NodeID)>,
     bbs: &BasicBlocks,
     collection_objects: &CollectionObjects,
     callgraph: &CallGraph,
@@ -32,7 +31,6 @@ pub fn rt_codegen<W: Write>(
         reverse_postorder,
         typing,
         control_subgraph,
-        antideps,
         bbs,
         collection_objects,
         callgraph,
@@ -47,7 +45,6 @@ struct RTContext<'a> {
     reverse_postorder: &'a Vec<NodeID>,
     typing: &'a Vec<TypeID>,
     control_subgraph: &'a Subgraph,
-    antideps: &'a Vec<(NodeID, NodeID)>,
     bbs: &'a BasicBlocks,
     collection_objects: &'a CollectionObjects,
     callgraph: &'a CallGraph,
diff --git a/hercules_ir/src/antideps.rs b/hercules_ir/src/antideps.rs
deleted file mode 100644
index af949708dd2bc278410ecedd632a04313fa30415..0000000000000000000000000000000000000000
--- a/hercules_ir/src/antideps.rs
+++ /dev/null
@@ -1,297 +0,0 @@
-use std::collections::{BTreeMap, BTreeSet};
-use std::iter::zip;
-
-use crate::*;
-
-/*
- * In addition to collections, we need to figure out which "generation" of a
- * collection a node may take as input.
- */
-#[derive(PartialEq, Eq, Clone, Debug)]
-struct GenerationLattice {
-    objs: BTreeSet<(CollectionObjectID, NodeID)>,
-}
-
-impl Semilattice for GenerationLattice {
-    fn meet(a: &Self, b: &Self) -> Self {
-        GenerationLattice {
-            objs: a.objs.union(&b.objs).map(|x| *x).collect(),
-        }
-    }
-
-    fn top() -> Self {
-        GenerationLattice {
-            objs: BTreeSet::new(),
-        }
-    }
-
-    fn bottom() -> Self {
-        // Bottom is not representable for this lattice with our Semilattice
-        // interface, but we never need to construct it.
-        panic!()
-    }
-}
-
-/*
- * Function to assemble anti-dependence edges. Returns a list of pairs of nodes.
- * The first item in the pair is the reading node, and the second item is the
- * mutating node.
- */
-pub fn antideps(
-    function: &Function,
-    reverse_postorder: &Vec<NodeID>,
-    objects: &FunctionCollectionObjects,
-) -> Vec<(NodeID, NodeID)> {
-    // First, we analyze "generations" of collections as they are mutated.
-    // Originating, mutating, phi, and reduce nodes start a new generation of a
-    // collection. Generations are not ordered due to loops, but are rather just
-    // node IDs of node (parameter, constant, call, undef, write, phi, reduce).
-    // Other nodes operating on collections mean reads / writes can operate on
-    // potentially different generations of multiple collections (select).
-    let lattice = forward_dataflow(function, reverse_postorder, |inputs, id| {
-        match function.nodes[id.idx()] {
-            Node::Ternary {
-                op: TernaryOperator::Select,
-                first: _,
-                second: _,
-                third: _,
-            } => inputs
-                .into_iter()
-                .fold(GenerationLattice::top(), |acc, input| {
-                    GenerationLattice::meet(&acc, input)
-                }),
-            Node::Parameter { index: _ } | Node::Constant { id: _ } | Node::Undef { ty: _ } => {
-                let objs = objects.objects(id);
-                GenerationLattice {
-                    objs: objs.into_iter().map(|obj| (*obj, id)).collect(),
-                }
-            }
-            Node::Call {
-                control: _,
-                function: _,
-                dynamic_constants: _,
-                ref args,
-            } => {
-                let mut objs = BTreeSet::new();
-                let call_objs = objects.objects(id);
-
-                // If this call node might originate an object, add that to the
-                // lattice output - its generation is this call node.
-                for obj in call_objs {
-                    if objects.origin(*obj) == CollectionObjectOrigin::Call(id) {
-                        assert!(objs.len() <= 1);
-                        objs.insert((*obj, id));
-                    }
-                }
-
-                // For every argument...
-                for (arg, arg_gens) in zip(args, inputs.into_iter().skip(1)) {
-                    // Look at its objects...
-                    for arg_obj in objects.objects(*arg) {
-                        // For each object that might be returned...
-                        if call_objs.contains(&arg_obj) {
-                            let mutable = objects.mutators(*arg_obj).contains(&id);
-                            for (obj, gen) in arg_gens.objs.iter() {
-                                // Add that object to the output lattice.
-                                if obj == arg_obj && mutable {
-                                    // Set the generation to this node if the
-                                    // object might be mutated.
-                                    objs.insert((*obj, id));
-                                } else if obj == arg_obj {
-                                    // Otherwise, keep the old generation.
-                                    objs.insert((*obj, *gen));
-                                }
-                            }
-                        }
-                    }
-                }
-                GenerationLattice { objs }
-            }
-            Node::Read {
-                collect: _,
-                indices: _,
-            } => inputs[0].clone(),
-            Node::Phi {
-                control: _,
-                data: _,
-            }
-            | Node::Reduce {
-                control: _,
-                init: _,
-                reduct: _,
-            }
-            | Node::Write {
-                collect: _,
-                data: _,
-                indices: _,
-            } => {
-                // Phis, reduces, and writes update the generation to the write.
-                let objs = inputs[0].objs.iter().map(|(obj, _)| (*obj, id)).collect();
-                GenerationLattice { objs }
-            }
-            _ => GenerationLattice::top(),
-        }
-    });
-
-    // Second, we generate anti-dependence edges from the dataflow analysis.
-    // There are four cases where an anti-dependence edge is generated:
-    //
-    // 1. A read node and a write node share an object and generation pair on
-    //    their `collect` input.
-    // 2. A read node and a call node share an object and generation pair, where
-    //    the pair is on the read's `collect` input and the pair is on any input
-    //    of the call node AND the call node is a mutator of the object.
-    // 3. A call node and a write node share an object and generation pair,
-    //    where the pair is on any input of the call node and the pair is on the
-    //    write's `collect` input.
-    // 4. A call node and another call node share an object and generation pair,
-    //    where the pair is on any input of both call nodes AND the second call
-    //    node is a mutator of the object.
-    let mut reads_writes_calls_mut_calls_per_pair: BTreeMap<
-        (CollectionObjectID, NodeID),
-        (Vec<NodeID>, Vec<NodeID>, Vec<NodeID>, Vec<NodeID>),
-    > = BTreeMap::new();
-    for (idx, node) in function.nodes.iter().enumerate() {
-        let id = NodeID::new(idx);
-        match node {
-            Node::Read {
-                collect,
-                indices: _,
-            } => {
-                for pair in lattice[collect.idx()].objs.iter() {
-                    reads_writes_calls_mut_calls_per_pair
-                        .entry(*pair)
-                        .or_default()
-                        .0
-                        .push(id);
-                }
-            }
-            Node::Write {
-                collect,
-                data,
-                indices: _,
-            } => {
-                for pair in lattice[collect.idx()].objs.iter() {
-                    reads_writes_calls_mut_calls_per_pair
-                        .entry(*pair)
-                        .or_default()
-                        .1
-                        .push(id);
-                }
-
-                // When a write takes a collection on its `data` input, it
-                // memcpys that collection into the mutated collection. This is
-                // a read.
-                if !objects.objects(*data).is_empty() {
-                    for pair in lattice[collect.idx()].objs.iter() {
-                        reads_writes_calls_mut_calls_per_pair
-                            .entry(*pair)
-                            .or_default()
-                            .0
-                            .push(id);
-                    }
-                }
-            }
-            Node::Call {
-                control: _,
-                function: _,
-                dynamic_constants: _,
-                ref args,
-            } => {
-                for arg in args {
-                    for pair in lattice[arg.idx()].objs.iter() {
-                        if objects.mutators(pair.0).contains(&id) {
-                            reads_writes_calls_mut_calls_per_pair
-                                .entry(*pair)
-                                .or_default()
-                                .3
-                                .push(id);
-                        } else {
-                            reads_writes_calls_mut_calls_per_pair
-                                .entry(*pair)
-                                .or_default()
-                                .2
-                                .push(id);
-                        }
-                    }
-                }
-            }
-            _ => {}
-        }
-    }
-
-    // Once we've grouped reads / writes / calls by pairs, we create pair-wise
-    // anti-dependence edges. Due to loops, a write may technically anti-depend
-    // on a read where the read depends on the write, but we don't want to
-    // generate that anti-dependence edge, since it'll create a cycle during
-    // backend code generation. Thus, if the mutator in an anti-dependence is
-    // the same as the generation of the current pair, don't generate the edge.
-    let mut antideps = vec![];
-    for ((_, gen), (reads, writes, calls, mut_calls)) in reads_writes_calls_mut_calls_per_pair {
-        // Case 1:
-        for read in reads.iter() {
-            for write in writes.iter() {
-                if *write != gen && *read != *write {
-                    antideps.push((*read, *write));
-                }
-            }
-        }
-
-        // Case 2:
-        for read in reads.iter() {
-            for mut_call in mut_calls.iter() {
-                if *mut_call != gen && *read != *mut_call {
-                    antideps.push((*read, *mut_call));
-                }
-            }
-        }
-
-        // Case 3:
-        for call in calls.iter().chain(mut_calls.iter()) {
-            for write in writes.iter() {
-                if *write != gen && *call != *write {
-                    antideps.push((*call, *write));
-                }
-            }
-        }
-
-        // Case 4:
-        for call in calls.iter().chain(mut_calls.iter()) {
-            for mut_call in mut_calls.iter() {
-                if *mut_call != gen && *call != *mut_call {
-                    antideps.push((*call, *mut_call));
-                }
-            }
-        }
-    }
-
-    antideps
-}
-
-/*
- * Utility to make a map from node to anti-dependency uses (map mutator ->
- * reads).
- */
-pub fn flip_antideps(antideps: &Vec<(NodeID, NodeID)>) -> BTreeMap<NodeID, Vec<NodeID>> {
-    let mut result: BTreeMap<NodeID, Vec<NodeID>> = BTreeMap::new();
-
-    for (read, mutator) in antideps {
-        result.entry(*mutator).or_default().push(*read);
-    }
-
-    result
-}
-
-/*
- * Utility to make a map from node to anti-dependency users (map reads ->
- * mutators).
- */
-pub fn map_antideps(antideps: &Vec<(NodeID, NodeID)>) -> BTreeMap<NodeID, Vec<NodeID>> {
-    let mut result: BTreeMap<NodeID, Vec<NodeID>> = BTreeMap::new();
-
-    for (read, mutator) in antideps {
-        result.entry(*read).or_default().push(*mutator);
-    }
-
-    result
-}
diff --git a/hercules_ir/src/collections.rs b/hercules_ir/src/collections.rs
index 23d84b1b6629f0a477217d0657085d234bf6cfe1..8bb1b359fdbf27c44baaec5ac129419abb066331 100644
--- a/hercules_ir/src/collections.rs
+++ b/hercules_ir/src/collections.rs
@@ -285,8 +285,8 @@ pub fn collection_objects(
                 Node::Read {
                     collect: _,
                     indices: _,
-                }
-                | Node::Write {
+                } if !module.types[typing[id.idx()].idx()].is_primitive() => inputs[0].clone(),
+                Node::Write {
                     collect: _,
                     data: _,
                     indices: _,
diff --git a/hercules_ir/src/dot.rs b/hercules_ir/src/dot.rs
index 5ef16bb1c61846a36b78e308767838c03fb8ede0..c05f2606b2d90ae06b10f47cd2028b8a3ca974f5 100644
--- a/hercules_ir/src/dot.rs
+++ b/hercules_ir/src/dot.rs
@@ -20,7 +20,6 @@ pub fn xdot_module(
     reverse_postorders: &Vec<Vec<NodeID>>,
     doms: Option<&Vec<DomTree>>,
     fork_join_maps: Option<&Vec<HashMap<NodeID, NodeID>>>,
-    bbs: Option<&Vec<BasicBlocks>>,
 ) {
     let mut tmp_path = temp_dir();
     let mut rng = rand::thread_rng();
@@ -33,7 +32,6 @@ pub fn xdot_module(
         &reverse_postorders,
         doms,
         fork_join_maps,
-        bbs,
         &mut contents,
     )
     .expect("PANIC: Unable to generate output file contents.");
@@ -55,7 +53,6 @@ pub fn write_dot<W: Write>(
     reverse_postorders: &Vec<Vec<NodeID>>,
     doms: Option<&Vec<DomTree>>,
     fork_join_maps: Option<&Vec<HashMap<NodeID, NodeID>>>,
-    bbs: Option<&Vec<BasicBlocks>>,
     w: &mut W,
 ) -> std::fmt::Result {
     write_digraph_header(w)?;
@@ -170,28 +167,6 @@ pub fn write_dot<W: Write>(
             }
         }
 
