diff --git a/examples/auto_compression/plain20_cifar_baseline_training.yaml b/examples/auto_compression/plain20_cifar_baseline_training.yaml
deleted file mode 100755
index 52f0cda6d423a8f5dbe8c2cf4ae7c9719b8ad4e5..0000000000000000000000000000000000000000
--- a/examples/auto_compression/plain20_cifar_baseline_training.yaml
+++ /dev/null
@@ -1,161 +0,0 @@
-# We used this schedule to train CIFAR10-Plain20 from scratch.
-#
-# Plain-20 is defined in "Deep Residual Learning for Image Recognition".
-# The configuration is based on section 4.2 of "Deep Residual Learning for Image Recognition":
-#   "We use a weight decay of 0.0001 and momentum of 0.9, and adopt the weight initialization in [13] and BN [16] but
-#   with no dropout. These models are trained with a mini batch size of 128 on two GPUs. We start with a learning
-#   rate of 0.1, divide it by 10 at 32k and 48k iterations, and terminate training at 64k iterations, which is
-#   determined on a 45k/5k train/val split. We follow the simple data augmentation in [24] for training: 4 pixels are
-#   padded on each side, and a 32x32 crop is randomly sampled from the padded image or its horizontal flip. For testing,
-#   we only evaluate the single view of the original 32x32 image.
-#
-# We translate "iterations" to "epochs" because Distiller schedules at the epoch granularity:
-#   45K training samples / batch 128 == 351.6 iterations per epoch
-#   32K iterations = 91 epochs
-#   48K iterations = 152 epochs
-#   64K iterations = 182 epochs
-#
-# Our target test Top1 is 90.5.  This is inferred from Figure 6 of "Deep Residual Learning for Image Recognition", and
-# also the accuracy achieved in AMC, Table 2.
-#
-# References:
-#   Yihui Hez , Ji Liny , Zhijian Liuy, Hanrui Wangy, Li-Jia Lil, and Song Han.
-#   AMC: AutoML for Model Compression and Acceleration on Mobile Devices.
-#   arXiv:1802.03494v3
-#
-#   Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun.
-#   Deep Residual Learning for Image Recognition.
-#   arXiv:1512.03385
-#
-#
-# time python3  compress_classifier.py --arch=plain20_cifar ../../../data.cifar --lr=0.1 --epochs=180 --batch=128 --compress=../automated_deep_compression/plain20_cifar_baseline_training.yaml
-#
-# Results:
-#   Top1 = 90.18 - which is 0.3% lower than ower goal.
-#   *For better results, with much shorter training, see the explanation after the tables below.
-#
-# Parameters:
-# +----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
-# |    | Name                         | Shape          |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
-# |----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
-# |  0 | module.conv1.weight          | (16, 3, 3, 3)  |           432 |            432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.40074 | -0.00071 |    0.29948 |
-# |  1 | module.layer1.0.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17085 | -0.01192 |    0.12854 |
-# |  2 | module.layer1.0.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17880 | -0.01883 |    0.13891 |
-# |  3 | module.layer1.1.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.18079 | -0.00512 |    0.13792 |
-# |  4 | module.layer1.1.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17919 | -0.00807 |    0.13943 |
-# |  5 | module.layer1.2.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.18720 | -0.01524 |    0.14466 |
-# |  6 | module.layer1.2.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.18216 | -0.00676 |    0.14077 |
