diff --git a/jupyter/activation_histograms.ipynb b/jupyter/activation_histograms.ipynb index d59ef93512d1770f0e1427d3111cb9a30ad7a9d7..d8c1c7ef1d6c6f9b32ebc97d560cfbda49700da1 100644 --- a/jupyter/activation_histograms.ipynb +++ b/jupyter/activation_histograms.ipynb @@ -23,6 +23,8 @@ }, "outputs": [], "source": [ + "%matplotlib inline\n", + "\n", "import torch\n", "import matplotlib.pyplot as plt\n", "import os\n", @@ -104,13 +106,15 @@ "# same subset for both phases of histogram collection - more on that below\n", "\n", "dataset = 'imagenet'\n", - "dataset_path = '~/datasets/imagenet'\n", + "dataset_path = '/datasets/imagenet'\n", + "arch = 'resnet18'\n", "batch_size = 256\n", "num_workers = 10\n", "subset_size = 0.01\n", "\n", "_, _, test_loader, _ = distiller.apputils.load_data(\n", - " dataset, os.path.expanduser(dataset_path), batch_size, num_workers,\n", + " dataset, arch, os.path.expanduser(dataset_path), \n", + " batch_size, num_workers,\n", " effective_test_size=subset_size, fixed_subset=True)" ] }, @@ -359,7 +363,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/jupyter/performance.ipynb b/jupyter/performance.ipynb index cf262f0b85b1743fa3b03d54874a8b1f31ed9c9b..580daea49e06af335c83271ac1d0d2443246dc64 100644 --- a/jupyter/performance.ipynb +++ b/jupyter/performance.ipynb @@ -6,6 +6,8 @@ "metadata": {}, "outputs": [], "source": [ + "%matplotlib inline\n", + "\n", "import torch\n", "import torchvision\n", "import torch.nn as nn\n", @@ -216,7 +218,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/jupyter/post_train_quant_convert_pytorch.ipynb b/jupyter/post_train_quant_convert_pytorch.ipynb index 74e4d0a11383431c849c8ea91b5970dd99c11f1d..799c056523c3d78756f7d883cca1e69b8cc43dc1 100644 --- a/jupyter/post_train_quant_convert_pytorch.ipynb +++ b/jupyter/post_train_quant_convert_pytorch.ipynb @@ -84,12 +84,14 @@ "\n", "subset_size = 1.0 # To save time, can set to value < 1.0\n", "dataset = 'imagenet'\n", - "dataset_path = os.path.expanduser('/data2/datasets/imagenet')\n", + "dataset_path = os.path.expanduser('/datasets/imagenet')\n", + "arch = 'resnet18'\n", "\n", "batch_size_gpu = 256\n", "num_workers_gpu = 10\n", "_, _, test_loader_gpu, _ = distiller.apputils.load_data(\n", - " dataset, dataset_path, batch_size_gpu, num_workers_gpu,\n", + " dataset, arch, dataset_path, \n", + " batch_size_gpu, num_workers_gpu,\n", " effective_test_size=subset_size, fixed_subset=True, test_only=True)" ] }, @@ -103,7 +105,8 @@ "batch_size_cpu = 44\n", "num_workers_cpu = 10\n", "_, _, test_loader_cpu, _ = distiller.apputils.load_data(\n", - " dataset, dataset_path, batch_size_cpu, num_workers_cpu,\n", + " dataset, arch, dataset_path, \n", + " batch_size_cpu, num_workers_cpu,\n", " effective_test_size=subset_size, fixed_subset=True, test_only=True)" ] }, @@ -473,7 +476,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.6.7" } }, "nbformat": 4,