-        // Step 4: draw BB edges in olive.
-        if let Some(bbs) = bbs {
-            let bbs = &bbs[function_id.idx()];
-            for node_idx in 0..bbs.0.len() {
-                let maybe_data = NodeID::new(node_idx);
-                let control = bbs.0[node_idx];
-                if maybe_data != control {
-                    write_edge(
-                        maybe_data,
-                        function_id,
-                        control,
-                        function_id,
-                        true,
-                        "olivedrab4, constraint=false",
-                        "dotted",
-                        &module,
-                        w,
-                    )?;
-                }
-            }
-        }
-
         write_graph_footer(w)?;
     }
 
diff --git a/hercules_ir/src/fork_join_analysis.rs b/hercules_ir/src/fork_join_analysis.rs
new file mode 100644
index 0000000000000000000000000000000000000000..5fe6b13221144e7c1dcbaa645d5446da5c8a2a06
--- /dev/null
+++ b/hercules_ir/src/fork_join_analysis.rs
@@ -0,0 +1,131 @@
+extern crate bitvec;
+
+use std::collections::{HashMap, HashSet};
+
+use self::bitvec::prelude::*;
+
+use crate::*;
+
+/*
+ * Top level function for creating a fork-join map. Map is from fork node ID to
+ * join node ID, since a join can easily determine the fork it corresponds to
+ * (that's the mechanism used to implement this analysis). This analysis depends
+ * on type information.
+ */
+pub fn fork_join_map(function: &Function, control: &Subgraph) -> HashMap<NodeID, NodeID> {
+    let mut fork_join_map = HashMap::new();
+    for idx in 0..function.nodes.len() {
+        // We only care about join nodes.
+        if function.nodes[idx].is_join() {
+            // Iterate the control predecessors until finding a fork. Maintain a
+            // counter of unmatched fork-join pairs seen on the way, since fork-
+            // joins may be nested. Every join is dominated by their fork, so
+            // just iterate the first unseen predecessor of each control node.
+            let join_id = NodeID::new(idx);
+            let mut unpaired = 0;
+            let mut cursor = join_id;
+            let mut seen = HashSet::<NodeID>::new();
+            let fork_id = loop {
+                cursor = control
+                    .preds(cursor)
+                    .filter(|pred| !seen.contains(pred))
+                    .next()
+                    .unwrap();
+                seen.insert(cursor);
+
+                if function.nodes[cursor.idx()].is_join() {
+                    unpaired += 1;
+                } else if function.nodes[cursor.idx()].is_fork() && unpaired > 0 {
+                    unpaired -= 1;
+                } else if function.nodes[cursor.idx()].is_fork() {
+                    break cursor;
+                }
+            };
+            fork_join_map.insert(fork_id, join_id);
+        }
+    }
+    fork_join_map
+}
+
+/*
+ * Find fork/join nests that each control node is inside of. Result is a map
+ * from each control node to a list of fork nodes. The fork nodes are listed in
+ * ascending order of nesting.
+ */
+pub fn compute_fork_join_nesting(
+    function: &Function,
+    dom: &DomTree,
+    fork_join_map: &HashMap<NodeID, NodeID>,
+) -> HashMap<NodeID, Vec<NodeID>> {
+    // For each control node, ascend dominator tree, looking for fork nodes. For
+    // each fork node, make sure each control node isn't strictly dominated by
+    // the corresponding join node.
+    (0..function.nodes.len())
+        .map(NodeID::new)
+        .filter(|id| dom.contains(*id))
+        .map(|id| {
+            (
+                id,
+                dom.ascend(id)
+                    // Filter for forks that dominate this control node,
+                    .filter(|id| function.nodes[id.idx()].is_fork())
+                    // where its corresponding join doesn't dominate the control
+                    // node (if so, then this control is after the fork-join).
+                    .filter(|fork_id| !dom.does_prop_dom(fork_join_map[&fork_id], id))
+                    .collect(),
+            )
+        })
+        .collect()
+}
+
+/*
+ * Check if a data node dominates a control node. This involves checking all
+ * immediate control uses to see if they dominate the queried control node.
+ */
+pub fn does_data_dom_control(
+    function: &Function,
+    data: NodeID,
+    control: NodeID,
+    dom: &DomTree,
+) -> bool {
+    let mut stack = vec![data];
+    let mut visited = bitvec![u8, Lsb0; 0; function.nodes.len()];
+    visited.set(data.idx(), true);
+
+    while let Some(pop) = stack.pop() {
+        let node = &function.nodes[pop.idx()];
+
+        let imm_control = match node {
+            Node::Phi { control, data: _ }
+            | Node::Reduce {
+                control,
+                init: _,
+                reduct: _,
+            }
+            | Node::Call {
+                control,
+                function: _,
+                dynamic_constants: _,
+                args: _,
+            } => Some(*control),
+            _ if node.is_control() => Some(pop),
+            _ => {
+                for u in get_uses(node).as_ref() {
+                    if !visited[u.idx()] {
+                        visited.set(u.idx(), true);
+                        stack.push(*u);
+                    }
+                }
+                None
+            }
+        };
+
+        if let Some(imm_control) = imm_control
+            && !dom.does_dom(imm_control, control)
+        {
+            return false;
+        }
+    }
+
+    true
+}
diff --git a/hercules_ir/src/gcm.rs b/hercules_ir/src/gcm.rs
deleted file mode 100644
index 3718df9b00d0e262572d4602a9c9555ea9f6bb98..0000000000000000000000000000000000000000
--- a/hercules_ir/src/gcm.rs
+++ /dev/null
@@ -1,391 +0,0 @@
-extern crate bitvec;
-
-use std::collections::{HashMap, HashSet, VecDeque};
-use std::iter::{zip, FromIterator};
-
-use self::bitvec::prelude::*;
-
-use crate::*;
-
-/*
- * Basic block info consists of two things:
- *
- * 1. A map from node to block (named by control nodes).
- * 2. For each node, which nodes are in its own block.
- *
- * Note that for #2, the structure is Vec<NodeID>, meaning the nodes are ordered
- * inside the block. This order corresponds to the traversal order of the nodes
- * in the block needed by the backend code generators.
- */
-pub type BasicBlocks = (Vec<NodeID>, Vec<Vec<NodeID>>);
-
-/*
- * Top level global code motion function. Assigns each data node to one of its
- * immediate control use / user nodes, forming (unordered) basic blocks. Returns
- * the control node / basic block each node is in. Takes in a partial
- * partitioning that must be respected. Based on the schedule-early-schedule-
- * late method from Cliff Click's PhD thesis.
- */
-pub fn gcm(
-    function: &Function,
-    def_use: &ImmutableDefUseMap,
-    reverse_postorder: &Vec<NodeID>,
-    control_subgraph: &Subgraph,
-    dom: &DomTree,
-    antideps: &Vec<(NodeID, NodeID)>,
-    loops: &LoopTree,
-    fork_join_map: &HashMap<NodeID, NodeID>,
-) -> BasicBlocks {
-    let mut bbs: Vec<Option<NodeID>> = vec![None; function.nodes.len()];
-    let back_edges = control_subgraph.back_edges(NodeID::new(0));
-    let no_loop_reachability =
-        control_subgraph.pairwise_reachability(|src, dst| !back_edges.contains(&(src, dst)));
-    let antideps_users = map_antideps(antideps);
-    let antideps_uses = flip_antideps(antideps);
-
-    // Step 1: assign the basic block locations of all nodes that must be in a
-    // specific block. This includes control nodes as well as some special data
-    // nodes, such as phis.
-    for idx in 0..function.nodes.len() {
-        match function.nodes[idx] {
-            Node::Phi { control, data: _ } => bbs[idx] = Some(control),
-            Node::ThreadID {
-                control,
-                dimension: _,
-            } => bbs[idx] = Some(control),
-            Node::Reduce {
-                control,
-                init: _,
-                reduct: _,
-            } => bbs[idx] = Some(control),
-            Node::Call {
-                control,
-                function: _,
-                dynamic_constants: _,
-                args: _,
-            } => bbs[idx] = Some(control),
-            Node::Parameter { index: _ } => bbs[idx] = Some(NodeID::new(0)),
-            Node::Constant { id: _ } => bbs[idx] = Some(NodeID::new(0)),
-            Node::DynamicConstant { id: _ } => bbs[idx] = Some(NodeID::new(0)),
-            _ if function.nodes[idx].is_control() => bbs[idx] = Some(NodeID::new(idx)),
-            _ => {}
-        }
-    }
-
-    // Step 2: schedule early. Place nodes in the earliest position they could
-    // go - use worklist to iterate nodes.
-    let mut schedule_early = bbs.clone();
-    let mut worklist = VecDeque::from(reverse_postorder.clone());
-    while let Some(id) = worklist.pop_front() {
-        if schedule_early[id.idx()].is_some() {
-            continue;
-        }
-
-        // For every use, check what block is its "schedule early" block. This
-        // node goes in the lowest block amongst those blocks.
-        let use_places: Option<Vec<NodeID>> = get_uses(&function.nodes[id.idx()])
-            .as_ref()
-            .into_iter()
-            .map(|id| *id)
-            .map(|id| schedule_early[id.idx()])
-            .collect();
-        if let Some(use_places) = use_places {
-            // If every use has been placed, we can place this node as the
-            // lowest place in the domtree that dominates all of the use places.
-            let lowest = dom.lowest_amongst(use_places.into_iter());
-            schedule_early[id.idx()] = Some(lowest);
-        } else {
-            // If not, then just push this node back on the worklist.
-            worklist.push_back(id);
-        }
-    }
-
-    // Step 3: schedule late and pick each nodes final position. Since the late
-    // schedule of each node depends on the final positions of its users, these
-    // two steps must be fused. Compute their latest position, then use the
-    // control dependent + shallow loop heuristic to actually place them.
-    let join_fork_map: HashMap<NodeID, NodeID> = fork_join_map
-        .into_iter()
-        .map(|(fork, join)| (*join, *fork))
-        .collect();
-    let mut worklist = VecDeque::from_iter(reverse_postorder.into_iter().map(|id| *id).rev());
-    'worklist: while let Some(id) = worklist.pop_front() {
-        if bbs[id.idx()].is_some() {
-            continue;
-        }
-
-        // Calculate the least common ancestor of user blocks, a.k.a. the "late"
-        // schedule.
-        let calculate_lca = || -> Option<_> {
-            let mut lca = None;
-            // Helper to incrementally update the LCA.
-            let mut update_lca = |a| {
-                if let Some(acc) = lca {
-                    lca = Some(dom.least_common_ancestor(acc, a));
-                } else {
-                    lca = Some(a);
-                }
-            };
-
-            // For every user, consider where we need to be to directly dominate the
-            // user.
-            for user in def_use.get_users(id).as_ref().into_iter().map(|id| *id) {
-                if let Node::Phi { control, data } = &function.nodes[user.idx()] {
-                    // For phis, we need to dominate the block jumping to the phi in
-                    // the slot that corresponds to our use.
-                    for (control, data) in
-                        zip(get_uses(&function.nodes[control.idx()]).as_ref(), data)
-                    {
-                        if id == *data {
-                            update_lca(*control);
-                        }
-                    }
-                } else if let Node::Reduce {
-                    control,
-                    init,
-                    reduct,
-                } = &function.nodes[user.idx()]
-                {
-                    // For reduces, we need to either dominate the block right
-                    // before the fork if we're the init input, or we need to
-                    // dominate the join if we're the reduct input.
-                    if id == *init {
-                        let before_fork = function.nodes[join_fork_map[control].idx()]
-                            .try_fork()
-                            .unwrap()
-                            .0;
-                        update_lca(before_fork);
-                    } else {
-                        assert_eq!(id, *reduct);
-                        update_lca(*control);
-                    }
-                } else {
-                    // For everything else, we just need to dominate the user.
-                    update_lca(bbs[user.idx()]?);
-                }
-            }
-
-            Some(lca)
-        };
-
-        // Check if all users have been placed. If one of them hasn't, then add
-        // this node back on to the worklist.
-        let Some(lca) = calculate_lca() else {
-            worklist.push_back(id);
-            continue;
-        };
-
-        // Check if all anti-dependency users have been placed. If one of them
-        // hasn't, then add this node back on to the worklist. We need to know
-        // where the anti-dependency users are, so that we can place this
-        // read "above" mutators that anti-depend on it. The condition for a
-        // potential placement location is that in the CFG *without loop back-
-        // edges* the mutator cannot reach the read. Ask Russel about why this
-        // works, hopefully I'll have a convincing argument by then ;).
-        let mut antidep_user_locations = vec![];
-        for antidep_user in antideps_users.get(&id).unwrap_or(&vec![]) {
-            if let Some(location) = bbs[antidep_user.idx()] {
-                antidep_user_locations.push(location);
-            } else {
-                worklist.push_back(id);
-                continue 'worklist;
-            }
-        }
-
-        // Look between the LCA and the schedule early location to place the
-        // node.
-        let schedule_early = schedule_early[id.idx()].unwrap();
-        let mut chain = dom
-            // If the node has no users, then it doesn't really matter where we
-            // place it - just place it at the early placement.
-            .chain(lca.unwrap_or(schedule_early), schedule_early)
-            // Only allow locations that don't violate the anti-depence property
-            // listed above.
-            .filter(|location| {
-                !antidep_user_locations.iter().any(|antidep_user_location| {
-                    antidep_user_location != location
-                        && no_loop_reachability[antidep_user_location.idx()][location.idx()]
-                })
-            });
-        let mut location = chain.next().unwrap();
-        while let Some(control_node) = chain.next() {
-            // If the next node further up the dominator tree is in a shallower
-            // loop nest or if we can get out of a reduce loop when we don't
-            // need to be in one, place this data node in a higher-up location.
-            let shallower_nest = if let (Some(old_nest), Some(new_nest)) =
-                (loops.nesting(location), loops.nesting(control_node))
-            {
-                old_nest > new_nest
-            } else {
-                false
-            };
-            // This will move all nodes that don't need to be in reduce loops
-            // outside of reduce loops. Nodes that do need to be in a reduce
-            // loop use the reduce node forming the loop, so the dominator chain
-            // will consist of one block, and this loop won't ever iterate.
-            let currently_at_join = function.nodes[location.idx()].is_join();
-            if shallower_nest || currently_at_join {
-                location = control_node;
-            }
-        }
-
-        bbs[id.idx()] = Some(location);
-    }
-    let bbs: Vec<_> = bbs.into_iter().map(Option::unwrap).collect();
-
-    // Step 4: determine the order of nodes inside each block. Use worklist to
-    // add nodes to blocks in order that obeys dependencies.
-    let mut order: Vec<Vec<NodeID>> = vec![vec![]; function.nodes.len()];
-    let mut worklist = VecDeque::from_iter(
-        reverse_postorder
-            .into_iter()
-            .filter(|id| !function.nodes[id.idx()].is_control()),
-    );
-    let mut visited = bitvec![u8, Lsb0; 0; function.nodes.len()];
-    while let Some(id) = worklist.pop_front() {
-        let node = &function.nodes[id.idx()];
-        if node.is_phi()
-            || node.is_reduce()
-            || get_uses(node)
-                .as_ref()
-                .into_iter()
-                .chain(antideps_uses.get(&id).into_iter().flatten())
-                .all(|u| {
-                    function.nodes[u.idx()].is_control()
-                        || bbs[u.idx()] != bbs[id.idx()]
-                        || visited[u.idx()]
-                })
-        {
-            order[bbs[id.idx()].idx()].push(*id);
-            visited.set(id.idx(), true);
-        } else {
-            worklist.push_back(id);
-        }
-    }
-
-    (bbs, order)
-}
-
-/*
- * Top level function for creating a fork-join map. Map is from fork node ID to
- * join node ID, since a join can easily determine the fork it corresponds to
- * (that's the mechanism used to implement this analysis). This analysis depends
- * on type information.
- */
-pub fn fork_join_map(function: &Function, control: &Subgraph) -> HashMap<NodeID, NodeID> {
-    let mut fork_join_map = HashMap::new();
-    for idx in 0..function.nodes.len() {
-        // We only care about join nodes.
-        if function.nodes[idx].is_join() {
-            // Iterate the control predecessors until finding a fork. Maintain a
-            // counter of unmatched fork-join pairs seen on the way, since fork-
-            // joins may be nested. Every join is dominated by their fork, so
-            // just iterate the first unseen predecessor of each control node.
-            let join_id = NodeID::new(idx);
-            let mut unpaired = 0;
-            let mut cursor = join_id;
-            let mut seen = HashSet::<NodeID>::new();
-            let fork_id = loop {
-                cursor = control
-                    .preds(cursor)
-                    .filter(|pred| !seen.contains(pred))
-                    .next()
-                    .unwrap();
-                seen.insert(cursor);
-
-                if function.nodes[cursor.idx()].is_join() {
-                    unpaired += 1;
-                } else if function.nodes[cursor.idx()].is_fork() && unpaired > 0 {
-                    unpaired -= 1;
-                } else if function.nodes[cursor.idx()].is_fork() {
-                    break cursor;
-                }
-            };
-            fork_join_map.insert(fork_id, join_id);
-        }
-    }
-    fork_join_map
-}
-
-/*
- * Find fork/join nests that each control node is inside of. Result is a map
- * from each control node to a list of fork nodes. The fork nodes are listed in
- * ascending order of nesting.
- */
-pub fn compute_fork_join_nesting(
-    function: &Function,
-    dom: &DomTree,
-    fork_join_map: &HashMap<NodeID, NodeID>,
-) -> HashMap<NodeID, Vec<NodeID>> {
-    // For each control node, ascend dominator tree, looking for fork nodes. For
-    // each fork node, make sure each control node isn't strictly dominated by
-    // the corresponding join node.
-    (0..function.nodes.len())
-        .map(NodeID::new)
-        .filter(|id| dom.contains(*id))
-        .map(|id| {
-            (
-                id,
-                dom.ascend(id)
-                    // Filter for forks that dominate this control node,
-                    .filter(|id| function.nodes[id.idx()].is_fork())
-                    // where its corresponding join doesn't dominate the control
-                    // node (if so, then this control is after the fork-join).
-                    .filter(|fork_id| !dom.does_prop_dom(fork_join_map[&fork_id], id))
-                    .collect(),
-            )
-        })
-        .collect()
-}
-
-/*
- * Check if a data node dominates a control node. This involves checking all
- * immediate control uses to see if they dominate the queried control node.
- */
-pub fn does_data_dom_control(
-    function: &Function,
-    data: NodeID,
-    control: NodeID,
-    dom: &DomTree,
-) -> bool {
-    let mut stack = vec![data];
-    let mut visited = bitvec![u8, Lsb0; 0; function.nodes.len()];
-    visited.set(data.idx(), true);
-
-    while let Some(pop) = stack.pop() {
-        let node = &function.nodes[pop.idx()];
-
-        let imm_control = match node {
-            Node::Phi { control, data: _ }
-            | Node::Reduce {
-                control,
-                init: _,
-                reduct: _,
-            }
-            | Node::Call {
-                control,
-                function: _,
-                dynamic_constants: _,
-                args: _,
-            } => Some(*control),
-            _ if node.is_control() => Some(pop),
-            _ => {
-                for u in get_uses(node).as_ref() {
-                    if !visited[u.idx()] {
-                        visited.set(u.idx(), true);
-                        stack.push(*u);
-                    }
-                }
-                None
-            }
-        };
-
-        if let Some(imm_control) = imm_control
-            && !dom.does_dom(imm_control, control)
-        {
-            return false;
-        }
-    }
-
-    true
-}
diff --git a/hercules_ir/src/lib.rs b/hercules_ir/src/lib.rs
index 05e5e2e860a122392a668a254d54a7a5917db3f4..32bbf6310ff7ea0415383dc3fd7176043de835ee 100644
--- a/hercules_ir/src/lib.rs
+++ b/hercules_ir/src/lib.rs
@@ -6,7 +6,6 @@
     iter_intersperse
 )]
 