-# |  7 | module.layer2.0.conv1.weight | (32, 16, 3, 3) |          4608 |           4608 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.14269 | -0.00945 |    0.10973 |
-# |  8 | module.layer2.0.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13417 | -0.00725 |    0.10532 |
-# |  9 | module.layer2.1.conv1.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13663 | -0.00779 |    0.10872 |
-# | 10 | module.layer2.1.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13405 | -0.00875 |    0.10667 |
-# | 11 | module.layer2.2.conv1.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12706 | -0.01244 |    0.10117 |
-# | 12 | module.layer2.2.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12098 | -0.00570 |    0.09625 |
-# | 13 | module.layer3.0.conv1.weight | (64, 32, 3, 3) |         18432 |          18432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09828 | -0.00750 |    0.07821 |
-# | 14 | module.layer3.0.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09798 | -0.00763 |    0.07826 |
-# | 15 | module.layer3.1.conv1.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.10033 | -0.00928 |    0.08020 |
-# | 16 | module.layer3.1.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08956 | -0.01220 |    0.07165 |
-# | 17 | module.layer3.2.conv1.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.07004 | -0.01346 |    0.05663 |
-# | 18 | module.layer3.2.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04815 |  0.00177 |    0.03756 |
-# | 19 | module.fc.weight             | (10, 64)       |           640 |            640 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.54818 | -0.00011 |    0.50385 |
-# | 20 | Total sparsity:              | -              |        268336 |         268336 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.00000 |  0.00000 |    0.00000 |
-# +----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
-# Total sparsity: 0.00
-#
-# --- validate (epoch=179)-----------
-# 5000 samples (128 per mini-batch)
-# Epoch: [179][   10/   39]    Loss 0.391990    Top1 89.062500    Top5 99.609375
-# Epoch: [179][   20/   39]    Loss 0.373019    Top1 89.960938    Top5 99.453125
-# Epoch: [179][   30/   39]    Loss 0.371198    Top1 90.182292    Top5 99.453125
-# Epoch: [179][   40/   39]    Loss 0.360783    Top1 90.100000    Top5 99.440000
-# ==> Top1: 90.100    Top5: 99.440    Loss: 0.361
-#
-# ==> Best Top1: 90.540 on Epoch: 163
-# Saving checkpoint to: logs/2018.12.11-134350/checkpoint.pth.tar
-# --- test ---------------------
-# 10000 samples (128 per mini-batch)
-# Test: [   10/   78]    Loss 0.410806    Top1 89.609375    Top5 99.531250
-# Test: [   20/   78]    Loss 0.438778    Top1 89.218750    Top5 99.296875
-# Test: [   30/   78]    Loss 0.419225    Top1 89.791667    Top5 99.427083
-# Test: [   40/   78]    Loss 0.421272    Top1 89.921875    Top5 99.472656
-# Test: [   50/   78]    Loss 0.409017    Top1 90.046875    Top5 99.562500
-# Test: [   60/   78]    Loss 0.401275    Top1 90.169271    Top5 99.583333
-# Test: [   70/   78]    Loss 0.400794    Top1 90.111607    Top5 99.609375
-# ==> Top1: 90.180    Top5: 99.630    Loss: 0.401
-#
-#
-# Log file for this run: /home/cvds_lab/nzmora/pytorch_workspace/distiller/examples/classifier_compression/logs/2018.12.11-134350/2018.12.11-134350.log
-#
-# real    47m26.710s
-# user    124m30.606s
-# sys     21m1.999s
-#
-#
-# We can achieve a better Top1 result, with faster training by doubling the batch-size to 256, and increasing the initial
-# learning-rate to 0.3.
