diff --git a/examples/agp-pruning/resnet50.schedule_agp.yaml b/examples/agp-pruning/resnet50.schedule_agp.yaml
index b3ebb96c9bb128d337ad7d36cfe5509158729278..2c054e0b754543b36d691b4f42347b7d208c25eb 100755
--- a/examples/agp-pruning/resnet50.schedule_agp.yaml
+++ b/examples/agp-pruning/resnet50.schedule_agp.yaml
@@ -1,96 +1,86 @@
-# This schedule demonstrates high-rate element-wise pruning (70.66% sparsity) of Resnet 50.
-# Top1 is 76.09 vs the published Top1: 76.15 (https://pytorch.org/docs/stable/torchvision/models.html)
-# Top5 actually slightly improves the baseline: 92.95 vs. 92.87 in the baseline.
+# This schedule demonstrates high-rate element-wise pruning (80% sparsity) of Resnet 50.
+# Top1 is 76.0 vs the published Top1: 76.15 (https://pytorch.org/docs/stable/torchvision/models.html)
+# Top5 is on par with the baseline.
 #
-# The first layers are left unpruned, because the weights tensors are very small.  The arithmetic-intensity is
-# especially low, and the weight tensors are large, in module.layer4.*, so it's important to prune those.
-# The Linear (fully-connected) layer is pruned to 87% because we have empirical evidence that the classifier layers
-# are prune-friendly.
+# The pruning level is uniform across all layers (80%), except for the first convolution.
 #
-# time python3 compress_classifier.py -a=resnet50 --pretrained -p=50 ../../../data.imagenet/ -j=22 --epochs=80 --lr=0.001 --compress=resnet50.schedule_agp.yaml
+# time python3 compress_classifier.py -a=resnet50 --pretrained -p=50 ../../../data.imagenet/ -j=12 --epochs=100 --lr=0.005 --compress=../agp-pruning/resnet50.schedule_agp.yaml --vs=0
 #
 # Parameters:
 # +----+-------------------------------------+--------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
 # |    | Name                                | Shape              |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
 # |----+-------------------------------------+--------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
-# |  0 | module.conv1.weight                 | (64, 3, 7, 7)      |          9408 |           9408 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.10415 | -0.00043 |    0.06379 |
-# |  1 | module.layer1.0.conv1.weight        | (64, 64, 1, 1)     |          4096 |           4096 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06023 | -0.00354 |    0.03393 |
-# |  2 | module.layer1.0.conv2.weight        | (64, 64, 3, 3)     |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02438 |  0.00069 |    0.01446 |
-# |  3 | module.layer1.0.conv3.weight        | (256, 64, 1, 1)    |         16384 |          16384 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02961 |  0.00029 |    0.01786 |
-# |  4 | module.layer1.0.downsample.0.weight | (256, 64, 1, 1)    |         16384 |          16384 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04820 | -0.00283 |    0.02690 |
-# |  5 | module.layer1.1.conv1.weight        | (64, 256, 1, 1)    |         16384 |          16384 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02557 |  0.00102 |    0.01698 |
-# |  6 | module.layer1.1.conv2.weight        | (64, 64, 3, 3)     |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02391 |  0.00005 |    0.01633 |
-# |  7 | module.layer1.1.conv3.weight        | (256, 64, 1, 1)    |         16384 |          16384 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02724 |  0.00000 |    0.01716 |
-# |  8 | module.layer1.2.conv1.weight        | (64, 256, 1, 1)    |         16384 |          16384 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02513 |  0.00008 |    0.01828 |