-pub mod antideps;
 pub mod build;
 pub mod callgraph;
 pub mod collections;
@@ -14,7 +13,7 @@ pub mod dataflow;
 pub mod def_use;
 pub mod dom;
 pub mod dot;
-pub mod gcm;
+pub mod fork_join_analysis;
 pub mod ir;
 pub mod loops;
 pub mod parse;
@@ -22,7 +21,6 @@ pub mod subgraph;
 pub mod typecheck;
 pub mod verify;
 
-pub use crate::antideps::*;
 pub use crate::build::*;
 pub use crate::callgraph::*;
 pub use crate::collections::*;
@@ -30,7 +28,7 @@ pub use crate::dataflow::*;
 pub use crate::def_use::*;
 pub use crate::dom::*;
 pub use crate::dot::*;
-pub use crate::gcm::*;
+pub use crate::fork_join_analysis::*;
 pub use crate::ir::*;
 pub use crate::loops::*;
 pub use crate::parse::*;
diff --git a/hercules_ir/src/loops.rs b/hercules_ir/src/loops.rs
index 7c9a0a85949efcc248439031601b2fed17f0acf6..3ab3313fa43570e118e9cb690b464df3cc01c5de 100644
--- a/hercules_ir/src/loops.rs
+++ b/hercules_ir/src/loops.rs
@@ -25,6 +25,7 @@ use crate::*;
 pub struct LoopTree {
     root: NodeID,
     loops: HashMap<NodeID, (BitVec<u8, Lsb0>, NodeID)>,
+    inverse_loops: HashMap<NodeID, NodeID>,
     nesting: HashMap<NodeID, usize>,
 }
 
@@ -45,6 +46,10 @@ impl LoopTree {
         header == self.root || self.loops[&header].0[is_in.idx()]
     }
 
+    pub fn header_of(&self, control_node: NodeID) -> Option<NodeID> {
+        self.inverse_loops.get(&control_node).map(|h| *h)
+    }
+
     /*
      * Sometimes, we need to iterate the loop tree bottom-up. Just assemble the
      * order upfront.
@@ -149,7 +154,16 @@ pub fn loops(
         })
         .collect();
 
-    // Step 6: compute loop tree nesting.
+    // Step 6: compute the inverse loop map - this maps control nodes to which
+    // loop they are in (keyed by header), if they are in one.
+    let mut inverse_loops = HashMap::new();
+    for (header, (contents, _)) in loops.iter() {
+        for idx in contents.iter_ones() {
+            inverse_loops.insert(NodeID::new(idx), *header);
+        }
+    }
+
+    // Step 7: compute loop tree nesting.
     let mut nesting = HashMap::new();
     let mut worklist: VecDeque<NodeID> = loops.keys().map(|id| *id).collect();
     while let Some(header) = worklist.pop_front() {
@@ -166,6 +180,7 @@ pub fn loops(
     LoopTree {
         root,
         loops,
+        inverse_loops,
         nesting,
     }
 }
diff --git a/hercules_ir/src/subgraph.rs b/hercules_ir/src/subgraph.rs
index 89e8bcc64febd6fe36ec69d0d3a68a0dc0eda348..a2aedadf0fbc996bc0eb46feae77ee7a526de491 100644
--- a/hercules_ir/src/subgraph.rs
+++ b/hercules_ir/src/subgraph.rs
@@ -203,6 +203,33 @@ impl Subgraph {
         edges
     }
 