-#
-# time python3 compress_classifier.py --arch=plain20_cifar ../../../data.cifar --lr=0.3 --epochs=180 --batch=256 --compress=../automated_deep_compression/plain20_cifar_baseline_training.yaml -j=1 --deterministic
-#
-# Results:
-#   Top1 = 90.55
-#
-# Parameters:
-# +----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
-# |    | Name                         | Shape          |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
-# |----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
-# |  0 | module.conv1.weight          | (16, 3, 3, 3)  |           432 |            432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.37799 | -0.00179 |    0.27913 |
-# |  1 | module.layer1.0.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17171 | -0.01391 |    0.12635 |
-# |  2 | module.layer1.0.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17004 | -0.01753 |    0.13081 |
-# |  3 | module.layer1.1.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.16450 |  0.00003 |    0.12702 |
-# |  4 | module.layer1.1.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.16691 | -0.01517 |    0.13133 |
-# |  5 | module.layer1.2.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17618 | -0.00955 |    0.13691 |
-# |  6 | module.layer1.2.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.18617 | -0.00262 |    0.14352 |
-# |  7 | module.layer2.0.conv1.weight | (32, 16, 3, 3) |          4608 |           4608 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.14799 |  0.00621 |    0.11439 |
-# |  8 | module.layer2.0.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13378 | -0.00616 |    0.10422 |
-# |  9 | module.layer2.1.conv1.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13473 | -0.00722 |    0.10616 |
-# | 10 | module.layer2.1.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12899 | -0.01044 |    0.10220 |
-# | 11 | module.layer2.2.conv1.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12227 | -0.00908 |    0.09684 |
-# | 12 | module.layer2.2.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.11781 | -0.00567 |    0.09389 |
-# | 13 | module.layer3.0.conv1.weight | (64, 32, 3, 3) |         18432 |          18432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09735 | -0.00409 |    0.07706 |
-# | 14 | module.layer3.0.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09819 | -0.00773 |    0.07806 |
-# | 15 | module.layer3.1.conv1.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09940 | -0.00979 |    0.07937 |
-# | 16 | module.layer3.1.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08860 | -0.01071 |    0.07082 |
-# | 17 | module.layer3.2.conv1.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06713 | -0.01385 |    0.05436 |
-# | 18 | module.layer3.2.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04638 |  0.00117 |    0.03604 |
-# | 19 | module.fc.weight             | (10, 64)       |           640 |            640 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.53306 | -0.00001 |    0.48409 |
-# | 20 | Total sparsity:              | -              |        268336 |         268336 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.00000 |  0.00000 |    0.00000 |
-# +----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
-# Total sparsity: 0.00
-#
-# --- validate (epoch=179)-----------
-# 5000 samples (256 per mini-batch)
-# Epoch: [179][   10/   19]    Loss 0.369681    Top1 90.000000    Top5 99.687500
-# Epoch: [179][   20/   19]    Loss 0.414264    Top1 89.640000    Top5 99.560000
-# ==> Top1: 89.640    Top5: 99.560    Loss: 0.414
-#
-# ==> Best Top1: 90.200 on Epoch: 118
-# Saving checkpoint to: logs/2018.12.11-160023/checkpoint.pth.tar
-# --- test ---------------------
-# 10000 samples (256 per mini-batch)
-# Test: [   10/   39]    Loss 0.424408    Top1 90.195312    Top5 99.453125
-# Test: [   20/   39]    Loss 0.411984    Top1 90.390625    Top5 99.550781
-# Test: [   30/   39]    Loss 0.394514    Top1 90.546875    Top5 99.609375
-# Test: [   40/   39]    Loss 0.409653    Top1 90.550000    Top5 99.650000
-# ==> Top1: 90.550    Top5: 99.650    Loss: 0.410
-#
-# real    33m57.110s
-# user    69m57.694s
-# sys     9m49.416s
-
-lr_schedulers:
-  training_lr:
-    class: MultiStepLR
-    milestones: [60, 120, 160]
-    gamma: 0.20
-
-policies:
-    - lr_scheduler:
-        instance_name: training_lr
-      starting_epoch: 0
-      ending_epoch: 200
-      frequency: 1
diff --git a/examples/auto_compression/vgg16_cifar_baseline_training.yaml b/examples/auto_compression/vgg16_cifar_baseline_training.yaml
deleted file mode 100755
index f56f656d7d1d9daf398a7b6260ac05fbb25d52eb..0000000000000000000000000000000000000000
--- a/examples/auto_compression/vgg16_cifar_baseline_training.yaml
+++ /dev/null
@@ -1,54 +0,0 @@
-# We used this schedule to train CIFAR10-VGG16 from scratch.
