diff --git a/README.md b/README.md index a767009b81bc21ffadb9e49e9a193ea11a28e739..77ed092dd0d414305da0ab59c0b947d305c92d29 100755 --- a/README.md +++ b/README.md @@ -285,7 +285,7 @@ $ python3 compress_classifier.py --resume=../ssl/checkpoints/checkpoint_trained_ This example performs 8-bit quantization of ResNet20 for CIFAR10. We've included in the git repository the checkpoint of a ResNet20 model that we've trained with 32-bit floats, so we'll take this model and quantize it: ``` -$ python3 compress_classifier.py -a resnet20_cifar ../../../data.cifar10 --resume ../examples/ssl/checkpoints/checkpoint_trained_dense.pth.tar --quantize-eval --evaluate +$ python3 compress_classifier.py -a resnet20_cifar ../../../data.cifar10 --resume ../ssl/checkpoints/checkpoint_trained_dense.pth.tar --quantize-eval --evaluate ``` The command-line above will save a checkpoint named `quantized_checkpoint.pth.tar` containing the quantized model parameters. See more examples [here](https://github.com/NervanaSystems/distiller/blob/master/examples/quantization/post_training_quant.md).