-# |  9 | module.layer1.2.conv2.weight        | (64, 64, 3, 3)     |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02638 | -0.00052 |    0.01979 |
-# | 10 | module.layer1.2.conv3.weight        | (256, 64, 1, 1)    |         16384 |          16384 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02573 | -0.00185 |    0.01547 |
-# | 11 | module.layer2.0.conv1.weight        | (128, 256, 1, 1)   |         32768 |          32768 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02960 | -0.00121 |    0.02091 |
-# | 12 | module.layer2.0.conv2.weight        | (128, 128, 3, 3)   |        147456 |          44237 |    0.00000 |    0.00000 |  0.00000 | 16.91895 |  0.00000 |   69.99986 | 0.01642 | -0.00020 |    0.00819 |
-# | 13 | module.layer2.0.conv3.weight        | (512, 128, 1, 1)   |         65536 |          19661 |    0.00000 |    0.00000 |  0.00000 | 69.99969 | 14.25781 |   69.99969 | 0.02184 |  0.00012 |    0.01003 |
-# | 14 | module.layer2.0.downsample.0.weight | (512, 256, 1, 1)   |        131072 |          39322 |    0.00000 |    0.00000 |  0.00000 | 69.99969 | 12.30469 |   69.99969 | 0.01788 | -0.00027 |    0.00766 |
-# | 15 | module.layer2.1.conv1.weight        | (128, 512, 1, 1)   |         65536 |          19661 |    0.00000 |    0.00000 | 12.69531 | 69.99969 |  0.00000 |   69.99969 | 0.01306 |  0.00001 |    0.00590 |
-# | 16 | module.layer2.1.conv2.weight        | (128, 128, 3, 3)   |        147456 |          44237 |    0.00000 |    0.00000 |  0.00000 | 22.08862 |  0.00000 |   69.99986 | 0.01518 |  0.00013 |    0.00688 |
-# | 17 | module.layer2.1.conv3.weight        | (512, 128, 1, 1)   |         65536 |          19661 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  1.36719 |   69.99969 | 0.01769 | -0.00086 |    0.00766 |
-# | 18 | module.layer2.2.conv1.weight        | (128, 512, 1, 1)   |         65536 |          19661 |    0.00000 |    0.00000 |  1.56250 | 69.99969 |  0.00000 |   69.99969 | 0.01770 | -0.00046 |    0.00840 |
-# | 19 | module.layer2.2.conv2.weight        | (128, 128, 3, 3)   |        147456 |          44237 |    0.00000 |    0.00000 |  0.00000 | 13.09814 |  0.00000 |   69.99986 | 0.01625 | -0.00011 |    0.00781 |
-# | 20 | module.layer2.2.conv3.weight        | (512, 128, 1, 1)   |         65536 |          19661 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.58594 |   69.99969 | 0.01985 | -0.00020 |    0.00946 |
-# | 21 | module.layer2.3.conv1.weight        | (128, 512, 1, 1)   |         65536 |          19661 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.00000 |   69.99969 | 0.01808 | -0.00053 |    0.00894 |
-# | 22 | module.layer2.3.conv2.weight        | (128, 128, 3, 3)   |        147456 |          44237 |    0.00000 |    0.00000 |  0.00000 | 10.50415 |  0.00000 |   69.99986 | 0.01656 | -0.00033 |    0.00830 |
-# | 23 | module.layer2.3.conv3.weight        | (512, 128, 1, 1)   |         65536 |          19661 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.97656 |   69.99969 | 0.01864 | -0.00055 |    0.00887 |
-# | 24 | module.layer3.0.conv1.weight        | (256, 512, 1, 1)   |        131072 |          39322 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.00000 |   69.99969 | 0.02308 | -0.00061 |    0.01119 |
-# | 25 | module.layer3.0.conv2.weight        | (256, 256, 3, 3)   |        589824 |         176948 |    0.00000 |    0.00000 |  0.00000 | 20.91217 |  0.00000 |   69.99986 | 0.01282 | -0.00018 |    0.00629 |