+    pub fn rev_po(&self, root: NodeID) -> Vec<NodeID> {
+        let mut order = vec![];
+        let mut stack = vec![];
+        let mut visited = bitvec![u8, Lsb0; 0; self.original_num_nodes as usize];
+
+        stack.push(root);
+        visited.set(root.idx(), true);
+
+        while let Some(pop) = stack.pop() {
+            if self.succs(pop).any(|succ| !visited[succ.idx()]) {
+                stack.push(pop);
+                for succ in self.succs(pop) {
+                    if !visited[succ.idx()] {
+                        visited.set(succ.idx(), true);
+                        stack.push(succ);
+                        break;
+                    }
+                }
+            } else {
+                order.push(pop);
+            }
+        }
+
+        order.reverse();
+        order
+    }
+
     pub fn pairwise_reachability<P>(&self, p: P) -> Vec<BitVec<u8, Lsb0>>
     where
         P: Fn(NodeID, NodeID) -> bool,
diff --git a/hercules_ir/src/typecheck.rs b/hercules_ir/src/typecheck.rs
index c657d5987f005a721ffe663ee22fa6b8fc877b43..d6862c354199dc748797e47d4f663f898df24d7b 100644
--- a/hercules_ir/src/typecheck.rs
+++ b/hercules_ir/src/typecheck.rs
@@ -984,10 +984,6 @@ fn typeflow(
             data: _,
             indices,
         } => {
-            if indices.len() == 0 {
-                return Error(String::from("Write node must have at least one index."));
-            }
-
             // Traverse the collect input's type tree downwards.
             if let (Concrete(mut collect_id), Concrete(data_id)) = (inputs[0], inputs[1]) {
                 for index in indices.iter() {
diff --git a/hercules_opt/src/editor.rs b/hercules_opt/src/editor.rs
index 0c97abff6429a76f03481542f03c9ba7cd09a5f3..4ff08e6927103ed39d8025ab1fac7bc52d52984a 100644
--- a/hercules_opt/src/editor.rs
+++ b/hercules_opt/src/editor.rs
@@ -25,6 +25,7 @@ pub struct FunctionEditor<'a> {
     // Wraps a mutable reference to a function. Doesn't provide access to this
     // reference directly, so that we can monitor edits.
     function: &'a mut Function,
+    function_id: FunctionID,
     // Keep a RefCell to (dynamic) constants and types to allow function changes
     // to update these
     constants: &'a RefCell<Vec<Constant>>,
@@ -69,6 +70,7 @@ pub struct FunctionEdit<'a: 'b, 'b> {
 impl<'a: 'b, 'b> FunctionEditor<'a> {
     pub fn new(
         function: &'a mut Function,
+        function_id: FunctionID,
         constants: &'a RefCell<Vec<Constant>>,
         dynamic_constants: &'a RefCell<Vec<DynamicConstant>>,
         types: &'a RefCell<Vec<Type>>,
@@ -87,6 +89,7 @@ impl<'a: 'b, 'b> FunctionEditor<'a> {
 
         FunctionEditor {
             function,
+            function_id,
             constants,
             dynamic_constants,
             types,
@@ -218,6 +221,10 @@ impl<'a: 'b, 'b> FunctionEditor<'a> {
         &self.function
     }
 
