# # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """This is an example application for compressing image classification models. The application borrows its main flow code from torchvision's ImageNet classification training sample application (https://github.com/pytorch/examples/tree/master/imagenet). We tried to keep it similar, in order to make it familiar and easy to understand. Integrating compression is very simple: simply add invocations of the appropriate compression_scheduler callbacks, for each stage in the training. The training skeleton looks like the pseudo code below. The boiler-plate Pytorch classification training is speckled with invocations of CompressionScheduler. For each epoch: compression_scheduler.on_epoch_begin(epoch) train() validate() save_checkpoint() compression_scheduler.on_epoch_end(epoch) train(): For each training step: compression_scheduler.on_minibatch_begin(epoch) output = model(input_var) loss = criterion(output, target_var) compression_scheduler.before_backward_pass(epoch) loss.backward() optimizer.step() compression_scheduler.on_minibatch_end(epoch) This exmple application can be used with torchvision's ImageNet image classification models, or with the provided sample models: - ResNet for CIFAR: https://github.com/junyuseu/pytorch-cifar-models - MobileNet for ImageNet: https://github.com/marvis/pytorch-mobilenet """ import math import argparse import time import os import sys import random import logging.config import traceback from collections import OrderedDict from functools import partial import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchnet.meter as tnt script_dir = os.path.dirname(__file__) module_path = os.path.abspath(os.path.join(script_dir, '..', '..')) if module_path not in sys.path: sys.path.append(module_path) import distiller import apputils from distiller.data_loggers import TensorBoardLogger, PythonLogger, ActivationSparsityCollector import distiller.quantization as quantization from models import ALL_MODEL_NAMES, create_model msglogger = None log_filename = '' parser = argparse.ArgumentParser(description='Distiller image classification model compression') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', choices=ALL_MODEL_NAMES, help='model architecture: ' + ' | '.join(ALL_MODEL_NAMES) + ' (default: resnet18)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--act-stats', dest='activation_stats', action='store_true', default=False, help='collect activation statistics (WARNING: this slows down training)') parser.add_argument('--param-hist', dest='log_params_histograms', action='store_true', default=False, help='log the paramter tensors histograms to file (WARNING: this can use significant disk space)') SUMMARY_CHOICES = ['sparsity', 'compute', 'optimizer', 'model', 'png'] parser.add_argument('--summary', type=str, choices=SUMMARY_CHOICES, help='print a summary of the model, and exit - options: ' + ' | '.join(SUMMARY_CHOICES)) parser.add_argument('--compress', dest='compress', type=str, nargs='?', action='store', help='configuration file for pruning the model (default is to use hard-coded schedule)') parser.add_argument('--sense', dest='sensitivity', choices=['element', 'filter'], help='test the sensitivity of layers to pruning') parser.add_argument('--extras', default=None, type=str, help='file with extra configuration information') parser.add_argument('--deterministic', '--det', action='store_true', help='Ensure deterministic execution for re-producible results.') parser.add_argument('--quantize', action='store_true', help='Apply 8-bit quantization to model before evaluation') parser.add_argument('--gpus', metavar='DEV_ID', default=None, help='Comma-separated list of GPU device IDs to be used (default is to use all available devices)') parser.add_argument('--name', '-n', metavar='NAME', default=None, help='Experiment name') def main(): args = parser.parse_args() # The Distiller library writes logs to the Python logger, so we configure it. global msglogger timestr = time.strftime("%Y.%m.