-# | 26 | module.layer3.0.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  4.29688 |   69.99969 | 0.01763 | -0.00012 |    0.00857 |
-# | 27 | module.layer3.0.downsample.0.weight | (1024, 512, 1, 1)  |        524288 |         157287 |    0.00000 |    0.00000 |  0.00000 | 69.99989 |  3.90625 |   69.99989 | 0.01221 |  0.00008 |    0.00570 |
-# | 28 | module.layer3.1.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  4.78516 | 69.99969 |  0.00000 |   69.99969 | 0.01180 | -0.00026 |    0.00566 |
-# | 29 | module.layer3.1.conv2.weight        | (256, 256, 3, 3)   |        589824 |         176948 |    0.00000 |    0.00000 |  0.00000 | 15.36255 |  0.00000 |   69.99986 | 0.01139 | -0.00010 |    0.00554 |
-# | 30 | module.layer3.1.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.58594 |   69.99969 | 0.01557 | -0.00074 |    0.00745 |
-# | 31 | module.layer3.2.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.68359 | 69.99969 |  0.00000 |   69.99969 | 0.01202 | -0.00026 |    0.00573 |
-# | 32 | module.layer3.2.conv2.weight        | (256, 256, 3, 3)   |        589824 |         176948 |    0.00000 |    0.00000 |  0.00000 | 10.70709 |  0.00000 |   69.99986 | 0.01117 | -0.00038 |    0.00554 |
-# | 33 | module.layer3.2.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.09766 |   69.99969 | 0.01439 | -0.00038 |    0.00699 |
-# | 34 | module.layer3.3.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.19531 | 69.99969 |  0.00000 |   69.99969 | 0.01311 | -0.00034 |    0.00638 |
-# | 35 | module.layer3.3.conv2.weight        | (256, 256, 3, 3)   |        589824 |         176948 |    0.00000 |    0.00000 |  0.00000 | 10.32867 |  0.00000 |   69.99986 | 0.01108 | -0.00036 |    0.00556 |
-# | 36 | module.layer3.3.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.09766 |   69.99969 | 0.01383 | -0.00064 |    0.00677 |
-# | 37 | module.layer3.4.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.09766 | 69.99969 |  0.00000 |   69.99969 | 0.01362 | -0.00046 |    0.00669 |
-# | 38 | module.layer3.4.conv2.weight        | (256, 256, 3, 3)   |        589824 |         176948 |    0.00000 |    0.00000 |  0.00000 | 11.27167 |  0.00000 |   69.99986 | 0.01105 | -0.00047 |    0.00555 |
-# | 39 | module.layer3.4.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.00000 |   69.99969 | 0.01387 | -0.00094 |    0.00679 |
-# | 40 | module.layer3.5.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.00000 |   69.99969 | 0.01472 | -0.00040 |    0.00731 |
-# | 41 | module.layer3.5.conv2.weight        | (256, 256, 3, 3)   |        589824 |         176948 |    0.00000 |    0.00000 |  0.00000 | 12.88605 |  0.00000 |   69.99986 | 0.01132 | -0.00048 |    0.00570 |
-# | 42 | module.layer3.5.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          78644 |    0.00000 |    0.00000 |  0.00000 | 69.99969 |  0.09766 |   69.99969 | 0.01475 | -0.00139 |    0.00732 |
-# | 43 | module.layer4.0.conv1.weight        | (512, 1024, 1, 1)  |        524288 |         157287 |    0.00000 |    0.00000 |  0.00000 | 69.99989 |  0.00000 |   69.99989 | 0.01754 | -0.00053 |    0.00888 |
-# | 44 | module.layer4.0.conv2.weight        | (512, 512, 3, 3)   |       2359296 |         707789 |    0.00000 |    0.00000 |  0.00000 | 23.35434 |  0.00000 |   69.99999 | 0.00915 | -0.00021 |    0.00467 |
-# | 45 | module.layer4.0.conv3.weight        | (2048, 512, 1, 1)  |       1048576 |         314573 |    0.00000 |    0.00000 |  0.00000 | 69.99998 |  0.00000 |   69.99998 | 0.01159 | -0.00026 |    0.00580 |
