diff --git a/juno_samples/edge_detection/benches/edge_detection_bench.rs b/juno_samples/edge_detection/benches/edge_detection_bench.rs index 49e67a29b4a23ae142318623e59207e4847b7495..01ae418a6de2923d9ce24069f699972f9bc81f09 100644 --- a/juno_samples/edge_detection/benches/edge_detection_bench.rs +++ b/juno_samples/edge_detection/benches/edge_detection_bench.rs @@ -87,7 +87,6 @@ fn edge_detection_bench(c: &mut Criterion) { r.run( height as u64, width as u64, - gs as u64, input_h.to(), gaussian_filter_h, structure_h, diff --git a/juno_samples/edge_detection/src/edge_detection.jn b/juno_samples/edge_detection/src/edge_detection.jn index da1977b67ec809ae0b81cbe0873e0a8552912897..be98781210791bddb7aa11ac353457e791c1d4b0 100644 --- a/juno_samples/edge_detection/src/edge_detection.jn +++ b/juno_samples/edge_detection/src/edge_detection.jn @@ -1,6 +1,10 @@ -fn gaussian_smoothing<n, m, gs : usize>( +const gs : usize = 7; +const sz : usize = 3; +const sb : usize = 3; + +fn gaussian_smoothing<n, m : usize>( input: f32[n, m], - filter: f32[gs, gs], + filter: f32[7, 7], ) -> f32[n, m] { @res let result : f32[n, m]; @@ -34,7 +38,6 @@ fn laplacian_estimate<n, m : usize>( input: f32[n, m], structure: f32[3, 3], ) -> f32[n, m] { - const sz = 3; const r = sz / 2; @res let result : f32[n, m]; @@ -79,7 +82,6 @@ fn zero_crossings<n, m : usize>( input: f32[n, m], structure: f32[3, 3], ) -> f32[n, m] { - const sz = 3; const r = sz / 2; @res let result : f32[n, m]; @@ -127,7 +129,6 @@ fn gradient<n, m : usize>( sx: f32[3, 3], sy: f32[3, 3], ) -> f32[n, m] { - const sb = 3; const sbr = sb / 2; @res let result : f32[n, m]; @@ -191,7 +192,7 @@ fn reject_zero_crossings<n, m: usize>( } #[entry] -fn edge_detection<n, m, gs: usize>( +fn edge_detection<n, m : usize>( input: f32[n, m], gaussian_filter: f32[gs, gs], structure: f32[3, 3], @@ -199,7 +200,7 @@ fn edge_detection<n, m, gs: usize>( sy: f32[3, 3], theta: f32, ) -> f32[n, m] { - let smoothed = gaussian_smoothing::<n, m, gs>(input, gaussian_filter); + let smoothed = gaussian_smoothing::<n, m>(input, gaussian_filter); @le let laplacian = laplacian_estimate::<n, m>(smoothed, structure); @zc let zcs = zero_crossings::<n, m>(laplacian, structure); let gradient = gradient::<n, m>(smoothed, sx, sy); diff --git a/juno_samples/edge_detection/src/lib.rs b/juno_samples/edge_detection/src/lib.rs index 3eaf38dc34f1b4bb12bbc95c1739a58cdcc41825..c1d04b0f9a7b4950f9b8bf6ff6438b46291cb2f3 100644 --- a/juno_samples/edge_detection/src/lib.rs +++ b/juno_samples/edge_detection/src/lib.rs @@ -194,7 +194,6 @@ pub fn edge_detection_harness(args: EdgeDetectionInputs) { r.run( height as u64, width as u64, - gs as u64, input_h.to(), gaussian_filter_h.to(), structure_h.to(),