%d-%H%M%S") filename = timestr if args.name is None else args.name + '___' + timestr logdir = './logs' + '/' + filename if not os.path.exists(logdir): os.makedirs(logdir) log_filename = os.path.join(logdir, filename + '.log') logging.config.fileConfig(os.path.join(script_dir, 'logging.conf'), defaults={'logfilename': log_filename}) msglogger = logging.getLogger() msglogger.info('Log file for this run: ' + os.path.realpath(log_filename)) # Log various details about the execution environment. It is sometimes useful # to refer to past experiment executions and this information may be useful. apputils.log_execution_env_state(sys.argv, gitroot=module_path) msglogger.debug("Distiller: %s", distiller.__version__) start_epoch = 0 best_top1 = 0 if args.deterministic: # Experiment reproducibility is sometimes important. Pete Warden expounded about this # in his blog: https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/ # In Pytorch, support for deterministic execution is still a bit clunky. if args.workers > 1: msglogger.error('ERROR: Setting --deterministic requires setting --workers/-j to 0 or 1') exit(1) # Use a well-known seed, for repeatability of experiments torch.manual_seed(0) random.seed(0) np.random.seed(0) cudnn.deterministic = True else: # This issue: https://github.com/pytorch/pytorch/issues/3659 # Implies that cudnn.benchmark should respect cudnn.deterministic, but empirically we see that # results are not re-produced when benchmark is set. So enabling only if deterministic mode disabled. cudnn.benchmark = True if args.gpus is not None: try: args.gpus = [int(s) for s in args.gpus.split(',')] except ValueError: msglogger.error('ERROR: Argument --gpus must be a comma-separated list of integers only') exit(1) available_gpus = torch.cuda.device_count() for dev_id in args.gpus: if dev_id >= available_gpus: msglogger.error('ERROR: GPU device ID {0} requested, but only {1} devices available' .format(dev_id, available_gpus)) exit(1) # Set default device in case the first one on the list != 0 torch.cuda.set_device(args.gpus[0]) # Infer the dataset from the model name args.dataset = 'cifar10' if 'cifar' in args.arch else 'imagenet' # Create the model model = create_model(args.pretrained, args.dataset, args.arch, device_ids=args.gpus) compression_scheduler = None # Create a couple of logging backends. TensorBoardLogger writes log files in a format # that can be read by Google's Tensor Board. PythonLogger writes to the Python logger. tflogger = TensorBoardLogger(logdir) pylogger = PythonLogger(msglogger) # We can optionally resume from a checkpoint if args.resume: model, compression_scheduler, start_epoch = apputils.load_checkpoint( model, chkpt_file=args.resume) if 'resnet' in args.arch and 'cifar' in args.arch: distiller.resnet_cifar_remove_layers(model) #model = distiller.resnet_cifar_remove_channels(model, compression_scheduler.zeros_mask_dict) # Define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) msglogger.info("Optimizer (%s): momentum=%s decay=%s", type(optimizer), args.momentum, args.weight_decay) # This sample application can be invoked to produce various summary reports. if args.summary: which_summary = args.summary if which_summary == 'png': apputils.draw_img_classifier_to_file(model, 'model.png', args.dataset) else: distiller.model_summary(model, optimizer, which_summary, args.dataset) exit() # Load the datasets: the dataset to load is inferred from the model name passed # in args.arch. The default dataset is ImageNet, but if args.arch contains the # substring "_cifar", then cifar10 is used. train_loader, val_loader, test_loader, _ = apputils.load_data( args.dataset, os.path.expanduser(args.data), args.batch_size, args.workers, args.deterministic) msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d', len(train_loader.sampler), len(val_loader.sampler), len(test_loader.sampler)) activations_sparsity = None if args.activation_stats: # If your model has ReLU layers, then those layers have sparse activations. # ActivationSparsityCollector will collect information about this sparsity. # WARNING! Enabling activation sparsity collection will significantly slow down training! activations_sparsity = ActivationSparsityCollector(model) if args.sensitivity is not None: # This sample application can be invoked to execute Sensitivity Analysis on your # model. The ouptut is saved to CSV and PNG. msglogger.info("Running