-# | 46 | module.layer4.0.downsample.0.weight | (2048, 1024, 1, 1) |       2097152 |         629146 |    0.00000 |    0.00000 |  0.00000 | 69.99998 |  0.00000 |   69.99998 | 0.00760 | -0.00007 |    0.00368 |
-# | 47 | module.layer4.1.conv1.weight        | (512, 2048, 1, 1)  |       1048576 |         314573 |    0.00000 |    0.00000 |  0.00000 | 69.99998 |  0.00000 |   69.99998 | 0.01140 | -0.00033 |    0.00571 |
-# | 48 | module.layer4.1.conv2.weight        | (512, 512, 3, 3)   |       2359296 |         707789 |    0.00000 |    0.00000 |  0.00000 | 19.46831 |  0.00000 |   69.99999 | 0.00904 | -0.00044 |    0.00462 |
-# | 49 | module.layer4.1.conv3.weight        | (2048, 512, 1, 1)  |       1048576 |         314573 |    0.00000 |    0.00000 |  0.00000 | 69.99998 |  0.00000 |   69.99998 | 0.01152 |  0.00007 |    0.00575 |
-# | 50 | module.layer4.2.conv1.weight        | (512, 2048, 1, 1)  |       1048576 |         314573 |    0.00000 |    0.00000 |  0.00000 | 69.99998 |  0.00000 |   69.99998 | 0.01368 | -0.00014 |    0.00694 |
-# | 51 | module.layer4.2.conv2.weight        | (512, 512, 3, 3)   |       2359296 |         707789 |    0.00000 |    0.00000 |  0.00000 | 38.29308 |  0.00000 |   69.99999 | 0.00789 | -0.00035 |    0.00409 |
-# | 52 | module.layer4.2.conv3.weight        | (2048, 512, 1, 1)  |       1048576 |         314573 |    0.00000 |    0.00000 |  0.00000 | 69.99998 |  0.00000 |   69.99998 | 0.01075 |  0.00016 |    0.00524 |
-# | 53 | module.fc.weight                    | (1000, 2048)       |       2048000 |         266240 |    0.19531 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |   87.00000 | 0.02998 |  0.00513 |    0.00979 |
-# | 54 | Total sparsity:                     | -                  |      25502912 |        7481351 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |   70.66472 | 0.00000 |  0.00000 |    0.00000 |
+# |  0 | module.conv1.weight                 | (64, 3, 7, 7)      |          9408 |           9408 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.10902 | -0.00039 |    0.06756 |
+# |  1 | module.layer1.0.conv1.weight        | (64, 64, 1, 1)     |          4096 |            820 |    0.00000 |    0.00000 |  1.56250 | 79.98047 |  7.81250 |   79.98047 | 0.04406 | -0.00270 |    0.01620 |
+# |  2 | module.layer1.0.conv2.weight        | (64, 64, 3, 3)     |         36864 |           7373 |    0.00000 |    0.00000 |  7.81250 | 36.27930 |  6.25000 |   79.99946 | 0.02160 |  0.00050 |    0.00779 |
+# |  3 | module.layer1.0.conv3.weight        | (256, 64, 1, 1)    |         16384 |           3277 |    0.00000 |    0.00000 |  6.25000 | 79.99878 | 13.28125 |   79.99878 | 0.02543 |  0.00032 |    0.00974 |
+# |  4 | module.layer1.0.downsample.0.weight | (256, 64, 1, 1)    |         16384 |           3277 |    0.00000 |    0.00000 |  1.56250 | 79.99878 | 13.67188 |   79.99878 | 0.03585 | -0.00183 |    0.01348 |
+# |  5 | module.layer1.1.conv1.weight        | (64, 256, 1, 1)    |         16384 |           3277 |    0.00000 |    0.00000 | 11.71875 | 79.99878 |  6.25000 |   79.99878 | 0.02139 |  0.00075 |    0.00844 |
+# |  6 | module.layer1.1.conv2.weight        | (64, 64, 3, 3)     |         36864 |           7373 |    0.00000 |    0.00000 |  6.25000 | 30.76172 |  0.00000 |   79.99946 | 0.02009 |  0.00011 |    0.00763 |
+# |  7 | module.layer1.1.conv3.weight        | (256, 64, 1, 1)    |         16384 |           3277 |    0.00000 |    0.00000 |  0.00000 | 79.99878 |  7.03125 |   79.99878 | 0.02291 |  0.00013 |    0.00891 |
+# |  8 | module.layer1.2.conv1.weight        | (64, 256, 1, 1)    |         16384 |           3277 |    0.00000 |    0.00000 |  8.20312 | 79.99878 |  0.00000 |   79.99878 | 0.02034 | -0.00007 |    0.00816 |