+    pub fn func_id(&self) -> FunctionID {
+        self.function_id
+    }
+
     pub fn get_dynamic_constants(&self) -> Ref<'_, Vec<DynamicConstant>> {
         self.dynamic_constants.borrow()
     }
@@ -660,6 +667,7 @@ fn func(x: i32) -> i32
         // Edit the function by replacing the add with a multiply.
         let mut editor = FunctionEditor::new(
             func,
+            FunctionID::new(0),
             &constants_ref,
             &dynamic_constants_ref,
             &types_ref,
diff --git a/hercules_opt/src/legalize_reference_semantics.rs b/hercules_opt/src/legalize_reference_semantics.rs
new file mode 100644
index 0000000000000000000000000000000000000000..254524f9eb75865a0d0c480dd5aa7fd71115e374
--- /dev/null
+++ b/hercules_opt/src/legalize_reference_semantics.rs
@@ -0,0 +1,835 @@
+extern crate bitvec;
+extern crate hercules_cg;
+extern crate hercules_ir;
+
+use std::collections::{BTreeSet, HashMap, VecDeque};
+use std::iter::{empty, once, zip, FromIterator};
+use std::mem::take;
+
+use self::bitvec::prelude::*;
+
+use self::hercules_cg::*;
+use self::hercules_ir::*;
+
+use crate::*;
+
+/*
+ * Top level function to legalize the reference semantics of a Hercules IR
+ * function. Hercules IR is a value semantics representation, meaning that all
+ * program state is in the form of copyable values, and mutation takes place by
+ * making a new value that is a copy of the old value with some modification.
+ * This representation is extremely convenient for optimization, but is not good
+ * for code generation, where we need to generate code with references to get
+ * good performance. Hercules IR can alternatively be interpreted using
+ * reference semantics, where pointers to collection objects are passed around,
+ * read from, and written to. However, the value semantics and reference
+ * semantics interpretation of a Hercules IR function may not be equal - this
+ * pass transforms a Hercules IR function such that its new value semantics is
+ * the same as its old value semantics and that its new reference semantics is
+ * the same as its new value semantics. This pass returns a placement of nodes
+ * into ordered basic blocks, since the reference semantics of a function
+ * depends on the order of execution with respect to anti-dependencies. Clones
+ * are inserted sparingly when there are two write users of a single collection
+ * or if a read user cannot be scheduled before a write user.
+ */
+pub fn legalize_reference_semantics(
+    editor: &mut FunctionEditor,
+    def_use: &ImmutableDefUseMap,
+    reverse_postorder: &Vec<NodeID>,
+    typing: &Vec<TypeID>,
+    control_subgraph: &Subgraph,
+    dom: &DomTree,
+    fork_join_map: &HashMap<NodeID, NodeID>,
+    loops: &LoopTree,
+    objects: &CollectionObjects,
+) -> Option<BasicBlocks> {
+    // Repeatedly try to place nodes into basic blocks. If clones are induced,
+    // re-try. Specifically, repeat the following procedure until no new clones:
+    //
+    // 1. Attempt to place nodes in basic blocks. If a node can't be placed due
+    //    to anti-dependency edges, induce a clone on the read and go back to
+    //    step 1.
+    // 2. Check for any write-induced clones. If there are any, go back to step
+    //    1.
+    //
+    // Since each analysis needs to be re-calculated in each iteration, this
+    // function just implements the body of the described loop. The re-try logic
+    // is found in pass.rs. When a re-try is needed, no basic block assignment
+    // is returned. When a re-try isn't needed (no new clones were found), a
+    // basic block assignment is returned.
+    let bbs = match basic_blocks(
+        editor.func(),
+        editor.func_id(),
+        def_use,
+        reverse_postorder,
+        control_subgraph,
+        dom,
+        loops,
+        fork_join_map,
+        objects,
+    ) {
+        Ok(bbs) => bbs,
+        Err((obj, reader)) => {
+            induce_clone(editor, typing, obj, reader);
+            return None;
+        }
+    };
+    if materialize_clones(editor, typing, control_subgraph, objects, &bbs) {
+        None
+    } else {
+        Some(bbs)
+    }
+}
+
+/*
+ * Top level global code motion function. Assigns each data node to one of its
+ * immediate control use / user nodes, forming (unordered) basic blocks. Returns
+ * the control node / basic block each node is in. Takes in a partial
+ * partitioning that must be respected. Based on the schedule-early-schedule-
+ * late method from Cliff Click's PhD thesis. May fail if an anti-dependency
+ * edge can't be satisfied - in this case, a clone that has to be induced is
+ * returned instead.
+ */
+fn basic_blocks(
+    function: &Function,
+    func_id: FunctionID,
+    def_use: &ImmutableDefUseMap,
+    reverse_postorder: &Vec<NodeID>,
+    control_subgraph: &Subgraph,
+    dom: &DomTree,
+    loops: &LoopTree,
+    fork_join_map: &HashMap<NodeID, NodeID>,
+    objects: &CollectionObjects,
+) -> Result<BasicBlocks, (NodeID, NodeID)> {
+    let mut bbs: Vec<Option<NodeID>> = vec![None; function.nodes.len()];
+
+    // Step 1: assign the basic block locations of all nodes that must be in a
+    // specific block. This includes control nodes as well as some special data
+    // nodes, such as phis.
+    for idx in 0..function.nodes.len() {
+        match function.nodes[idx] {
+            Node::Phi { control, data: _ } => bbs[idx] = Some(control),
+            Node::ThreadID {
+                control,
+                dimension: _,
+            } => bbs[idx] = Some(control),
+            Node::Reduce {
+                control,
+                init: _,
+                reduct: _,
+            } => bbs[idx] = Some(control),
+            Node::Call {
+                control,
+                function: _,
+                dynamic_constants: _,
+                args: _,
+            } => bbs[idx] = Some(control),
+            Node::Parameter { index: _ } => bbs[idx] = Some(NodeID::new(0)),
+            Node::Constant { id: _ } => bbs[idx] = Some(NodeID::new(0)),
+            Node::DynamicConstant { id: _ } => bbs[idx] = Some(NodeID::new(0)),
+            _ if function.nodes[idx].is_control() => bbs[idx] = Some(NodeID::new(idx)),
+            _ => {}
+        }
+    }
+
+    // Step 2: schedule early. Place nodes in the earliest position they could
+    // go - use worklist to iterate nodes.
+    let mut schedule_early = bbs.clone();
+    let mut worklist = VecDeque::from(reverse_postorder.clone());
+    while let Some(id) = worklist.pop_front() {
+        if schedule_early[id.idx()].is_some() {
+            continue;
+        }
+
+        // For every use, check what block is its "schedule early" block. This
+        // node goes in the lowest block amongst those blocks.
+        let use_places: Option<Vec<NodeID>> = get_uses(&function.nodes[id.idx()])
+            .as_ref()
+            .into_iter()
+            .map(|id| *id)
+            .map(|id| schedule_early[id.idx()])
+            .collect();
+        if let Some(use_places) = use_places {
+            // If every use has been placed, we can place this node as the
+            // lowest place in the domtree that dominates all of the use places.
+            let lowest = dom.lowest_amongst(use_places.into_iter());
+            schedule_early[id.idx()] = Some(lowest);
+        } else {
+            // If not, then just push this node back on the worklist.
+            worklist.push_back(id);
+        }
+    }
+
+    // Step 3: find anti-dependence edges. An anti-dependence edge needs to be
+    // drawn between a collection reading node and a collection mutating node
+    // when the following conditions are true:
+    //
+    // 1: The reading and mutating nodes may involve the same collection.
+    // 2: The node producing the collection used by the reading node is in a
+    //    schedule early block that dominates the schedule early block of the
+    //    mutating node. The node producing the collection used by the reading
+    //    node may be an originator of a collection, phi or reduce, or mutator,
+    //    but not forwarding read - forwarding reads are collapsed, and the
+    //    bottom read is treated as reading from the transitive parent of the
+    //    forwarding read(s).
+    let mut antideps = BTreeSet::new();
+    for id in reverse_postorder.iter() {
+        // Find a terminating read node and the collections it reads.
+        let terminating_reads: BTreeSet<_> =
+            terminating_reads(function, func_id, *id, objects).collect();
+        if !terminating_reads.is_empty() {
+            // Walk forwarding reads to find anti-dependency roots.
+            let mut workset = terminating_reads.clone();
+            let mut roots = BTreeSet::new();
+            while let Some(pop) = workset.pop_first() {
+                let forwarded: BTreeSet<_> =
+                    forwarding_reads(function, func_id, pop, objects).collect();
+                if forwarded.is_empty() {
+                    roots.insert(pop);
+                } else {
+                    workset.extend(forwarded);
+                }
+            }
+
+            // For each root, find mutating nodes dominated by the root that
+            // modify an object read on any input of the current node (the
+            // terminating read).
+            // TODO: make this less outrageously inefficient.
+            let func_objects = &objects[&func_id];
+            for root in roots.iter() {
+                let root_early = schedule_early[root.idx()].unwrap();
+                let mut root_block_iterated_users: BTreeSet<NodeID> = BTreeSet::new();
+                let mut workset = BTreeSet::new();
+                workset.insert(*root);
+                while let Some(pop) = workset.pop_first() {
+                    let users = def_use.get_users(pop).into_iter().filter(|user| {
+                        !function.nodes[user.idx()].is_phi()
+                            && !function.nodes[user.idx()].is_reduce()
+                            && schedule_early[user.idx()].unwrap() == root_early
+                    });
+                    workset.extend(users.clone());
+                    root_block_iterated_users.extend(users);
+                }
+                let read_objs: BTreeSet<_> = terminating_reads
+                    .iter()
+                    .map(|read_use| func_objects.objects(*read_use).into_iter())
+                    .flatten()
+                    .map(|id| *id)
+                    .collect();
+                for mutator in reverse_postorder.iter() {
+                    let mutator_early = schedule_early[mutator.idx()].unwrap();
+                    if dom.does_dom(root_early, mutator_early)
+                        && (root_early != mutator_early
+                            || root_block_iterated_users.contains(&mutator))
+                        && mutating_objects(function, func_id, *mutator, objects)
+                            .any(|mutated| read_objs.contains(&mutated))
+                    {
+                        antideps.insert((*id, *mutator));
+                    }
+                }
+            }
+        }
+    }
+    let mut antideps_uses = vec![vec![]; function.nodes.len()];
+    let mut antideps_users = vec![vec![]; function.nodes.len()];
+    for (reader, mutator) in antideps.iter() {
+        antideps_uses[mutator.idx()].push(*reader);
+        antideps_users[reader.idx()].push(*mutator);
+    }
+
+    // Step 4: schedule late and pick each nodes final position. Since the late
+    // schedule of each node depends on the final positions of its users, these
+    // two steps must be fused. Compute their latest position, then use the
+    // control dependent + shallow loop heuristic to actually place them.
+    let join_fork_map: HashMap<NodeID, NodeID> = fork_join_map
+        .into_iter()
+        .map(|(fork, join)| (*join, *fork))
+        .collect();
+    let mut worklist = VecDeque::from_iter(reverse_postorder.into_iter().map(|id| *id).rev());
+    while let Some(id) = worklist.pop_front() {
+        if bbs[id.idx()].is_some() {
+            continue;
+        }
+
+        // Calculate the least common ancestor of user blocks, a.k.a. the "late"
+        // schedule.
+        let calculate_lca = || -> Option<_> {
+            let mut lca = None;
+            // Helper to incrementally update the LCA.
+            let mut update_lca = |a| {
+                if let Some(acc) = lca {
+                    lca = Some(dom.least_common_ancestor(acc, a));
+                } else {
+                    lca = Some(a);
+                }
+            };
+
+            // For every user, consider where we need to be to directly dominate the
+            // user.
+            for user in def_use
+                .get_users(id)
+                .as_ref()
+                .into_iter()
+                .chain(antideps_users[id.idx()].iter())
+                .map(|id| *id)
+            {
+                if let Node::Phi { control, data } = &function.nodes[user.idx()] {
+                    // For phis, we need to dominate the block jumping to the phi in
+                    // the slot that corresponds to our use.
+                    for (control, data) in
+                        zip(get_uses(&function.nodes[control.idx()]).as_ref(), data)
+                    {
+                        if id == *data {
+                            update_lca(*control);
+                        }
+                    }
+                } else if let Node::Reduce {
+                    control,
+                    init,
+                    reduct,
+                } = &function.nodes[user.idx()]
+                {
+                    // For reduces, we need to either dominate the block right
+                    // before the fork if we're the init input, or we need to
+                    // dominate the join if we're the reduct input.
+                    if id == *init {
+                        let before_fork = function.nodes[join_fork_map[control].idx()]
+                            .try_fork()
+                            .unwrap()
+                            .0;
+                        update_lca(before_fork);
+                    } else {
+                        assert_eq!(id, *reduct);
+                        update_lca(*control);
+                    }
+                } else {
+                    // For everything else, we just need to dominate the user.
+                    update_lca(bbs[user.idx()]?);
+                }
+            }
+
+            Some(lca)
+        };
+
+        // Check if all users have been placed. If one of them hasn't, then add
+        // this node back on to the worklist.
+        let Some(lca) = calculate_lca() else {
+            worklist.push_back(id);
+            continue;
+        };
+
+        // Look between the LCA and the schedule early location to place the
+        // node.
+        let schedule_early = schedule_early[id.idx()].unwrap();
+        let mut chain = dom
+            // If the node has no users, then it doesn't really matter where we
+            // place it - just place it at the early placement.
+            .chain(lca.unwrap_or(schedule_early), schedule_early);
+
+        if let Some(mut location) = chain.next() {
+            /*
+            while let Some(control_node) = chain.next() {
+                // If the next node further up the dominator tree is in a shallower
+                // loop nest or if we can get out of a reduce loop when we don't
+                // need to be in one, place this data node in a higher-up location.
+                let old_nest = loops
+                    .header_of(location)
+                    .map(|header| loops.nesting(header).unwrap());
+                let new_nest = loops
+                    .header_of(control_node)
+                    .map(|header| loops.nesting(header).unwrap());
+                let shallower_nest = if let (Some(old_nest), Some(new_nest)) = (old_nest, new_nest)
+                {
+                    old_nest > new_nest
+                } else {
+                    // If the new location isn't a loop, it's nesting level should
+                    // be considered "shallower" if the current location is in a
+                    // loop.
+                    old_nest.is_some()
+                };
+                // This will move all nodes that don't need to be in reduce loops
+                // outside of reduce loops. Nodes that do need to be in a reduce
+                // loop use the reduce node forming the loop, so the dominator chain
+                // will consist of one block, and this loop won't ever iterate.
+                let currently_at_join = function.nodes[location.idx()].is_join();
+                if shallower_nest || currently_at_join {
+                    location = control_node;
+                }
+            }
+            */
+
+            bbs[id.idx()] = Some(location);
+        } else {
+            // If there is no valid location for this node, then it's a reading
+            // node of a collection that can't be placed above a mutation that
+            // anti-depend uses it. Thus, a clone needs to be induced.
+            todo!()
+        }
+    }
+    let bbs: Vec<_> = bbs.into_iter().map(Option::unwrap).collect();
+
+    // Step 5: determine the order of nodes inside each block. Use worklist to
+    // add nodes to blocks in order that obeys dependencies.
+    let mut order: Vec<Vec<NodeID>> = vec![vec![]; function.nodes.len()];
+    let mut worklist = VecDeque::from_iter(
+        reverse_postorder
+            .into_iter()
+            .filter(|id| !function.nodes[id.idx()].is_control()),
+    );
+    let mut visited = bitvec![u8, Lsb0; 0; function.nodes.len()];
+    let mut no_change_iters = 0;
+    while no_change_iters <= worklist.len()
+        && let Some(id) = worklist.pop_front()
+    {
+        let node = &function.nodes[id.idx()];
+        if node.is_phi()
+            || node.is_reduce()
+            || get_uses(node)
+                .as_ref()
+                .into_iter()
+                .chain(antideps_uses[id.idx()].iter())
+                .all(|u| {
+                    function.nodes[u.idx()].is_control()
+                        || bbs[u.idx()] != bbs[id.idx()]
+                        || visited[u.idx()]
+                })
+        {
+            order[bbs[id.idx()].idx()].push(*id);
+            visited.set(id.idx(), true);
+            no_change_iters = 0;
+        } else {
+            worklist.push_back(id);
+            no_change_iters += 1;
+        }
+    }
+
+    if no_change_iters == 0 {
+        Ok((bbs, order))
+    } else {
+        // If the worklist exited without finishing, then there's at least one
+        // reading node of a collection that is in a anti-depend + normal depend
+        // use cycle with a mutating node. This cycle must be broken by inducing
+        // a clone.
+        todo!()
+    }
+}
+
+fn terminating_reads<'a>(
+    function: &'a Function,
+    func_id: FunctionID,
+    reader: NodeID,
+    objects: &'a CollectionObjects,
+) -> Box<dyn Iterator<Item = NodeID> + 'a> {
+    match function.nodes[reader.idx()] {
+        Node::Read {
+            collect,
+            indices: _,
+        } if objects[&func_id].objects(reader).is_empty() => Box::new(once(collect)),
