{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Compare experiment executions\n", "\n", "This notebook lets you quickly compare the training progress of your experiments, from within a notebook. For other use-cases we advise to use TensorBoard which is equipped with many more features than these few lines of code.\n", "\n", "You will need to have the tfevents files (these are TensorBoard formatted log files that Distiller creates)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "import tensorflow as tf\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "\n", "def get_tags_list(path_to_events_file):\n", " tags = [v.tag for e in tf.train.summary_iterator(path_to_events_file) for v in e.summary.value]\n", " return set(tags)\n", "\n", "\n", "def get_performance_data(path_to_events_file, tag):\n", " \"\"\"Extract the performance history of data named 'tag'\n", "\n", " Based on sample code from TF:\n", " https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/summary/summary_iterator.py\n", " \"\"\"\n", " data = []\n", " steps = []\n", " for e in tf.train.summary_iterator(path_to_events_file):\n", " for v in e.summary.value:\n", " if v.tag == tag:\n", " data.append(v.simple_value)\n", " steps.append(e.step)\n", " return steps, data\n", "\n", "\n", "def add_experiment(axs, tags, results, label):\n", " for i, tag in enumerate(tags):\n", " steps, prec1_ssl = get_performance_data(results, tag)\n", " axs[i//2, i%2].plot(steps, prec1_ssl, label=label)\n", " axs[i//2][i%2].set_title(tag)\n", " axs[i//2][i%2].legend()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# Here insert your own tfevents files to compare\n", "# WARNING: these files do not exist in the repositroy (too large) and will give you an error\n", "experiment_files = [('events.out.tfevents.1523290172.one-machine', 'experiment 1'),\n", " ('events.out.tfevents.1520430112.one-machine', 'experiment 2')]\n", " \n", "# Choose which performance indicators you wish to graph\n", "tags = ['Peformance/Validation/Top1', 'Peformance/Validation/Loss',\n", " 'sparsity/weights/total', 'Peformance/Training/Reg Loss']\n", "\n", "f, axs = plt.subplots(2, 2, figsize=(20,20))\n", "f.suptitle('Performance')\n", "\n", "print(get_tags_list(experiment_files[0][0]))\n", "\n", "for experiment in experiment_files:\n", " add_experiment(axs, tags, experiment[0], label=experiment[1])\n", "plt.tight_layout()\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 2 }