+# |  9 | module.layer1.2.conv2.weight        | (64, 64, 3, 3)     |         36864 |           7373 |    0.00000 |    0.00000 |  0.00000 | 26.29395 |  0.00000 |   79.99946 | 0.02126 | -0.00038 |    0.00860 |
+# | 10 | module.layer1.2.conv3.weight        | (256, 64, 1, 1)    |         16384 |           3277 |    0.00000 |    0.00000 |  0.00000 | 79.99878 |  7.03125 |   79.99878 | 0.02220 | -0.00112 |    0.00856 |
+# | 11 | module.layer2.0.conv1.weight        | (128, 256, 1, 1)   |         32768 |           6554 |    0.00000 |    0.00000 |  3.51562 | 79.99878 |  0.00000 |   79.99878 | 0.02269 | -0.00074 |    0.00903 |
+# | 12 | module.layer2.0.conv2.weight        | (128, 128, 3, 3)   |        147456 |          29492 |    0.00000 |    0.00000 |  0.00000 | 32.34253 |  0.00000 |   79.99946 | 0.01436 | -0.00008 |    0.00567 |
+# | 13 | module.layer2.0.conv3.weight        | (512, 128, 1, 1)   |         65536 |          13108 |    0.00000 |    0.00000 |  0.00000 | 79.99878 | 18.75000 |   79.99878 | 0.01925 |  0.00021 |    0.00717 |
+# | 14 | module.layer2.0.downsample.0.weight | (512, 256, 1, 1)   |        131072 |          26215 |    0.00000 |    0.00000 |  0.00000 | 79.99954 | 12.30469 |   79.99954 | 0.01469 | -0.00023 |    0.00518 |
+# | 15 | module.layer2.1.conv1.weight        | (128, 512, 1, 1)   |         65536 |          13108 |    0.00000 |    0.00000 | 12.89062 | 79.99878 |  0.00000 |   79.99878 | 0.01206 |  0.00011 |    0.00439 |
+# | 16 | module.layer2.1.conv2.weight        | (128, 128, 3, 3)   |        147456 |          29492 |    0.00000 |    0.00000 |  0.00000 | 36.49902 |  0.00000 |   79.99946 | 0.01451 |  0.00018 |    0.00548 |
+# | 17 | module.layer2.1.conv3.weight        | (512, 128, 1, 1)   |         65536 |          13108 |    0.00000 |    0.00000 |  0.00000 | 79.99878 |  3.71094 |   79.99878 | 0.01631 | -0.00087 |    0.00588 |
+# | 18 | module.layer2.2.conv1.weight        | (128, 512, 1, 1)   |         65536 |          13108 |    0.00000 |    0.00000 |  1.56250 | 79.99878 |  0.00000 |   79.99878 | 0.01590 | -0.00040 |    0.00605 |
+# | 19 | module.layer2.2.conv2.weight        | (128, 128, 3, 3)   |        147456 |          29492 |    0.00000 |    0.00000 |  0.00000 | 28.51562 |  0.00000 |   79.99946 | 0.01464 | -0.00008 |    0.00558 |
+# | 20 | module.layer2.2.conv3.weight        | (512, 128, 1, 1)   |         65536 |          13108 |    0.00000 |    0.00000 |  0.00000 | 79.99878 |  2.14844 |   79.99878 | 0.01771 | -0.00020 |    0.00682 |
+# | 21 | module.layer2.3.conv1.weight        | (128, 512, 1, 1)   |         65536 |          13108 |    0.00000 |    0.00000 |  0.19531 | 79.99878 |  0.00000 |   79.99878 | 0.01613 | -0.00042 |    0.00634 |
+# | 22 | module.layer2.3.conv2.weight        | (128, 128, 3, 3)   |        147456 |          29492 |    0.00000 |    0.00000 |  0.00000 | 24.03564 |  0.00000 |   79.99946 | 0.01476 | -0.00026 |    0.00586 |
+# | 23 | module.layer2.3.conv3.weight        | (512, 128, 1, 1)   |         65536 |          13108 |    0.00000 |    0.00000 |  0.00000 | 79.99878 |  4.10156 |   79.99878 | 0.01678 | -0.00034 |    0.00641 |
+# | 24 | module.layer3.0.conv1.weight        | (256, 512, 1, 1)   |        131072 |          26215 |    0.00000 |    0.00000 |  0.00000 | 79.99954 |  0.00000 |   79.99954 | 0.01981 | -0.00048 |    0.00781 |
+# | 25 | module.layer3.0.conv2.weight        | (256, 256, 3, 3)   |        589824 |         117965 |    0.00000 |    0.00000 |  0.00000 | 38.29956 |  0.00000 |   79.99997 | 0.01108 | -0.00012 |    0.00427 |