+        Node::Write {
+            collect: _,
+            data,
+            indices: _,
+        } if !objects[&func_id].objects(data).is_empty() => Box::new(once(data)),
+        Node::Call {
+            control: _,
+            function: callee,
+            dynamic_constants: _,
+            ref args,
+        } => Box::new(args.into_iter().enumerate().filter_map(move |(idx, arg)| {
+            let objects = &objects[&callee];
+            let returns = objects.returned_objects();
+            let param_obj = objects.param_to_object(idx)?;
+            if !objects.is_mutated(param_obj) && !returns.contains(&param_obj) {
+                Some(*arg)
+            } else {
+                None
+            }
+        })),
+        _ => Box::new(empty()),
+    }
+}
+
+fn forwarding_reads<'a>(
+    function: &'a Function,
+    func_id: FunctionID,
+    reader: NodeID,
+    objects: &'a CollectionObjects,
+) -> Box<dyn Iterator<Item = NodeID> + 'a> {
+    match function.nodes[reader.idx()] {
+        Node::Read {
+            collect,
+            indices: _,
+        } if !objects[&func_id].objects(reader).is_empty() => Box::new(once(collect)),
+        Node::Ternary {
+            op: TernaryOperator::Select,
+            first: _,
+            second,
+            third,
+        } if !objects[&func_id].objects(reader).is_empty() => {
+            Box::new(once(second).chain(once(third)))
+        }
+        Node::Call {
+            control: _,
+            function: callee,
+            dynamic_constants: _,
+            ref args,
+        } => Box::new(args.into_iter().enumerate().filter_map(move |(idx, arg)| {
+            let objects = &objects[&callee];
+            let returns = objects.returned_objects();
+            let param_obj = objects.param_to_object(idx)?;
+            if !objects.is_mutated(param_obj) && returns.contains(&param_obj) {
+                Some(*arg)
+            } else {
+                None
+            }
+        })),
+        _ => Box::new(empty()),
+    }
+}
+
+fn mutating_objects<'a>(
+    function: &'a Function,
+    func_id: FunctionID,
+    mutator: NodeID,
+    objects: &'a CollectionObjects,
+) -> Box<dyn Iterator<Item = CollectionObjectID> + 'a> {
+    match function.nodes[mutator.idx()] {
+        Node::Write {
+            collect,
+            data: _,
+            indices: _,
+        } => Box::new(objects[&func_id].objects(collect).into_iter().map(|id| *id)),
+        Node::Call {
+            control: _,
+            function: callee,
+            dynamic_constants: _,
+            ref args,
+        } => Box::new(
+            args.into_iter()
+                .enumerate()
+                .filter_map(move |(idx, arg)| {
+                    let callee_objects = &objects[&callee];
+                    let param_obj = callee_objects.param_to_object(idx)?;
+                    if callee_objects.is_mutated(param_obj) {
+                        Some(objects[&func_id].objects(*arg).into_iter().map(|id| *id))
+                    } else {
+                        None
+                    }
+                })
+                .flatten(),
+        ),
+        _ => Box::new(empty()),
+    }
+}
+
+/*
+ * Top level function to materialize clones of collections. This transformation
+ * eliminates the possibility of multiple independent writes (including dynamic
+ * writes) to a single collection by introducing extra collection constants and
+ * inserting explicit clones. This allows us to make the simplifying assumption
+ * in the backend that collections have reference, rather than value, semantics.
+ * The pass calling this function is mandatory for correctness.
+ */
+fn materialize_clones(
+    editor: &mut FunctionEditor,
+    typing: &Vec<TypeID>,
+    control_subgraph: &Subgraph,
+    objects: &CollectionObjects,
+    bbs: &BasicBlocks,
+) -> bool {
+    // First, run dataflow analysis to figure out which access to collections
+    // induce clones. This dataflow analysis depends on basic block assignments
+    // and is more analogous to standard dataflow analysis in CFG + SSA IRs.
+    // This is the only place this form is used, so just hardcode it here.
+    //
+    // This forward dataflow analysis tracks which collections are used at each
+    // program point. Collections are referred to using node IDs. Specifically:
+    //
+    // - Phi - a phi node adds its inputs to the used set and removes itself
+    //   from the used set. If a phi uses an ID that is used along the edge of
+    //   the corresponding predecessor, a clone is induced.
+    // - Select - a select node adds its inputs to the used set and removes
+    //   itself from the used set. If either use is already used, a clone is
+    //   induced.
+    // - Reduce - a reduce node adds its inputs to the used set and removes
+    //   itself from the used set. If the `init` input is already used, a clone
+    //   is induced. If the `reduct` input is used at the end of the basic block
+    //   containing the reduce, then a clone is induced. At the end of the basic
+    //   block, the reduce removes itself from the used set.
+    // - Read - a read node that reads a sub-collections from a collection,
+    //   rather than reading a primitive type, adds its input to the used set
+    //   and removes itself from the used set. If the `collect` input is already
+    //   used, a clone is induced.
+    // - Write - a write node adds its `collect` input to the used set and
+    //   removes itself from the used set. If the `collect` input is already
+    //   used, a clone is induced.
+    // - Call - a call node adds any mutated input or input that may be returned
+    //   to the used set and removes itself from the used set. If any mutated
+    //   input is already used, a clone is induced.
+    //
+    // Reads of sub-collections (select, read, and call nodes) use a collection
+    // because they may have downstream writes that depend on the new "view" of
+    // the same collection. This does not include reads that "end" (the `data`
+    // input of a write). This analysis does not consider parallel mutations in
+    // fork-joins, which are handled separately later in this function.
+    let rev_po = control_subgraph.rev_po(NodeID::new(0));
+    let mut total_num_pts = 0;
+    let mut bb_to_prefix_sum = vec![0; bbs.0.len()];
+    for ((idx, bb), insts) in zip(bbs.0.iter().enumerate(), bbs.1.iter()) {
+        if idx == bb.idx() {
+            bb_to_prefix_sum[idx] = total_num_pts;
+            total_num_pts += insts.len() + 1;
+        }
+    }
+    // Lattice maps each program point to a set of used values. Top is that no
+    // nodes are used yet.
+    let nodes = &editor.func().nodes;
+    let func_id = editor.func_id();
+    let mut lattice: Vec<BTreeSet<NodeID>> = vec![BTreeSet::new(); total_num_pts];
+    loop {
+        let mut changed = false;
+
+        for bb in rev_po.iter() {
+            // The lattice value of the first point is the meet of the
+            // predecessor terminating lattice values.
+            let mut top_value = take(&mut lattice[bb_to_prefix_sum[bb.idx()]]);
+            // Clearing `top_value` is not necessary since used nodes are never
+            // removed from lattice values, only added.
+            for pred in control_subgraph.preds(*bb) {
+                // It should not be possible in Hercules IR for a basic block to
+                // be one of its own predecessors.
+                assert_ne!(*bb, pred);
+                let last_pt = bbs.1[pred.idx()].len();
+                for elem in lattice[bb_to_prefix_sum[pred.idx()] + last_pt].iter() {
+                    changed |= top_value.insert(*elem);
+                }
+            }
+            lattice[bb_to_prefix_sum[bb.idx()]] = top_value;
+
+            // The lattice value of following points are determined by their
+            // immediate preceding instructions.
+            let insts = &bbs.1[bb.idx()];
+            for (prev_pt, inst) in insts.iter().enumerate() {
+                let mut new_value = take(&mut lattice[bb_to_prefix_sum[bb.idx()] + prev_pt + 1]);
+                let prev_value = &lattice[bb_to_prefix_sum[bb.idx()] + prev_pt];
+                match nodes[inst.idx()] {
+                    Node::Phi {
+                        control: _,
+                        ref data,
+                    } if !objects[&func_id].objects(*inst).is_empty() => {
+                        for elem in data {
+                            changed |= new_value.insert(*elem);
+                        }
+                        changed |= new_value.remove(inst);
+                    }
+                    Node::Ternary {
+                        op: TernaryOperator::Select,
+                        first: _,
+                        second,
+                        third,
+                    } => {
+                        if !objects[&func_id].objects(*inst).is_empty() {
+                            changed |= new_value.insert(second);
+                            changed |= new_value.insert(third);
+                            changed |= new_value.remove(inst);
+                        }
+                    }
+                    Node::Reduce {
+                        control: _,
+                        init,
+                        reduct,
+                    } if !objects[&func_id].objects(*inst).is_empty() => {
+                        changed |= new_value.insert(init);
+                        changed |= new_value.insert(reduct);
+                        changed |= new_value.remove(inst);
+                    }
+                    Node::Read {
+                        collect,
+                        indices: _,
+                    } if !objects[&func_id].objects(*inst).is_empty() => {
+                        changed |= new_value.insert(collect);
+                        changed |= new_value.remove(inst);
+                    }
+                    Node::Write {
+                        collect,
+                        data: _,
+                        indices: _,
+                    } => {
+                        changed |= new_value.insert(collect);
+                        changed |= new_value.remove(inst);
+                    }
+                    Node::Call {
+                        control: _,
+                        function: callee,
+                        dynamic_constants: _,
+                        ref args,
+                    } => {
+                        let callee_objects = &objects[&callee];
+                        for (param_idx, arg) in args.into_iter().enumerate() {
+                            if callee_objects
+                                .param_to_object(param_idx)
+                                .map(|object| {
+                                    callee_objects.is_mutated(object)
+                                        || callee_objects.returned_objects().contains(&object)
+                                })
+                                .unwrap_or(false)
+                            {
+                                changed |= new_value.insert(*arg);
+                            }
+                        }
+                        changed |= new_value.remove(inst);
+                    }
+                    _ => {
+                        for elem in prev_value {
+                            changed |= new_value.insert(*elem);
+                        }
+                    }
+                }
+                lattice[bb_to_prefix_sum[bb.idx()] + prev_pt + 1] = new_value;
+            }
+
+            // Handle reduces in this block specially at the very end.
+            let last_pt = insts.len();
+            let mut bottom_value = take(&mut lattice[bb_to_prefix_sum[bb.idx()] + last_pt]);
+            for inst in insts.iter() {
+                if let Node::Reduce {
+                    control: _,
+                    init: _,
+                    reduct,
+                } = nodes[inst.idx()]
+                {
+                    assert!(
+                        bottom_value.contains(&reduct),
+                        "PANIC: Can't handle clones inside a reduction cycle currently."
+                    );
+                    changed |= bottom_value.remove(inst);
+                }
+            }
+            lattice[bb_to_prefix_sum[bb.idx()] + last_pt] = bottom_value;
+        }
+
+        if !changed {
+            break;
+        }
+    }
+
+    // Now that we've computed the used collections dataflow analysis, use the
+    // results to materialize a clone whenever a node attempts to use an already
+    // used node.
+    let mut any_induced = false;
+    let nodes = nodes.clone();
+    for bb in rev_po.iter() {
+        let insts = &bbs.1[bb.idx()];
+        for (prev_pt, inst) in insts.iter().enumerate() {
+            let value = &lattice[bb_to_prefix_sum[bb.idx()] + prev_pt];
+            match nodes[inst.idx()] {
+                Node::Phi {
+                    control: _,
+                    ref data,
+                } => {
+                    // In phis, check if an argument is already used in the
+                    // predecessor's bottom lattice value (phis need to be path-
+                    // sensitive).
+                    for (pred, arg) in zip(control_subgraph.preds(*bb), data) {
+                        let last_pt = bbs.1[pred.idx()].len();
+                        let bottom = &lattice[bb_to_prefix_sum[pred.idx()] + last_pt];
+                        if bottom.contains(arg) {
+                            induce_clone(editor, typing, *arg, *inst);
+                            any_induced = true;
+                        }
+                    }
+                }
+                Node::Ternary {
+                    op: TernaryOperator::Select,
+                    first: _,
+                    second,
+                    third,
+                } => {
+                    if value.contains(&second) {
+                        induce_clone(editor, typing, second, *inst);
+                        any_induced = true;
+                    }
+                    if value.contains(&third) {
+                        induce_clone(editor, typing, third, *inst);
+                        any_induced = true;
+                    }
+                }
+                Node::Reduce {
+                    control: _,
+                    init,
+                    reduct: _,
+                } => {
+                    if value.contains(&init) {
+                        induce_clone(editor, typing, init, *inst);
+                        any_induced = true;
+                    }
+                }
+                Node::Read {
+                    collect,
+                    indices: _,
+                } if !objects[&func_id].objects(*inst).is_empty() => {
+                    if value.contains(&collect) {
+                        induce_clone(editor, typing, collect, *inst);
+                        any_induced = true;
+                    }
+                }
+                Node::Write {
+                    collect,
+                    data: _,
+                    indices: _,
+                } => {
+                    if value.contains(&collect) {
+                        induce_clone(editor, typing, collect, *inst);
+                        any_induced = true;
+                    }
+                }
+                Node::Call {
+                    control: _,
+                    function: callee,
+                    dynamic_constants: _,
+                    ref args,
+                } => {
+                    let callee_objects = &objects[&callee];
+                    for (param_idx, arg) in args.into_iter().enumerate() {
+                        if callee_objects
+                            .param_to_object(param_idx)
+                            .map(|object| {
+                                callee_objects.is_mutated(object)
+                                    || callee_objects.returned_objects().contains(&object)
+                            })
+                            .unwrap_or(false)
+                            && value.contains(arg)
+                        {
+                            induce_clone(editor, typing, *arg, *inst);
+                            any_induced = true;
+                        }
+                    }
+                }
+                _ => {}
+            }
+        }
+    }
+    any_induced
+}
+
+/*
+ * Utility to insert a clone before a use of a collection.
+ */
+fn induce_clone(editor: &mut FunctionEditor, typing: &Vec<TypeID>, object: NodeID, user: NodeID) {
+    editor.edit(|mut edit| {
+        // Create the constant collection object for allocation.
+        let object_ty = typing[object.idx()];
+        let object_cons = edit.add_zero_constant(object_ty);
+        let cons_node = edit.add_node(Node::Constant { id: object_cons });
+
+        // Create the clone into the new constant collection.
+        let clone_node = edit.add_node(Node::Write {
+            collect: cons_node,
+            data: object,
+            indices: vec![].into_boxed_slice(),
+        });
+
+        // Make user use the cloned object.
+        edit.replace_all_uses_where(object, clone_node, |id| *id == user)
+    });
+}
diff --git a/hercules_opt/src/lib.rs b/hercules_opt/src/lib.rs
index 4a4011b1f19c62d741f8d30189998039a1dd1b30..a69ca5391f9876b73b7b969b3b15820faf3a85cf 100644
--- a/hercules_opt/src/lib.rs
+++ b/hercules_opt/src/lib.rs
@@ -10,7 +10,7 @@ pub mod forkify;
 pub mod gvn;
 pub mod inline;
 pub mod interprocedural_sroa;
-pub mod materialize_clones;
+pub mod legalize_reference_semantics;
 pub mod outline;
 pub mod pass;
 pub mod phi_elim;
@@ -30,7 +30,7 @@ pub use crate::forkify::*;
 pub use crate::gvn::*;
 pub use crate::inline::*;
 pub use crate::interprocedural_sroa::*;
-pub use crate::materialize_clones::*;
+pub use crate::legalize_reference_semantics::*;
 pub use crate::outline::*;
 pub use crate::pass::*;
 pub use crate::phi_elim::*;
diff --git a/hercules_opt/src/materialize_clones.rs b/hercules_opt/src/materialize_clones.rs
deleted file mode 100644
index 687ac10c87d595c6f53a3fff4435e14f6dc4f375..0000000000000000000000000000000000000000
--- a/hercules_opt/src/materialize_clones.rs
+++ /dev/null
@@ -1,21 +0,0 @@
-extern crate hercules_ir;
-
-use self::hercules_ir::*;
-
-use crate::*;
-
-/*
- * Top level function to materialize clones of collections. This transformation
- * eliminates the possibility of multiple independent writes (including dynamic
- * writes) to a single collection by introducing extra collection constants and
- * inserting explicit clones. This allows us to make the simplifying assumption
- * in the backend that collections have reference, rather than value, semantics.
- * The pass calling this function is mandatory for correctness.
- */
-pub fn materialize_clones(
-    editor: &mut FunctionEditor,
-    objects: &FunctionCollectionObjects,
-    bbs: &BasicBlocks,
-) {
-    todo!()
-}
diff --git a/hercules_opt/src/outline.rs b/hercules_opt/src/outline.rs
index 70062bbcbce0001f0d07a3cfb25fbf2cd94d0433..84cedb7629e45abb3abad5eac841b24f224a2698 100644
--- a/hercules_opt/src/outline.rs
+++ b/hercules_opt/src/outline.rs
@@ -6,7 +6,7 @@ use std::sync::atomic::{AtomicUsize, Ordering};
 
