From 534072d826b304e70a4cf4ebe61ab8407cd0b3d8 Mon Sep 17 00:00:00 2001
From: Yury Nahshan <yury.nahshan@intel.com>
Date: Tue, 10 Sep 2019 18:02:00 +0300
Subject: [PATCH] ACIQ clipping in post-training quantization (#173)

ACIQ clipping method, as described in:

Post training 4-bit quantization of convolutional networks for rapid-deployment
(Ron Banner , Yury Nahshan, Daniel Soudry)
(NeurIPS 2019)

https://arxiv.org/abs/1810.05723

Co-authored-by: Yury Nahshan <yury.nahshan@intel.com>
Co-authored-by: Lev Zlotnik <lev.zlotnik@intel.com>
---
 distiller/data_loggers/collector.py           |   52 +-
 distiller/quantization/q_utils.py             |   78 +
 distiller/quantization/range_linear.py        |   87 +-
 .../stats/resnet18_quant_stats.yaml           | 1674 ++++---
 .../stats/resnet50_quant_stats.yaml           | 4243 +++++++++--------
 tests/test_quant_utils.py                     |    4 +
 6 files changed, 3408 insertions(+), 2730 deletions(-)

diff --git a/distiller/data_loggers/collector.py b/distiller/data_loggers/collector.py
index dca2419..612f7d3 100755
--- a/distiller/data_loggers/collector.py
+++ b/distiller/data_loggers/collector.py
@@ -314,7 +314,7 @@ class _QuantStatsRecord(object):
         records = OrderedDict()
         records['min'] = float_info.max
         records['max'] = -float_info.max
-        for stat_name in ['avg_min', 'avg_max', 'mean', 'std']:
+        for stat_name in ['avg_min', 'avg_max', 'mean', 'std', 'b']:
             records[stat_name] = 0
         records['shape'] = ''
         return records
@@ -389,6 +389,7 @@ class QuantCalibrationStatsCollector(ActivationStatsCollector):
 
         self.batch_idx = 0
         self.inplace_runtime_check = inplace_runtime_check
+        self.collecting_laplace = False
 
         if disable_inplace_attrs:
             if not inplace_attr_names:
@@ -398,6 +399,38 @@ class QuantCalibrationStatsCollector(ActivationStatsCollector):
                     if hasattr(m, n):
                         setattr(m, n, False)
 
+    def _check_required_stats(self):
+        """
+        Check whether the required statistics were collected to allow collecting laplace distribution stats.
+        """
+        for name, module in self.model.named_modules():
+            if distiller.has_children(module) or isinstance(module, torch.nn.Identity):
+                continue
+            if not hasattr(module, 'quant_stats'):
+                raise RuntimeError('Collection of Laplace distribution statistics is '
+                                   'only allowed after collection of stats has started.')
+            for i, input_stats_record in enumerate(module.quant_stats.inputs):
+                if 'mean' not in input_stats_record:
+                    raise RuntimeError('The required stats for input[%d] in module "%s" were not collected. '
+                                       'Please collect the required statistics using `collector.start()` and evaluating'
+                                       ' the model for enough batches.' % (i, name))
+            if 'mean' not in module.quant_stats.output:
+                raise RuntimeError('The required stats for the output in module "%s" were not collected. '
+                                   'Please collect the required statistics using `collector.start()` and evaluating'
+                                   ' the model for enough batches.' % name)
+
+    def start_laplace(self):
+        self._check_required_stats()
+        self.collecting_laplace = True
+        # reset batch_idx for all leaf modules
+        for module in self.model.modules():
+            if distiller.has_children(module) or isinstance(module, torch.nn.Identity):
+                continue
+            module.batch_idx = 0
+
+    def stop_laplace(self):
+        self.collecting_laplace = False
+
     def _activation_stats_cb(self, module, inputs, output):
         def update_mean(old_mean, new_val):
             return old_mean + (new_val - old_mean) / module.batch_idx
@@ -412,10 +445,20 @@ class QuantCalibrationStatsCollector(ActivationStatsCollector):
             M += mean_diffs.sum()
             return sqrt((M / (total_values_so_far + numel - 1)).item())
 
+        def update_b(values, old_b, mean):
+            """
+            Updates the 'b' parameter of Laplace Distribution.
+            """
+            current_b = (values - mean).abs().mean().item()
+            return old_b + (current_b - old_b) / module.batch_idx
+
         def update_record(record, tensor):
             if not tensor.is_contiguous():
                 tensor = tensor.contiguous()
             act = tensor.view(tensor.size(0), -1)
+            if self.collecting_laplace:
+                record['b'] = update_b(act, record['b'], record['mean'])
+                return
 
             # In the general case, the average min/max that we're collecting are averages over the per-sample
             # min/max values. That is - we first calculate the min/max for each sample in the batch, then average
@@ -690,7 +733,14 @@ def collect_quant_stats(model, test_fn, save_dir=None, classes=None, inplace_run
                                                            disable_inplace_attrs=disable_inplace_attrs,
                                                            inplace_attr_names=inplace_attr_names)
     with collector_context(quant_stats_collector):
+        msglogger.info('Pass 1: Collecting min, max, avg_min, avg_max, mean, std')
         test_fn(model=model)
+        # Collect Laplace distribution stats:
+        msglogger.info('Pass 2: Collecting b parameter')
+        quant_stats_collector.start_laplace()
+        test_fn(model=model)
+        quant_stats_collector.stop_laplace()
+
     msglogger.info('Stats collection complete')
     if save_dir is not None:
         save_path = os.path.join(save_dir, 'acts_quantization_stats.yaml')
diff --git a/distiller/quantization/q_utils.py b/distiller/quantization/q_utils.py
index 25f8f7c..91d665a 100644
--- a/distiller/quantization/q_utils.py
+++ b/distiller/quantization/q_utils.py
@@ -14,6 +14,7 @@
 # limitations under the License.
 #
 