+# | 26 | module.layer3.0.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  4.39453 |   79.99992 | 0.01559 | -0.00001 |    0.00608 |
+# | 27 | module.layer3.0.downsample.0.weight | (1024, 512, 1, 1)  |        524288 |         104858 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  4.00391 |   79.99992 | 0.01054 | -0.00000 |    0.00388 |
+# | 28 | module.layer3.1.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  4.58984 | 79.99992 |  0.00000 |   79.99992 | 0.01161 | -0.00015 |    0.00440 |
+# | 29 | module.layer3.1.conv2.weight        | (256, 256, 3, 3)   |        589824 |         117965 |    0.00000 |    0.00000 |  0.00000 | 30.37567 |  0.00000 |   79.99997 | 0.01065 | -0.00009 |    0.00409 |
+# | 30 | module.layer3.1.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.68359 |   79.99992 | 0.01423 | -0.00072 |    0.00548 |
+# | 31 | module.layer3.2.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.68359 | 79.99992 |  0.00000 |   79.99992 | 0.01134 | -0.00020 |    0.00424 |
+# | 32 | module.layer3.2.conv2.weight        | (256, 256, 3, 3)   |        589824 |         117965 |    0.00000 |    0.00000 |  0.00000 | 23.76862 |  0.00000 |   79.99997 | 0.01032 | -0.00033 |    0.00400 |
+# | 33 | module.layer3.2.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.19531 |   79.99992 | 0.01298 | -0.00031 |    0.00501 |
+# | 34 | module.layer3.3.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.19531 | 79.99992 |  0.00000 |   79.99992 | 0.01234 | -0.00023 |    0.00471 |
+# | 35 | module.layer3.3.conv2.weight        | (256, 256, 3, 3)   |        589824 |         117965 |    0.00000 |    0.00000 |  0.00000 | 23.16437 |  0.00000 |   79.99997 | 0.01036 | -0.00030 |    0.00404 |
+# | 36 | module.layer3.3.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.39062 |   79.99992 | 0.01273 | -0.00055 |    0.00495 |
+# | 37 | module.layer3.4.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.09766 | 79.99992 |  0.00000 |   79.99992 | 0.01271 | -0.00035 |    0.00492 |
+# | 38 | module.layer3.4.conv2.weight        | (256, 256, 3, 3)   |        589824 |         117965 |    0.00000 |    0.00000 |  0.00000 | 24.42474 |  0.00000 |   79.99997 | 0.01033 | -0.00038 |    0.00405 |
+# | 39 | module.layer3.4.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.29297 |   79.99992 | 0.01291 | -0.00077 |    0.00505 |
+# | 40 | module.layer3.5.conv1.weight        | (256, 1024, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.00000 |   79.99992 | 0.01351 | -0.00029 |    0.00532 |
+# | 41 | module.layer3.5.conv2.weight        | (256, 256, 3, 3)   |        589824 |         117965 |    0.00000 |    0.00000 |  0.00000 | 26.96075 |  0.00000 |   79.99997 | 0.01055 | -0.00040 |    0.00417 |
+# | 42 | module.layer3.5.conv3.weight        | (1024, 256, 1, 1)  |        262144 |          52429 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.68359 |   79.99992 | 0.01390 | -0.00120 |    0.00555 |
+# | 43 | module.layer4.0.conv1.weight        | (512, 1024, 1, 1)  |        524288 |         104858 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.00000 |   79.99992 | 0.01559 | -0.00040 |    0.00635 |
+# | 44 | module.layer4.0.conv2.weight        | (512, 512, 3, 3)   |       2359296 |         471860 |    0.00000 |    0.00000 |  0.00000 | 38.93700 |  0.00000 |   79.99997 | 0.00838 | -0.00015 |    0.00335 |
+# | 45 | module.layer4.0.conv3.weight        | (2048, 512, 1, 1)  |       1048576 |         209716 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.00000 |   79.99992 | 0.01160 | -0.00020 |    0.00466 |