 use self::hercules_ir::def_use::*;
 use self::hercules_ir::dom::*;
-use self::hercules_ir::gcm::*;
+use self::hercules_ir::fork_join_analysis::*;
 use self::hercules_ir::ir::*;
 use self::hercules_ir::subgraph::*;
 
diff --git a/hercules_opt/src/pass.rs b/hercules_opt/src/pass.rs
index 3b7c81eda174a27fa544fe6dd136fcfc24cce695..d0449a4a57b2325fcb7c2a766e1d17bff2587ea5 100644
--- a/hercules_opt/src/pass.rs
+++ b/hercules_opt/src/pass.rs
@@ -38,8 +38,8 @@ pub enum Pass {
     DeleteUncalled,
     ForkSplit,
     Unforkify,
-    MaterializeClones,
     InferSchedules,
+    LegalizeReferenceSemantics,
     Verify,
     // Parameterized over whether analyses that aid visualization are necessary.
     // Useful to set to false if displaying a potentially broken module.
@@ -72,7 +72,6 @@ pub struct PassManager {
     pub fork_join_nests: Option<Vec<HashMap<NodeID, Vec<NodeID>>>>,
     pub loops: Option<Vec<LoopTree>>,
     pub reduce_cycles: Option<Vec<HashMap<NodeID, HashSet<NodeID>>>>,
-    pub antideps: Option<Vec<Vec<(NodeID, NodeID)>>>,
     pub data_nodes_in_fork_joins: Option<Vec<HashMap<NodeID, HashSet<NodeID>>>>,
     pub bbs: Option<Vec<BasicBlocks>>,
     pub collection_objects: Option<CollectionObjects>,
@@ -94,7 +93,6 @@ impl PassManager {
             fork_join_nests: None,
             loops: None,
             reduce_cycles: None,
-            antideps: None,
             data_nodes_in_fork_joins: None,
             bbs: None,
             collection_objects: None,
@@ -238,28 +236,6 @@ impl PassManager {
         }
     }
 
-    pub fn make_antideps(&mut self) {
-        if self.antideps.is_none() {
-            self.make_reverse_postorders();
-            self.make_collection_objects();
-            self.antideps = Some(
-                zip(
-                    self.module.functions.iter(),
-                    zip(
-                        self.reverse_postorders.as_ref().unwrap().iter(),
-                        self.collection_objects.as_ref().unwrap().iter(),
-                    ),
-                )
-                // Fine since collection_objects is a BTreeMap - iteration order
-                // is fixed.
-                .map(|(function, (reverse_postorder, objects))| {
-                    antideps(function, reverse_postorder, objects.1)
-                })
-                .collect(),
-            );
-        }
-    }
-
     pub fn make_data_nodes_in_fork_joins(&mut self) {
         if self.data_nodes_in_fork_joins.is_none() {
             self.make_def_uses();
@@ -280,64 +256,6 @@ impl PassManager {
         }
     }
 
-    pub fn make_bbs(&mut self) {
-        if self.bbs.is_none() {
-            self.make_def_uses();
-            self.make_reverse_postorders();
-            self.make_control_subgraphs();
-            self.make_doms();
-            self.make_antideps();
-            self.make_loops();
-            self.make_fork_join_maps();
-            let def_uses = self.def_uses.as_ref().unwrap().iter();
-            let reverse_postorders = self.reverse_postorders.as_ref().unwrap().iter();
-            let control_subgraphs = self.control_subgraphs.as_ref().unwrap().iter();
-            let doms = self.doms.as_ref().unwrap().iter();
-            let antideps = self.antideps.as_ref().unwrap().iter();
-            let loops = self.loops.as_ref().unwrap().iter();
-            let fork_join_maps = self.fork_join_maps.as_ref().unwrap().iter();
-            self.bbs = Some(
-                zip(
-                    self.module.functions.iter(),
-                    zip(
-                        def_uses,
-                        zip(
-                            reverse_postorders,
-                            zip(
-                                control_subgraphs,
-                                zip(doms, zip(antideps, zip(loops, fork_join_maps))),
-                            ),
-                        ),
-                    ),
-                )
-                .map(
-                    |(
-                        function,
-                        (
-                            def_use,
-                            (
-                                reverse_postorder,
-                                (control_subgraph, (dom, (antideps, (loops, fork_join_map)))),
-                            ),
-                        ),
-                    )| {
-                        gcm(
-                            function,
-                            def_use,
-                            reverse_postorder,
-                            control_subgraph,
-                            dom,
-                            antideps,
-                            loops,
-                            fork_join_map,
-                        )
-                    },
-                )
-                .collect(),
-            );
-        }
-    }
-
     pub fn make_collection_objects(&mut self) {
         if self.collection_objects.is_none() {
             self.make_reverse_postorders();
@@ -375,6 +293,7 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
@@ -409,6 +328,7 @@ impl PassManager {
                         .map(|(i, f)| {
                             FunctionEditor::new(
                                 f,
+                                FunctionID::new(i),
                                 &constants_ref,
                                 &dynamic_constants_ref,
                                 &types_ref,
@@ -442,6 +362,7 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
@@ -468,6 +389,7 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
@@ -515,6 +437,7 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
@@ -590,6 +513,7 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
@@ -614,18 +538,21 @@ impl PassManager {
                     let dynamic_constants_ref =
                         RefCell::new(std::mem::take(&mut self.module.dynamic_constants));
                     let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
-                    let mut editors: Vec<_> =
-                        zip(self.module.functions.iter_mut(), def_uses.iter())
-                            .map(|(func, def_use)| {
-                                FunctionEditor::new(
-                                    func,
-                                    &constants_ref,
-                                    &dynamic_constants_ref,
-                                    &types_ref,
-                                    def_use,
-                                )
-                            })
-                            .collect();
+                    let mut editors: Vec<_> = zip(
+                        self.module.functions.iter_mut().enumerate(),
+                        def_uses.iter(),
+                    )
+                    .map(|((idx, func), def_use)| {
+                        FunctionEditor::new(
+                            func,
+                            FunctionID::new(idx),
+                            &constants_ref,
+                            &dynamic_constants_ref,
+                            &types_ref,
+                            def_use,
+                        )
+                    })
+                    .collect();
                     inline(&mut editors, callgraph);
 
                     self.module.constants = constants_ref.take();
@@ -645,18 +572,21 @@ impl PassManager {
                         RefCell::new(std::mem::take(&mut self.module.dynamic_constants));
                     let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                     let old_num_funcs = self.module.functions.len();
-                    let mut editors: Vec<_> =
-                        zip(self.module.functions.iter_mut(), def_uses.iter())
-                            .map(|(func, def_use)| {
-                                FunctionEditor::new(
-                                    func,
-                                    &constants_ref,
-                                    &dynamic_constants_ref,
-                                    &types_ref,
-                                    def_use,
-                                )
-                            })
-                            .collect();
+                    let mut editors: Vec<_> = zip(
+                        self.module.functions.iter_mut().enumerate(),
+                        def_uses.iter(),
+                    )
+                    .map(|((idx, func), def_use)| {
+                        FunctionEditor::new(
+                            func,
+                            FunctionID::new(idx),
+                            &constants_ref,
+                            &dynamic_constants_ref,
+                            &types_ref,
+                            def_use,
+                        )
+                    })
+                    .collect();
                     for editor in editors.iter_mut() {
                         collapse_returns(editor);
                         ensure_between_control_flow(editor);
@@ -678,18 +608,21 @@ impl PassManager {
                     let dynamic_constants_ref =
                         RefCell::new(std::mem::take(&mut self.module.dynamic_constants));
                     let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
-                    let mut editors: Vec<_> =
-                        zip(self.module.functions.iter_mut(), def_uses.iter())
-                            .map(|(func, def_use)| {
-                                FunctionEditor::new(
-                                    func,
-                                    &constants_ref,
-                                    &dynamic_constants_ref,
-                                    &types_ref,
-                                    def_use,
-                                )
-                            })
-                            .collect();
+                    let mut editors: Vec<_> = zip(
+                        self.module.functions.iter_mut().enumerate(),
+                        def_uses.iter(),
+                    )
+                    .map(|((idx, func), def_use)| {
+                        FunctionEditor::new(
+                            func,
+                            FunctionID::new(idx),
+                            &constants_ref,
+                            &dynamic_constants_ref,
+                            &types_ref,
+                            def_use,
+                        )
+                    })
+                    .collect();
                     let mut new_funcs = vec![];
                     for (idx, editor) in editors.iter_mut().enumerate() {
                         let new_func_id = FunctionID::new(old_num_funcs + new_funcs.len());
@@ -726,18 +659,21 @@ impl PassManager {
 
                     // By default in an editor all nodes are mutable, which is desired in this case
                     // since we are only modifying the IDs of functions that we call.
-                    let mut editors: Vec<_> =
-                        zip(self.module.functions.iter_mut(), def_uses.iter())
-                            .map(|(func, def_use)| {
-                                FunctionEditor::new(
-                                    func,
-                                    &constants_ref,
-                                    &dynamic_constants_ref,
-                                    &types_ref,
-                                    def_use,
-                                )
-                            })
-                            .collect();
+                    let mut editors: Vec<_> = zip(
+                        self.module.functions.iter_mut().enumerate(),
+                        def_uses.iter(),
+                    )
+                    .map(|((idx, func), def_use)| {
+                        FunctionEditor::new(
+                            func,
+                            FunctionID::new(idx),
+                            &constants_ref,
+                            &dynamic_constants_ref,
+                            &types_ref,
+                            def_use,
+                        )
+                    })
+                    .collect();
 
                     let new_idx = delete_uncalled(&mut editors, callgraph);
                     self.module.constants = constants_ref.take();
@@ -768,6 +704,7 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
@@ -796,6 +733,7 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
@@ -811,13 +749,24 @@ impl PassManager {
                     }
                     self.clear_analyses();
                 }
-                Pass::MaterializeClones => {
+                Pass::LegalizeReferenceSemantics => loop {
                     self.make_def_uses();
+                    self.make_reverse_postorders();
+                    self.make_typing();
+                    self.make_control_subgraphs();
+                    self.make_doms();
+                    self.make_fork_join_maps();
+                    self.make_loops();
                     self.make_collection_objects();
-                    self.make_bbs();
                     let def_uses = self.def_uses.as_ref().unwrap();
+                    let reverse_postorders = self.reverse_postorders.as_ref().unwrap();
+                    let typing = self.typing.as_ref().unwrap();
+                    let doms = self.doms.as_ref().unwrap();
+                    let fork_join_maps = self.fork_join_maps.as_ref().unwrap();
+                    let loops = self.loops.as_ref().unwrap();
+                    let control_subgraphs = self.control_subgraphs.as_ref().unwrap();
                     let collection_objects = self.collection_objects.as_ref().unwrap();
-                    let bbs = self.bbs.as_ref().unwrap();
+                    let mut bbs = vec![];
                     for idx in 0..self.module.functions.len() {
                         let constants_ref =
                             RefCell::new(std::mem::take(&mut self.module.constants));
@@ -826,16 +775,25 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
                             &def_uses[idx],
                         );
-                        materialize_clones(
+                        if let Some(bb) = legalize_reference_semantics(
                             &mut editor,
-                            &collection_objects[&FunctionID::new(idx)],
-                            &bbs[idx],
-                        );
+                            &def_uses[idx],
+                            &reverse_postorders[idx],
+                            &typing[idx],
+                            &control_subgraphs[idx],
+                            &doms[idx],
+                            &fork_join_maps[idx],
+                            &loops[idx],
+                            collection_objects,
+                        ) {
+                            bbs.push(bb);
+                        }
 