-#
-# time python3 compress_classifier.py --arch vgg16_cifar  ../../../data.cifar10 -p=50 --lr=0.05 --epochs=180 --compress=../automated_deep_compression/vgg16_cifar_baseline_training.yaml -j=1 --deterministic
-#
-# Parameters:
-# +----------+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
-# |          | Name                      | Shape            |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
-# |----------+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
-# |  0.00000 | features.module.0.weight  | (64, 3, 3, 3)    |          1728 |           1728 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.25026 | -0.00189 |    0.18302 |
-# |  1.00000 | features.module.2.weight  | (64, 64, 3, 3)   |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.07487 | -0.01098 |    0.05490 |
-# |  2.00000 | features.module.5.weight  | (128, 64, 3, 3)  |         73728 |          73728 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06412 | -0.00765 |    0.04841 |
-# |  3.00000 | features.module.7.weight  | (128, 128, 3, 3) |        147456 |         147456 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.05229 | -0.00949 |    0.04124 |
-# |  4.00000 | features.module.10.weight | (256, 128, 3, 3) |        294912 |         294912 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04503 | -0.00606 |    0.03530 |
-# |  5.00000 | features.module.12.weight | (256, 256, 3, 3) |        589824 |         589824 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03495 | -0.00444 |    0.02725 |
-# |  6.00000 | features.module.14.weight | (256, 256, 3, 3) |        589824 |         589824 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03285 | -0.00550 |    0.02571 |
-# |  7.00000 | features.module.17.weight | (512, 256, 3, 3) |       1179648 |        1179648 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02082 | -0.00241 |    0.01615 |
-# |  8.00000 | features.module.19.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01364 | -0.00101 |    0.01070 |
-# |  9.00000 | features.module.21.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01194 | -0.00085 |    0.00941 |
-# | 10.00000 | features.module.24.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01060 | -0.00013 |    0.00842 |
-# | 11.00000 | features.module.26.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01031 | -0.00002 |    0.00821 |
-# | 12.00000 | features.module.28.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01036 | -0.00019 |    0.00823 |
-# | 13.00000 | classifier.weight         | (10, 512)        |          5120 |           5120 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06897 | -0.00003 |    0.04909 |
-# | 14.00000 | Total sparsity:           | -                |      14715584 |       14715584 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.00000 |  0.00000 |    0.00000 |
-# +----------+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
-# Total sparsity: 0.00
-#
-# --- validate (epoch=179)-----------
-# 5000 samples (256 per mini-batch)
-# ==> Top1: 90.160    Top5: 99.260    Loss: 0.633
-#
-# Saving checkpoint to: logs/2018.07.13-234036/checkpoint.pth.tar
-# --- test ---------------------
-# 10000 samples (256 per mini-batch)
-# ==> Top1: 90.930    Top5: 99.470    Loss: 0.669
-#
-#
-# Log file for this run: /home/cvds_lab/nzmora/pytorch_workspace/distiller/examples/classifier_compression/logs/2018.07.13-234036/2018.07.13-234036.log
-#
-# real    49m11.296s
-# user    82m20.495s
-# sys     15m36.971s
-
-lr_schedulers:
-  training_lr:
-    class: StepLR
-    step_size: 45
-    gamma: 0.10
-
-policies:
-    - lr_scheduler:
-        instance_name: training_lr
-      starting_epoch: 35
-      ending_epoch: 200
-      frequency: 1
diff --git a/examples/baseline_networks/README.md b/examples/baseline_networks/README.md
new file mode 100755
index 0000000000000000000000000000000000000000..8c8eaebcd091e863cc65e20929f932615067bcd6
--- /dev/null
+++ b/examples/baseline_networks/README.md
@@ -0,0 +1,7 @@
+# Training baseline networks
+
+The term baseline networks refers to the trained FP32 networks (models) that we use in compression.
+
+Besides their use in some algorithms, we also use the performance of these networks as the baseline results to which we compare the results of our compression algorithms.
+
+This directory contains YAML schedule files, which contain the command-line and the performance results.  You can use these files to train your own baseline networks.