+# | 46 | module.layer4.0.downsample.0.weight | (2048, 1024, 1, 1) |       2097152 |         419431 |    0.00000 |    0.00000 |  0.00000 | 79.99997 |  0.00000 |   79.99997 | 0.00780 | -0.00013 |    0.00296 |
+# | 47 | module.layer4.1.conv1.weight        | (512, 2048, 1, 1)  |       1048576 |         209716 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.00000 |   79.99992 | 0.01202 | -0.00025 |    0.00479 |
+# | 48 | module.layer4.1.conv2.weight        | (512, 512, 3, 3)   |       2359296 |         471860 |    0.00000 |    0.00000 |  0.00000 | 33.88023 |  0.00000 |   79.99997 | 0.00884 | -0.00036 |    0.00357 |
+# | 49 | module.layer4.1.conv3.weight        | (2048, 512, 1, 1)  |       1048576 |         209716 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.00000 |   79.99992 | 0.01205 |  0.00008 |    0.00487 |
+# | 50 | module.layer4.2.conv1.weight        | (512, 2048, 1, 1)  |       1048576 |         209716 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.00000 |   79.99992 | 0.01396 | -0.00011 |    0.00568 |
+# | 51 | module.layer4.2.conv2.weight        | (512, 512, 3, 3)   |       2359296 |         471860 |    0.00000 |    0.00000 |  0.00000 | 50.91476 |  0.00000 |   79.99997 | 0.00723 | -0.00022 |    0.00303 |
+# | 52 | module.layer4.2.conv3.weight        | (2048, 512, 1, 1)  |       1048576 |         209716 |    0.00000 |    0.00000 |  0.00000 | 79.99992 |  0.00000 |   79.99992 | 0.00957 |  0.00020 |    0.00386 |
+# | 53 | module.fc.weight                    | (1000, 2048)       |       2048000 |         409600 |    0.00000 |    0.04883 |  0.00000 |  0.00000 |  0.00000 |   80.00000 | 0.03149 |  0.00414 |    0.01235 |
+# | 54 | Total sparsity:                     | -                  |      25502912 |        5108133 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |   79.97039 | 0.00000 |  0.00000 |    0.00000 |
 # +----+-------------------------------------+--------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
-# Total sparsity: 70.66
+# 2019-03-20 18:14:17,059 - Total sparsity: 79.97
 #
-# 2018-10-01 20:57:09,476 - --- validate (epoch=95)-----------
-# 2018-10-01 20:57:09,476 - 128116 samples (256 per mini-batch)
-# 2018-10-01 20:57:28,241 - Epoch: [95][   50/  500]    Loss 1.044524    Top1 75.039062    Top5 90.968750
-# 2018-10-01 20:57:36,132 - Epoch: [95][  100/  500]    Loss 1.057046    Top1 74.875000    Top5 90.699219
-# 2018-10-01 20:57:44,244 - Epoch: [95][  150/  500]    Loss 1.066284    Top1 74.627604    Top5 90.575521
-# 2018-10-01 20:57:52,479 - Epoch: [95][  200/  500]    Loss 1.058866    Top1 74.718750    Top5 90.589844
-# 2018-10-01 20:58:00,566 - Epoch: [95][  250/  500]    Loss 1.062525    Top1 74.531250    Top5 90.540625
-# 2018-10-01 20:58:08,773 - Epoch: [95][  300/  500]    Loss 1.060124    Top1 74.542969    Top5 90.552083
-# 2018-10-01 20:58:17,233 - Epoch: [95][  350/  500]    Loss 1.063018    Top1 74.493304    Top5 90.493304
-# 2018-10-01 20:58:24,937 - Epoch: [95][  400/  500]    Loss 1.062629    Top1 74.418945    Top5 90.518555
-# 2018-10-01 20:58:33,467 - Epoch: [95][  450/  500]    Loss 1.064152    Top1 74.388889    Top5 90.502604
-# 2018-10-01 20:58:41,221 - Epoch: [95][  500/  500]    Loss 1.064142    Top1 74.372656    Top5 90.492969
-# 2018-10-01 20:58:41,290 - ==> Top1: 74.374    Top5: 90.496    Loss: 1.064
+# 2019-03-20 18:14:17,059 - --- validate (epoch=98)-----------
+# 2019-03-20 18:14:17,059 - 50000 samples (256 per mini-batch)
