diff --git a/README.md b/README.md
index a767009b81bc21ffadb9e49e9a193ea11a28e739..77ed092dd0d414305da0ab59c0b947d305c92d29 100755
--- a/README.md
+++ b/README.md
@@ -285,7 +285,7 @@ $ python3 compress_classifier.py --resume=../ssl/checkpoints/checkpoint_trained_
 This example performs 8-bit quantization of ResNet20 for CIFAR10.  We've included in the git repository the checkpoint of a ResNet20 model that we've trained with 32-bit floats, so we'll take this model and quantize it:
 
 ```
-$ python3 compress_classifier.py -a resnet20_cifar ../../../data.cifar10 --resume ../examples/ssl/checkpoints/checkpoint_trained_dense.pth.tar --quantize-eval --evaluate
+$ python3 compress_classifier.py -a resnet20_cifar ../../../data.cifar10 --resume ../ssl/checkpoints/checkpoint_trained_dense.pth.tar --quantize-eval --evaluate
 ```
 
 The command-line above will save a checkpoint named `quantized_checkpoint.pth.tar` containing the quantized model parameters. See more examples [here](https://github.com/NervanaSystems/distiller/blob/master/examples/quantization/post_training_quant.md).