\ No newline at end of file
diff --git a/examples/baseline_networks/cifar/plain20_cifar_baseline_training.yaml b/examples/baseline_networks/cifar/plain20_cifar_baseline_training.yaml
deleted file mode 120000
index dcef4b389bb07c8cac0913ce360d7fa1549dc123..0000000000000000000000000000000000000000
--- a/examples/baseline_networks/cifar/plain20_cifar_baseline_training.yaml
+++ /dev/null
@@ -1 +0,0 @@
-../../automated_deep_compression/plain20_cifar_baseline_training.yaml
\ No newline at end of file
diff --git a/examples/baseline_networks/cifar/plain20_cifar_baseline_training.yaml b/examples/baseline_networks/cifar/plain20_cifar_baseline_training.yaml
new file mode 100755
index 0000000000000000000000000000000000000000..3489c2654a276db72f5d7de0ac77415d4a402297
--- /dev/null
+++ b/examples/baseline_networks/cifar/plain20_cifar_baseline_training.yaml
@@ -0,0 +1,161 @@
+# We used this schedule to train CIFAR10-Plain20 from scratch.
+#
+# Plain-20 is defined in "Deep Residual Learning for Image Recognition".
+# The configuration is based on section 4.2 of "Deep Residual Learning for Image Recognition":
+#   "We use a weight decay of 0.0001 and momentum of 0.9, and adopt the weight initialization in [13] and BN [16] but
+#   with no dropout. These models are trained with a mini batch size of 128 on two GPUs. We start with a learning
+#   rate of 0.1, divide it by 10 at 32k and 48k iterations, and terminate training at 64k iterations, which is
+#   determined on a 45k/5k train/val split. We follow the simple data augmentation in [24] for training: 4 pixels are
+#   padded on each side, and a 32x32 crop is randomly sampled from the padded image or its horizontal flip. For testing,
+#   we only evaluate the single view of the original 32x32 image.
+#
+# We translate "iterations" to "epochs" because Distiller schedules at the epoch granularity:
+#   45K training samples / batch 128 == 351.6 iterations per epoch
+#   32K iterations = 91 epochs
+#   48K iterations = 152 epochs
+#   64K iterations = 182 epochs
+#
+# Our target test Top1 is 90.5.  This is inferred from Figure 6 of "Deep Residual Learning for Image Recognition", and
+# also the accuracy achieved in AMC, Table 2.
+#
+# References:
+#   Yihui Hez , Ji Liny , Zhijian Liuy, Hanrui Wangy, Li-Jia Lil, and Song Han.
+#   AMC: AutoML for Model Compression and Acceleration on Mobile Devices.
+#   arXiv:1802.03494v3
+#
+#   Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun.
+#   Deep Residual Learning for Image Recognition.
+#   arXiv:1512.03385
+#
+#
+# time python3  compress_classifier.py --arch=plain20_cifar ../../../data.cifar -p=50 --lr=0.1 --epochs=180 --batch=128 --compress=../baseline_networks/cifar/plain20_cifar_baseline_training.yaml --gpu=0 -j=1 --deterministic
+#
+# Results:
+#   Top1 = 90.18 - which is 0.3% lower than ower goal.
+#   *For better results, with much shorter training, see the explanation after the tables below.