+# 2019-03-20 18:14:47,289 - Epoch: [98][   50/  195]    Loss 0.958758    Top1 75.703125    Top5 92.843750
+# 2019-03-20 18:15:09,204 - Epoch: [98][  100/  195]    Loss 0.961983    Top1 75.789062    Top5 92.804688
+# 2019-03-20 18:15:35,028 - Epoch: [98][  150/  195]    Loss 0.956074    Top1 75.776042    Top5 92.848958
+# 2019-03-20 18:15:50,982 - ==> Top1: 75.838    Top5: 92.868    Loss: 0.959
 #
-# --- test ---------------------
-# 50000 samples (256 per mini-batch)
-# Test: [   50/  195]    Loss 0.678497    Top1 82.101562    Top5 96.054688
-# Test: [  100/  195]    Loss 0.801957    Top1 79.386719    Top5 94.843750
-# Test: [  150/  195]    Loss 0.916142    Top1 77.119792    Top5 93.453125
-# ==> Top1: 76.086    Top5: 92.950    Loss: 0.960
+# 2019-03-20 18:15:50,998 - ==> Best [Top1: 75.990   Top5: 92.872   Sparsity:79.97   Params: 5108133 on epoch: 94]
+# 2019-03-20 18:15:50,998 - Saving checkpoint to: logs/2019.03.18-090917/checkpoint.pth.tar
+#
+# real    3463m11.943s
+# user    31959m34.272s
+# sys     2745m57.392s
 
 version: 1
 
@@ -98,26 +88,26 @@ pruners:
   fc_pruner:
     class: AutomatedGradualPruner
     initial_sparsity : 0.05
-    final_sparsity: 0.87
+    final_sparsity: 0.80
     weights: module.fc.weight
 
-  mid_pruner:
+  conv_pruner:
     class: AutomatedGradualPruner
     initial_sparsity : 0.05
-    final_sparsity: 0.70
+    final_sparsity: 0.80
     weights: [
     #module.conv1.weight,
-    #module.layer1.0.conv1.weight,
-    #module.layer1.0.conv2.weight,
-    #module.layer1.0.conv3.weight,
-    #module.layer1.0.downsample.0.weight,
-    #module.layer1.1.conv1.weight,
-    #module.layer1.1.conv2.weight,
-    #module.layer1.1.conv3.weight,
-    #module.layer1.2.conv1.weight,
-    #module.layer1.2.conv2.weight,
-    #module.layer1.2.conv3.weight,
-    #module.layer2.0.conv1.weight,
+    module.layer1.0.conv1.weight,
+    module.layer1.0.conv2.weight,
+    module.layer1.0.conv3.weight,
+    module.layer1.0.downsample.0.weight,
+    module.layer1.1.conv1.weight,
+    module.layer1.1.conv2.weight,
+    module.layer1.1.conv3.weight,
+    module.layer1.2.conv1.weight,
+    module.layer1.2.conv2.weight,
+    module.layer1.2.conv3.weight,
+    module.layer2.0.conv1.weight,
     module.layer2.0.conv2.weight,
     module.layer2.0.conv3.weight,
     module.layer2.0.downsample.0.weight,
@@ -153,22 +143,13 @@ pruners:
     module.layer4.0.conv2.weight,
     module.layer4.0.conv3.weight,
     module.layer4.0.downsample.0.weight,
-    #module.layer4.1.conv1.weight,
-    #module.layer4.1.conv2.weight,
+    module.layer4.1.conv1.weight,
+    module.layer4.1.conv2.weight,
     module.layer4.1.conv3.weight,
     module.layer4.2.conv1.weight,
     module.layer4.2.conv2.weight,
     module.layer4.2.conv3.weight]
 
-  low_pruner:
-    class: AutomatedGradualPruner
-    initial_sparsity : 0.05
-    final_sparsity: 0.70
-    weights: [
-    module.layer4.1.conv1.weight,
-    module.layer4.1.conv2.weight]
-
-
 lr_schedulers:
    pruning_lr:
      class: ExponentialLR
@@ -177,22 +158,16 @@ lr_schedulers:
 
 policies:
   - pruner:
-      instance_name : low_pruner
-    starting_epoch: 0
-    ending_epoch: 30
-    frequency: 2
-
-  - pruner:
-      instance_name : mid_pruner
+      instance_name : conv_pruner
     starting_epoch: 0
-    ending_epoch: 30
-    frequency: 2
+    ending_epoch: 35
+    frequency: 1
 
   - pruner:
       instance_name : fc_pruner
     starting_epoch: 1
-    ending_epoch: 29
-    frequency: 2
+    ending_epoch: 35
+    frequency: 1
 
   - lr_scheduler:
       instance_name: pruning_lr