diff --git a/distiller/regularization/regularizer.py b/distiller/regularization/regularizer.py
index 182e3846f97bae02fec09b250df72753b9117276..ec4666e2e49abbab105ccae4643af58bf84654bd 100755
--- a/distiller/regularization/regularizer.py
+++ b/distiller/regularization/regularizer.py
@@ -13,16 +13,21 @@
 # See the License for the specific language governing permissions and
 # limitations under the License.
 #
-
+import torch
+import torch.nn as nn
 EPSILON = 1e-8
 
+
 class _Regularizer(object):
     def __init__(self, name, model, reg_regims, threshold_criteria):
         """Regularization base class.
 
         Args:
-            reg_regims: regularization regiment.  A dictionary of
-                        reg_regims[<param-name>] = [ lambda, structure-type]
+            name (str): the name of the regularizer.
+            model (nn.Module): the model on which to apply regularization.
+            reg_regims (dict[str, float or tuple[float, Any]]): regularization regiment.  A dictionary of
+                        reg_regims[<param-name>] = [ lambda[, additional_configuration]]
+            threshold_criteria (str): the criterion for which to calculate the threshold.
         """
         self.name = name
         self.model = model
@@ -30,7 +35,24 @@ class _Regularizer(object):
         self.threshold_criteria = threshold_criteria
 
     def loss(self, param, param_name, regularizer_loss, zeros_mask_dict):
+        """
+        Applies the regularization loss onto regularization loss.
+        Args:
+            param (nn.Parameter): the parameter on which to calculate the regularization
+            param_name (str): the name of the parameter relative to top level module.
+            regularizer_loss (torch.Tensor): the previous regularization loss calculated,
+            zeros_mask_dict (dict): the masks configuration.
+        Returns:
+            torch.Tensor: regularization_loss after applying the additional loss from current parameter.
+        """
         raise NotImplementedError
 
     def threshold(self, param, param_name, zeros_mask_dict):
+        """
+        Calculates the threshold for pruning.
+        Args:
+            param (nn.Parameter): the parameter on which to calculate the regularization
+            param_name (str): the name of the parameter relative to top level module.
+            zeros_mask_dict (dict): the masks configuration.
+        """
         raise NotImplementedError