+#
+# Parameters:
+# +----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
+# |    | Name                         | Shape          |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
+# |----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
+# |  0 | module.conv1.weight          | (16, 3, 3, 3)  |           432 |            432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.40074 | -0.00071 |    0.29948 |
+# |  1 | module.layer1.0.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17085 | -0.01192 |    0.12854 |
+# |  2 | module.layer1.0.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17880 | -0.01883 |    0.13891 |
+# |  3 | module.layer1.1.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.18079 | -0.00512 |    0.13792 |
+# |  4 | module.layer1.1.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17919 | -0.00807 |    0.13943 |
+# |  5 | module.layer1.2.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.18720 | -0.01524 |    0.14466 |
+# |  6 | module.layer1.2.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.18216 | -0.00676 |    0.14077 |
+# |  7 | module.layer2.0.conv1.weight | (32, 16, 3, 3) |          4608 |           4608 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.14269 | -0.00945 |    0.10973 |
+# |  8 | module.layer2.0.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13417 | -0.00725 |    0.10532 |
+# |  9 | module.layer2.1.conv1.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13663 | -0.00779 |    0.10872 |
+# | 10 | module.layer2.1.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13405 | -0.00875 |    0.10667 |
+# | 11 | module.layer2.2.conv1.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12706 | -0.01244 |    0.10117 |
+# | 12 | module.layer2.2.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12098 | -0.00570 |    0.09625 |
+# | 13 | module.layer3.0.conv1.weight | (64, 32, 3, 3) |         18432 |          18432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09828 | -0.00750 |    0.07821 |
+# | 14 | module.layer3.0.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09798 | -0.00763 |    0.07826 |
+# | 15 | module.layer3.1.conv1.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.10033 | -0.00928 |    0.08020 |
+# | 16 | module.layer3.1.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08956 | -0.01220 |    0.07165 |
+# | 17 | module.layer3.2.conv1.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.07004 | -0.01346 |    0.05663 |
+# | 18 | module.layer3.2.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04815 |  0.00177 |    0.03756 |
+# | 19 | module.fc.weight             | (10, 64)       |           640 |            640 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.54818 | -0.00011 |    0.50385 |
+# | 20 | Total sparsity:              | -              |        268336 |         268336 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.00000 |  0.00000 |    0.00000 |
+# +----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
+# Total sparsity: 0.00
+#
+# --- validate (epoch=179)-----------
+# 5000 samples (128 per mini-batch)
+# Epoch: [179][   10/   39]    Loss 0.391990    Top1 89.062500    Top5 99.609375
+# Epoch: [179][   20/   39]    Loss 0.373019    Top1 89.960938    Top5 99.453125
+# Epoch: [179][   30/   39]    Loss 0.371198    Top1 90.182292    Top5 99.453125
+# Epoch: [179][   40/   39]    Loss 0.360783    Top1 90.100000    Top5 99.440000
+# ==> Top1: 90.100    Top5: 99.440    Loss: 0.361
+#
+# ==> Best Top1: 90.540 on Epoch: 163
+# Saving checkpoint to: logs/2018.12.11-134350/checkpoint.pth.tar
+# --- test ---------------------
+# 10000 samples (128 per mini-batch)
+# Test: [   10/   78]    Loss 0.410806    Top1 89.609375    Top5 99.531250
+# Test: [   20/   78]    Loss 0.438778    Top1 89.218750    Top5 99.296875
+# Test: [   30/   78]    Loss 0.419225    Top1 89.791667    Top5 99.427083
+# Test: [   40/   78]    Loss 0.421272    Top1 89.921875    Top5 99.472656
+# Test: [   50/   78]    Loss 0.409017    Top1 90.046875    Top5 99.562500
+# Test: [   60/   78]    Loss 0.401275    Top1 90.169271    Top5 99.583333
+# Test: [   70/   78]    Loss 0.400794    Top1 90.111607    Top5 99.609375
+# ==> Top1: 90.180    Top5: 99.630    Loss: 0.401
+#
+#
+# Log file for this run: /home/cvds_lab/nzmora/pytorch_workspace/distiller/examples/classifier_compression/logs/2018.12.11-134350/2018.12.11-134350.log
+#
+# real    47m26.710s
+# user    124m30.606s
+# sys     21m1.999s
+#
+#
+# We can achieve a better Top1 result, with faster training by doubling the batch-size to 256, and increasing the initial
+# learning-rate to 0.3.