                         self.module.constants = constants_ref.take();
                         self.module.dynamic_constants = dynamic_constants_ref.take();
@@ -844,7 +802,11 @@ impl PassManager {
                         self.module.functions[idx].delete_gravestones();
                     }
                     self.clear_analyses();
-                }
+                    if bbs.len() == self.module.functions.len() {
+                        self.bbs = Some(bbs);
+                        break;
+                    }
+                },
                 Pass::InferSchedules => {
                     self.make_def_uses();
                     self.make_fork_join_maps();
@@ -860,6 +822,7 @@ impl PassManager {
                         let types_ref = RefCell::new(std::mem::take(&mut self.module.types));
                         let mut editor = FunctionEditor::new(
                             &mut self.module.functions[idx],
+                            FunctionID::new(idx),
                             &constants_ref,
                             &dynamic_constants_ref,
                             &types_ref,
@@ -905,28 +868,23 @@ impl PassManager {
                     if *force_analyses {
                         self.make_doms();
                         self.make_fork_join_maps();
-                        self.make_bbs();
                     }
                     xdot_module(
                         &self.module,
                         self.reverse_postorders.as_ref().unwrap(),
                         self.doms.as_ref(),
                         self.fork_join_maps.as_ref(),
-                        self.bbs.as_ref(),
                     );
                 }
                 Pass::Codegen(output_dir, module_name) => {
                     self.make_reverse_postorders();
                     self.make_typing();
                     self.make_control_subgraphs();
-                    self.make_antideps();
-                    self.make_bbs();
                     self.make_collection_objects();
                     self.make_callgraph();
                     let reverse_postorders = self.reverse_postorders.as_ref().unwrap();
                     let typing = self.typing.as_ref().unwrap();
                     let control_subgraphs = self.control_subgraphs.as_ref().unwrap();
-                    let antideps = self.antideps.as_ref().unwrap();
                     let bbs = self.bbs.as_ref().unwrap();
                     let collection_objects = self.collection_objects.as_ref().unwrap();
                     let callgraph = self.callgraph.as_ref().unwrap();
@@ -945,7 +903,6 @@ impl PassManager {
                                 &reverse_postorders[idx],
                                 &typing[idx],
                                 &control_subgraphs[idx],
-                                &antideps[idx],
                                 &bbs[idx],
                                 &mut llvm_ir,
                             )
@@ -956,7 +913,6 @@ impl PassManager {
                                 &reverse_postorders[idx],
                                 &typing[idx],
                                 &control_subgraphs[idx],
-                                &antideps[idx],
                                 &bbs[idx],
                                 &collection_objects,
                                 &callgraph,
@@ -1026,7 +982,6 @@ impl PassManager {
         self.fork_join_nests = None;
         self.loops = None;
         self.reduce_cycles = None;
-        self.antideps = None;
         self.data_nodes_in_fork_joins = None;
         self.bbs = None;
         self.collection_objects = None;
diff --git a/juno_frontend/src/lib.rs b/juno_frontend/src/lib.rs
index b18b29791b54aa267945ec8e658fdce069e250f3..0dd5cdd338db792a9725b22cc95527e5a08688c2 100644
--- a/juno_frontend/src/lib.rs
+++ b/juno_frontend/src/lib.rs
@@ -187,18 +187,21 @@ pub fn compile_ir(
     //add_pass!(pm, verify, Forkify);
     //add_pass!(pm, verify, ForkGuardElim);
     add_verified_pass!(pm, verify, DCE);
+    add_pass!(pm, verify, ForkSplit);
+    add_pass!(pm, verify, Unforkify);
+    add_pass!(pm, verify, GVN);
+    add_verified_pass!(pm, verify, DCE);
+    add_pass!(pm, verify, LegalizeReferenceSemantics);
     add_pass!(pm, verify, Outline);
     add_pass!(pm, verify, InterproceduralSROA);
     add_pass!(pm, verify, SROA);
     add_pass!(pm, verify, InferSchedules);
-    add_pass!(pm, verify, ForkSplit);
-    add_pass!(pm, verify, Unforkify);
-    add_pass!(pm, verify, GVN);
     add_verified_pass!(pm, verify, DCE);
     if x_dot {
         pm.add_pass(hercules_opt::pass::Pass::Xdot(true));
     }
 
+    add_pass!(pm, verify, LegalizeReferenceSemantics);
     pm.add_pass(hercules_opt::pass::Pass::Codegen(output_dir, module_name));
     pm.run_passes();
 
diff --git a/juno_samples/antideps/src/antideps.jn b/juno_samples/antideps/src/antideps.jn
index 5949c91a4e64bea9e3afa966f1f9f6a160d8553a..9efe71f10963aacf1620c4348abef6a74d8cb502 100644
--- a/juno_samples/antideps/src/antideps.jn
+++ b/juno_samples/antideps/src/antideps.jn
@@ -7,7 +7,20 @@ fn simple_antideps(a : usize, b : usize) -> i32 {
 }
 
 #[entry]
-fn complex_antideps(x : i32) -> i32 {
+fn loop_antideps(input : i32) -> i32 {
+  let arr1 : i32[1];
+  arr1[0] = 2;
+  let p1 = arr1[0];
+  while input > 10 {
+    arr1[0] = arr1[0] + 1;
+    input -= 10;
+  }
+  let p2 = arr1[0];
+  return p1 + p2;
+}
+
+#[entry]
+fn complex_antideps1(x : i32) -> i32 {
   let arr : i32[4];
   let arr2 : i32[12];
   arr[1] = 7 + arr2[0];
@@ -28,6 +41,23 @@ fn complex_antideps(x : i32) -> i32 {
   return r;
 }
 
+#[entry]
+fn complex_antideps2(input : i32) -> i32 {
+  let arr1 : i32[2];
+  arr1[0] = 2;
+  arr1[1] = 3;
+  let p1 = arr1[0] + arr1[1];
+  if input > 0 {
+    while input > 10 {
+      arr1[0] = arr1[1] + input;
+      arr1[1] = arr1[0] + input;
+      input -= 10;
+    }
+  }
+  let p2 = arr1[0];
+  return p1 + p2;
+}
+
 #[entry]
 fn very_complex_antideps(x: usize) -> usize {
   let arr1 : usize[203];
diff --git a/juno_samples/antideps/src/main.rs b/juno_samples/antideps/src/main.rs
index b0a991637bde67a0229fb749213927b8e14c06dd..a9c225b21bb7a8f3693f124471989fc9d4ebe23c 100644
--- a/juno_samples/antideps/src/main.rs
+++ b/juno_samples/antideps/src/main.rs
@@ -11,10 +11,18 @@ fn main() {
         println!("{}", output);
         assert_eq!(output, 5);
 
-        let output = complex_antideps(9).await;
+        let output = loop_antideps(11).await;
+        println!("{}", output);
+        assert_eq!(output, 5);
+
+        let output = complex_antideps1(9).await;
         println!("{}", output);
         assert_eq!(output, 20);
 
+        let output = complex_antideps2(44).await;
+        println!("{}", output);
+        assert_eq!(output, 226);
+
         let output = very_complex_antideps(3).await;
         println!("{}", output);
         assert_eq!(output, 144);
diff --git a/juno_samples/implicit_clone/src/implicit_clone.jn b/juno_samples/implicit_clone/src/implicit_clone.jn
index 17e345e51e80db27c0d2f21854e22abf1eefcdb8..a2d6cba0c275fdbe776964558de1ec800c1c2ab2 100644
--- a/juno_samples/implicit_clone/src/implicit_clone.jn
+++ b/juno_samples/implicit_clone/src/implicit_clone.jn
@@ -1,5 +1,5 @@
 #[entry]
-fn implicit_clone(input : i32) -> i32 {
+fn simple_implicit_clone(input : i32) -> i32 {
   let arr : i32[3];
   arr[0] = 2;
   let arr2 = arr;
@@ -7,3 +7,82 @@ fn implicit_clone(input : i32) -> i32 {
   arr[2] = 4;
   return arr[0] + arr2[0] + arr[1] + arr2[1] + arr[2] + arr2[2];
 }
+
+#[entry]
+fn loop_implicit_clone(input : i32) -> i32 {
+  let arr : i32[3];
+  let r : i32 = 5;
+  while input > 0 {
+    r = arr[0];
+    let arr2 = arr;
+    let x = arr2[input as usize - input as usize];
+    arr2[input as usize - input as usize] = 9;
+    if x == 0 {
+      input -= arr2[0];
+    } else {
+      r = 99;
+      break;
+    }
+  }
+  return r + 7;
+}
+
+#[entry]
+fn no_implicit_clone(input : i32) -> i32 {
+  let arr : i32[2];
+  arr[0] = input;
+  while input > 0 {
+    arr[0] += 1;
+    input -= 1;
+  }
+  let arr2 : i32[1];
+  if input == 0 {
+    arr2[0] = 5;
+  } else {
+    arr2[0] = 3;
+  }
+  return arr[0] + arr2[0];
+}
+
+#[entry]
+fn complex_implicit_clone(input : i32) -> i32 {
+  let arr1 : i32[2];
+  let arr2 : i32[2];
+  let arr3 : i32[2];
+  let arr4 : i32[2];
+  arr1[0] = 7;
+  arr1[1] = 3;
+  arr2[0] = input;
+  arr2[1] = 45;
+  arr3[0] = -14;
+  arr3[1] = -5;
+  arr4[0] = -1;
+  arr4[1] = 0;
+  arr2 = arr4;
+  arr3 = arr2;
+  arr2 = arr1;
+  let p1 = arr1[0] + arr1[1] + arr2[0] + arr2[1] + arr3[0] + arr3[1] + arr4[0] + arr4[1]; // 18
+  arr4 = arr2;
+  let p2 = arr1[0] + arr1[1] + arr2[0] + arr2[1] + arr3[0] + arr3[1] + arr4[0] + arr4[1]; // 29
+  if input > 0 {
+    while input > 10 {
+      arr1[0] = arr1[1] + input;
+      arr1[1] = arr1[0] + input;
+      input -= 10;
+    }
+  }
+  let p3 = arr1[0]; // 592
+  let x : i32 = 0;
+  while input < 20 {
+    let arr5 : i32[2];
+    arr5[0] = 7;
+    let y = arr5[0] + arr5[1];
+    arr5 = arr4;
+    arr5[1] += 2;
+    y += arr5[1];
+    x += 12;
+    input += 1;
+  }
+  let p4 = x; // 204
+  return p1 + p2 + p3 + p4;
+}
diff --git a/juno_samples/implicit_clone/src/main.rs b/juno_samples/implicit_clone/src/main.rs
index ca7ddeb1571be6698f6a9c3971ef617b3a6fd4ca..45c722d783494d7fd5a9b9e91d4ea4db90ce4f0c 100644
--- a/juno_samples/implicit_clone/src/main.rs
+++ b/juno_samples/implicit_clone/src/main.rs
@@ -7,9 +7,21 @@ juno_build::juno!("implicit_clone");
 
 fn main() {
     async_std::task::block_on(async {
-        let output = implicit_clone(3).await;
+        let output = simple_implicit_clone(3).await;
         println!("{}", output);
         assert_eq!(output, 11);
+
+        let output = loop_implicit_clone(100).await;
+        println!("{}", output);
+        assert_eq!(output, 7);
+
+        let output = no_implicit_clone(4).await;
+        println!("{}", output);
+        assert_eq!(output, 13);
+
+        let output = complex_implicit_clone(73).await;
+        println!("{}", output);
+        assert_eq!(output, 843);
     });
 }
 
diff --git a/juno_samples/matmul/src/main.rs b/juno_samples/matmul/src/main.rs
index 948459dd4badfbdf31fea25be70520df22ff5b6e..1c5b9d42b020b3acd7dbaba0db11ec734e83e574 100644
--- a/juno_samples/matmul/src/main.rs
+++ b/juno_samples/matmul/src/main.rs
@@ -47,7 +47,7 @@ fn main() {
                 I * K * 4,
             );
         };
-        let tiled_c_bytes = matmul(I as u64, J as u64, K as u64, a_bytes, b_bytes).await;
+        let tiled_c_bytes = tiled_64_matmul(I as u64, J as u64, K as u64, a_bytes, b_bytes).await;
         let mut tiled_c: Box<[i32]> = (0..I * K).map(|_| 0).collect();
         unsafe {
             copy_nonoverlapping(