diff --git a/distiller/utils.py b/distiller/utils.py index cb000b301a8d88ad18c0662850818272289ac4ea..29e8bde9760eccdf022e42343daffb2f8d60c7f7 100755 --- a/distiller/utils.py +++ b/distiller/utils.py @@ -395,7 +395,7 @@ def activation_channels_apoz(activation): featuremap_apoz_mat = activation.abs().gt(0).sum(dim=1).float() / activation.size(1) # batch x 1 else: raise ValueError("activation_channels_apoz: Unsupported shape: ".format(activation.shape)) - return featuremap_apoz_mat.mean(dim=0).cpu() + return 100 - featuremap_apoz_mat.mean(dim=0).mul(100).cpu() def log_training_progress(stats_dict, params_dict, epoch, steps_completed, total_steps, log_freq, loggers): diff --git a/tests/test_basic.py b/tests/test_basic.py index 5d57a350ff13ab4ceb239ef7a683da9377b0a6c4..942f8ebaaafee1eb0c8c0e86b68d7ba378e213fd 100755 --- a/tests/test_basic.py +++ b/tests/test_basic.py @@ -66,7 +66,7 @@ def test_activations(): [7., 0., 8.], [0., 9., 0.]]]]) assert all(distiller.activation_channels_l1(x) == torch.tensor([21/2, 45/2])) - assert all(distiller.activation_channels_apoz(x) == torch.tensor([6/18, 9/18])) + assert all(distiller.activation_channels_apoz(x) == torch.tensor([100*(6+6)/(9+9), 100*(4+5)/(9+9)])) assert all(distiller.activation_channels_means(x) == torch.tensor([21/18, 45/18]))