sensitivity tests") test_fnc = partial(test, test_loader=test_loader, criterion=criterion, loggers=[pylogger], print_freq=args.print_freq) which_params = [param_name for param_name, _ in model.named_parameters()] sensitivity = distiller.perform_sensitivity_analysis(model, net_params=which_params, sparsities=np.arange(0.0, 0.50, 0.05) if args.sensitivity == 'filter' else np.arange(0.0, 0.95, 0.05), test_func=test_fnc, group=args.sensitivity) distiller.sensitivities_to_png(sensitivity, 'sensitivity.png') distiller.sensitivities_to_csv(sensitivity, 'sensitivity.csv') exit() if args.evaluate: # This sample application can be invoked to evaluate the accuracy of your model on # the test dataset. # You can optionally quantize the model to 8-bit integer before evaluation. # For example: # python3 compress_classifier.py --arch resnet20_cifar ../data.cifar10 -p=50 --resume=checkpoint.pth.tar --evaluate if args.quantize: model.cpu() quantizer = quantization.SymmetricLinearQuantizer(model, 8, 8) quantizer.prepare_model() model.cuda() test(test_loader, model, criterion, [pylogger], args.print_freq) exit() if args.compress: # The main use-case for this sample application is CNN compression. Compression # requires a compression schedule configuration file in YAML. source = args.compress msglogger.info("Compression schedule (source=%s)", source) compression_scheduler = distiller.CompressionScheduler(model) distiller.config.fileConfig(model, optimizer, compression_scheduler, args.compress, msglogger) for epoch in range(start_epoch, start_epoch + args.epochs): # This is the main training loop. msglogger.info('\n') if compression_scheduler: compression_scheduler.on_epoch_begin(epoch) # Train for one epoch train(train_loader, model, criterion, optimizer, epoch, compression_scheduler, loggers=[tflogger, pylogger], print_freq=args.print_freq, log_params_hist=args.log_params_histograms) distiller.log_weights_sparsity(model, epoch, loggers=[tflogger, pylogger]) if args.activation_stats: distiller.log_activation_sparsity(epoch, loggers=[tflogger, pylogger], collector=activations_sparsity) # evaluate on validation set top1, top5, vloss = validate(val_loader, model, criterion, [pylogger], args.print_freq, epoch) stats = ('Peformance/Validation/', OrderedDict([('Loss', vloss), ('Top1', top1), ('Top5', top5)])) distiller.log_training_progress(stats, None,epoch, steps_completed=0, total_steps=1, log_freq=1, loggers=[tflogger]) if compression_scheduler: compression_scheduler.on_epoch_end(epoch) # remember best top1 and save checkpoint is_best = top1 > best_top1 best_top1 = max(top1, best_top1) apputils.save_checkpoint(epoch, args.arch, model, optimizer, compression_scheduler, best_top1, is_best, args.name) # Finally run results on the test set test(test_loader, model, criterion, [pylogger], args.print_freq) def train(train_loader, model, criterion, optimizer, epoch, compression_scheduler, loggers, print_freq, log_params_hist): """Training loop for one epoch.""" losses = {'objective_loss' : tnt.AverageValueMeter(), 'regularizer_loss' : tnt.AverageValueMeter()} if compression_scheduler is None: # Initialize the regularizer loss to zero losses['regularizer_loss'].add(0) classerr = tnt.ClassErrorMeter(accuracy=True, topk=(1, 5)) batch_time = tnt.AverageValueMeter() data_time = tnt.AverageValueMeter() total_samples = len(train_loader.sampler) batch_size = train_loader.batch_size steps_per_epoch = math.ceil(total_samples / batch_size) msglogger.info('Training epoch: %d samples (%d per mini-batch)', total_samples, batch_size) # Switch to train mode model.train() end = time.time() for train_step, (inputs, target) in enumerate(train_loader): # Measure data loading time data_time.add(time.time() - end) target = target.cuda(async=True) input_var = torch.autograd.Variable(inputs) target_var = torch.autograd.Variable(target) # Execute the forard phase, compute the output and measure loss if compression_scheduler: compression_scheduler.on_minibatch_begin(epoch, train_step, steps_per_epoch) output = model(input_var) loss = criterion(output, target_var) # Measure accuracy and record loss classerr.add(output.data, target) losses['objective_loss'].add(loss.data[0]) if compression_scheduler: # Before running the backward phase, we add any regularization loss computed by the scheduler regularizer_loss = compression_scheduler.before_backward_pass(epoch, train_step, steps_per_epoch, loss) loss += regularizer_loss losses['regularizer_loss'].add(regularizer_loss.data[0]) # Compute the gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() if compression_scheduler: compression_scheduler.on_minibatch_end(epoch, train_step, steps_per_epoch) # measure elapsed time batch_time.add(time.time() - end) steps_completed = (train_step+1) if steps_completed % print_freq == 0: # Log some statistics lr = optimizer.param_groups[0]['lr'] stats = ('Peformance/Training/', OrderedDict([ ('Loss', losses['objective_loss'].mean), ('Reg Loss', losses['regularizer_loss'].mean), ('Top1', classerr.value(1)), ('Top5', classerr.value(5)), ('LR', lr), ('Time', batch_time.mean)]) ) distiller.log_training_progress(stats, model.named_parameters() if log_params_hist else None, epoch, steps_completed, steps_per_epoch, print_freq, loggers) end = time.time() def validate(val_loader, model, criterion, loggers, print_freq, epoch=-1): """Model validation""" if epoch > -1: msglogger.info('--- validate (epoch=%d)-----------', epoch) else: msglogger.info('--- validate ---------------------') return _validate(val_loader, model, criterion, loggers, print_freq, epoch) def test(test_loader, model, criterion, loggers, print_freq): """Model Test""" msglogger.info('--- test ---------------------') return _validate(test_loader, model, criterion, loggers, print_freq) def _validate(data_loader, model, criterion, loggers, print_freq, epoch=-1): """Execute the validation/test loop.""" losses = {'objective_loss' : tnt.AverageValueMeter()} classerr = tnt.ClassErrorMeter(accuracy=True, topk=(1, 5)) batch_time = tnt.AverageValueMeter() # if nclasses<=10: # # Log the confusion matrix only if the number of classes is small # confusion = tnt.ConfusionMeter(10) total_samples = len(data_loader.sampler) batch_size = data_loader.batch_size total_steps = total_samples / batch_size msglogger.info('%d samples (%d per mini-batch)', total_samples, batch_size) # Switch to evaluation mode model.eval() end = time.time() for validation_step, (inputs, target) in enumerate(data_loader): with PytorchNoGrad(): target = target.cuda(async=True) input_var = get_inference_var(inputs) target_var = get_inference_var(target) # compute output output = model(input_var) loss = criterion(output, target_var) # measure accuracy and record loss losses['objective_loss'].add(loss.data[0]) classerr.add(output.data, target) # if confusion: # confusion.add(output.data, target) # measure elapsed time batch_time.add(time.time() - end) end = time.time() steps_completed = (validation_step+1) if steps_completed % print_freq == 0: stats = ('', OrderedDict([('Loss', losses['objective_loss'].mean), ('Top1', classerr.value(1)), ('Top5', classerr.value(5))])) distiller.log_training_progress(stats, None, epoch, steps_completed, total_steps, print_freq, loggers) msglogger.info('==> Top1: %.3f Top5: %.3f Loss: %.3f\n', classerr.value()[0], classerr.value()[1], losses['objective_loss'].mean) # if confusion: # msglogger.info('==> Confusion:\n%s', str(confusion.value())) return classerr.value(1), classerr.value(5), losses['objective_loss'].mean class PytorchNoGrad(object): """This is a temporary class to bridge some difference between PyTorch 3.x and 4.x""" def __init__(self): self.no_grad = None if torch.__version__ >= '0.4': self.no_grad = torch.no_grad() def __enter__(self): if self.no_grad: return self.no_grad.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if self.no_grad: return self.no_grad.__exit__(self, exc_type, exc_val, exc_tb) def get_inference_var(tensor): """This is a temporary function to bridge some difference between PyTorch 3.x and 4.x""" if torch.__version__ >= '0.4': return torch.autograd.Variable(tensor) return torch.autograd.Variable(tensor, volatile=True) if __name__ == '__main__': try: main() except Exception as e: if msglogger is not None: msglogger.error(traceback.format_exc()) exit(1) finally: if msglogger is not None: msglogger.info('') msglogger.info('Log file for this run: ' + os.path.realpath(log_filename))