+#
+# time python3 compress_classifier.py --arch=plain20_cifar ../../../data.cifar --lr=0.3 --epochs=180 --batch=256 --compress=../automated_deep_compression/plain20_cifar_baseline_training.yaml -j=1 --deterministic
+#
+# Results:
+#   Top1 = 90.55
+#
+# Parameters:
+# +----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
+# |    | Name                         | Shape          |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
+# |----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
+# |  0 | module.conv1.weight          | (16, 3, 3, 3)  |           432 |            432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.37799 | -0.00179 |    0.27913 |
+# |  1 | module.layer1.0.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17171 | -0.01391 |    0.12635 |
+# |  2 | module.layer1.0.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17004 | -0.01753 |    0.13081 |
+# |  3 | module.layer1.1.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.16450 |  0.00003 |    0.12702 |
+# |  4 | module.layer1.1.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.16691 | -0.01517 |    0.13133 |
+# |  5 | module.layer1.2.conv1.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.17618 | -0.00955 |    0.13691 |
+# |  6 | module.layer1.2.conv2.weight | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.18617 | -0.00262 |    0.14352 |
+# |  7 | module.layer2.0.conv1.weight | (32, 16, 3, 3) |          4608 |           4608 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.14799 |  0.00621 |    0.11439 |
+# |  8 | module.layer2.0.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13378 | -0.00616 |    0.10422 |
+# |  9 | module.layer2.1.conv1.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13473 | -0.00722 |    0.10616 |
+# | 10 | module.layer2.1.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12899 | -0.01044 |    0.10220 |
+# | 11 | module.layer2.2.conv1.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12227 | -0.00908 |    0.09684 |
+# | 12 | module.layer2.2.conv2.weight | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.11781 | -0.00567 |    0.09389 |
+# | 13 | module.layer3.0.conv1.weight | (64, 32, 3, 3) |         18432 |          18432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09735 | -0.00409 |    0.07706 |
+# | 14 | module.layer3.0.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09819 | -0.00773 |    0.07806 |
+# | 15 | module.layer3.1.conv1.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09940 | -0.00979 |    0.07937 |
+# | 16 | module.layer3.1.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08860 | -0.01071 |    0.07082 |
+# | 17 | module.layer3.2.conv1.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06713 | -0.01385 |    0.05436 |
+# | 18 | module.layer3.2.conv2.weight | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04638 |  0.00117 |    0.03604 |
+# | 19 | module.fc.weight             | (10, 64)       |           640 |            640 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.53306 | -0.00001 |    0.48409 |
+# | 20 | Total sparsity:              | -              |        268336 |         268336 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.00000 |  0.00000 |    0.00000 |
+# +----+------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
+# Total sparsity: 0.00
+#
+# --- validate (epoch=179)-----------
+# 5000 samples (256 per mini-batch)
+# Epoch: [179][   10/   19]    Loss 0.369681    Top1 90.000000    Top5 99.687500
+# Epoch: [179][   20/   19]    Loss 0.414264    Top1 89.640000    Top5 99.560000
+# ==> Top1: 89.640    Top5: 99.560    Loss: 0.414
+#
+# ==> Best Top1: 90.200 on Epoch: 118
+# Saving checkpoint to: logs/2018.12.11-160023/checkpoint.pth.tar
+# --- test ---------------------
+# 10000 samples (256 per mini-batch)
+# Test: [   10/   39]    Loss 0.424408    Top1 90.195312    Top5 99.453125
+# Test: [   20/   39]    Loss 0.411984    Top1 90.390625    Top5 99.550781
+# Test: [   30/   39]    Loss 0.394514    Top1 90.546875    Top5 99.609375
+# Test: [   40/   39]    Loss 0.409653    Top1 90.550000    Top5 99.650000
+# ==> Top1: 90.550    Top5: 99.650    Loss: 0.410
+#
+# real    33m57.110s
+# user    69m57.694s
+# sys     9m49.416s
+
+lr_schedulers:
+  training_lr:
+    class: MultiStepLR
+    milestones: [60, 120, 160]
+    gamma: 0.20
+
+policies:
+    - lr_scheduler:
+        instance_name: training_lr
+      starting_epoch: 0
+      ending_epoch: 200
+      frequency: 1
diff --git a/examples/baseline_networks/cifar/vgg16_cifar_baseline_training.yaml b/examples/baseline_networks/cifar/vgg16_cifar_baseline_training.yaml
deleted file mode 120000
index 982530d19542e25e0988e563a28e576a2d3f1681..0000000000000000000000000000000000000000
--- a/examples/baseline_networks/cifar/vgg16_cifar_baseline_training.yaml
+++ /dev/null
@@ -1 +0,0 @@
-../../automated_deep_compression/vgg16_cifar_baseline_training.yaml
\ No newline at end of file
diff --git a/examples/baseline_networks/cifar/vgg16_cifar_baseline_training.yaml b/examples/baseline_networks/cifar/vgg16_cifar_baseline_training.yaml
new file mode 100755
index 0000000000000000000000000000000000000000..9b156be3b79ec76ab56c70230793931b077570b9
--- /dev/null
+++ b/examples/baseline_networks/cifar/vgg16_cifar_baseline_training.yaml
@@ -0,0 +1,54 @@
+# We used this schedule to train CIFAR10-VGG16 from scratch.
+#
+# time python3 compress_classifier.py --arch vgg16_cifar  ../../../data.cifar10 -p=50 --lr=0.05 --epochs=180 --compress=../baseline_networks/cifar/vgg16_cifar_baseline_training.yaml -j=1 --deterministic
+#
+# Parameters:
+# +----------+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
+# |          | Name                      | Shape            |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
+# |----------+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
+# |  0.00000 | features.module.0.weight  | (64, 3, 3, 3)    |          1728 |           1728 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.25026 | -0.00189 |    0.18302 |
+# |  1.00000 | features.module.2.weight  | (64, 64, 3, 3)   |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.07487 | -0.01098 |    0.05490 |
+# |  2.00000 | features.module.5.weight  | (128, 64, 3, 3)  |         73728 |          73728 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06412 | -0.00765 |    0.04841 |
+# |  3.00000 | features.module.7.weight  | (128, 128, 3, 3) |        147456 |         147456 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.05229 | -0.00949 |    0.04124 |
+# |  4.00000 | features.module.10.weight | (256, 128, 3, 3) |        294912 |         294912 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04503 | -0.00606 |    0.03530 |
+# |  5.00000 | features.module.12.weight | (256, 256, 3, 3) |        589824 |         589824 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03495 | -0.00444 |    0.02725 |
+# |  6.00000 | features.module.14.weight | (256, 256, 3, 3) |        589824 |         589824 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03285 | -0.00550 |    0.02571 |
+# |  7.00000 | features.module.17.weight | (512, 256, 3, 3) |       1179648 |        1179648 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02082 | -0.00241 |    0.01615 |
+# |  8.00000 | features.module.19.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01364 | -0.00101 |    0.01070 |
+# |  9.00000 | features.module.21.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01194 | -0.00085 |    0.00941 |
+# | 10.00000 | features.module.24.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01060 | -0.00013 |    0.00842 |
+# | 11.00000 | features.module.26.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01031 | -0.00002 |    0.00821 |
+# | 12.00000 | features.module.28.weight | (512, 512, 3, 3) |       2359296 |        2359296 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01036 | -0.00019 |    0.00823 |
+# | 13.00000 | classifier.weight         | (10, 512)        |          5120 |           5120 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06897 | -0.00003 |    0.04909 |
+# | 14.00000 | Total sparsity:           | -                |      14715584 |       14715584 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.00000 |  0.00000 |    0.00000 |
+# +----------+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
+# Total sparsity: 0.00
+#
+# --- validate (epoch=179)-----------
+# 5000 samples (256 per mini-batch)
+# ==> Top1: 90.160    Top5: 99.260    Loss: 0.633
+#
+# Saving checkpoint to: logs/2018.07.13-234036/checkpoint.pth.tar
+# --- test ---------------------
+# 10000 samples (256 per mini-batch)
+# ==> Top1: 90.930    Top5: 99.470    Loss: 0.669
+#
+#
+# Log file for this run: /home/cvds_lab/nzmora/pytorch_workspace/distiller/examples/classifier_compression/logs/2018.07.13-234036/2018.07.13-234036.log
+#
+# real    49m11.296s
+# user    82m20.495s
+# sys     15m36.971s
+
+lr_schedulers:
+  training_lr:
+    class: StepLR
+    step_size: 45
+    gamma: 0.10
+
+policies:
+    - lr_scheduler:
+        instance_name: training_lr
+      starting_epoch: 35
+      ending_epoch: 200
+      frequency: 1