+from enum import Enum
 import torch
 
 
@@ -175,6 +176,83 @@ def approx_scale_as_mult_and_shift(fp32_scale, mult_bits, limit=False):
     return multiplier / (2 ** shift_bits)
 
 
+class AciqClipper(object):
+    """
+    Implemented according to https://arxiv.org/pdf/1810.05723.pdf
+    """
+    alpha_laplace = {0: 1.05, 1: 1.86, 2: 2.83, 3: 3.89, 4: 5.03, 5: 6.2, 6: 7.41, 7: 8.64, 8: 9.89}
+    alpha_laplace_positive = {0: 1.86, 1: 2.83, 2: 3.89, 3: 5.02, 4: 6.2, 5: 7.41, 6: 8.64, 7: 9.89, 8: 11.16}
+    alpha_gauss = {1: 1.24, 2: 1.71, 3: 2.15, 4: 2.55, 5: 2.93, 6: 3.28, 7: 3.61, 8: 3.92}
+    alpha_gauss_positive = {1: 1.71, 2: 2.15, 3: 2.55, 4: 2.93, 5: 3.28, 6: 3.61, 7: 3.92, 8: 4.2}
+
+    class AciqClippingType(Enum):
+        Laplace = 1
+        Gauss = 2
+
+    @staticmethod
+    def get_alpha_laplace(t, across_dim=None, num_bits=8, half_range=False):
+        if isinstance(t, torch.Tensor):
+            # Mean of means across dims is equivalent to global mean
+            b = torch.mean(torch.abs(t - t.mean()))
+        elif isinstance(t, dict):
+            # t is Quant Calibration activation stats dict.
+            b = t['b']
+        else:
+            raise TypeError("Only torch.Tensors or quantization calibration activation stats dicts are acceptable.")
+        return b * (AciqClipper.alpha_laplace_positive[num_bits] if half_range
+                    else AciqClipper.alpha_laplace[num_bits])
+
+    @staticmethod
+    def get_alpha_gauss(t, across_dim=None, num_bits=8, half_range=False):
+        if isinstance(t, torch.Tensor):
+            # Mean of means across dims is equivalent to global mean
+            std = torch.std(t)
+        elif isinstance(t, dict):
+            # t is Quant Calibration activation stats dict.
+            std = t['std']
+        else:
+            raise TypeError("Only torch.Tensors or quantization calibration activation stats dicts are acceptable.")
+        return std * (AciqClipper.alpha_gauss_positive[num_bits] if half_range
+                      else AciqClipper.alpha_gauss[num_bits])
+
+
+class AciqSymmetricClipper(AciqClipper):
+    def __init__(self, num_bits, clip_type=AciqClipper.AciqClippingType.Laplace):
+        self.num_bits = num_bits
+        self.clip_type = clip_type
+
+    def __call__(self, t, across_dim=None):
+        if self.clip_type == AciqClipper.AciqClippingType.Laplace:
+            alpha = AciqClipper.get_alpha_laplace(t, across_dim, self.num_bits)
+        else:
+            alpha = AciqClipper.get_alpha_gauss(t, across_dim, self.num_bits)
+        if isinstance(t, dict):
+            mean = torch.tensor(t['mean'])
+        else:
+            mean = t.mean()
+        return torch.abs(mean) + alpha
+
+
+class AciqAsymmetricClipper(AciqClipper):
+    def __init__(self, num_bits, clip_type=AciqClipper.AciqClippingType.Laplace):
+        self.num_bits = num_bits
+        self.clip_type = clip_type
+
+    def __call__(self, t, across_dim=None, half_range=False):
+        if isinstance(t, dict):
+            mean, min_val = torch.tensor(t['mean']), torch.tensor(t['avg_min'])
+        else:
+            mean = t.mean()
+            min_val = get_tensor_min_max(t, across_dim)[0].mean()
+        if self.clip_type == AciqClipper.AciqClippingType.Laplace:
+            alpha = AciqClipper.get_alpha_laplace(t, across_dim, self.num_bits, half_range=half_range)
+        else:
+            alpha = AciqClipper.get_alpha_gauss(t, across_dim, self.num_bits, half_range=half_range)
+        min_val = torch.max(min_val, mean - alpha)
+
+        return min_val, min_val + 2 * alpha
+
+
 def get_quantized_range(num_bits, signed=True):
     if signed:
         n = 2 ** (num_bits - 1)
diff --git a/distiller/quantization/range_linear.py b/distiller/quantization/range_linear.py
index 29a639b..e161f7f 100644
--- a/distiller/quantization/range_linear.py
+++ b/distiller/quantization/range_linear.py
@@ -52,6 +52,10 @@ class ClipMode(Enum):
     # Clip value calculated as mean of tensor + N standard deviations. N should be specified separately
     N_STD = 2
 
+    # ACIQ Clipping Modes -
+    GAUSS = 3
+    LAPLACE = 4
+
 
 def _verify_enum_value(val, enum_cls):
     cls_name = enum_cls.__name__
@@ -75,20 +79,24 @@ def verify_clip_mode(mode):
     return _verify_enum_value(mode, ClipMode)
 
 
-def _get_saturation_fn(quant_mode, clip_mode, num_stds):
+def _get_saturation_fn(quant_mode, clip_mode, num_stds, num_bits=None):
     if quant_mode == LinearQuantMode.SYMMETRIC:
         fns = {ClipMode.NONE: get_tensor_max_abs,
                ClipMode.AVG: get_tensor_avg_max_abs,
-               ClipMode.N_STD: partial(get_tensor_mean_n_stds_max_abs, n_stds=num_stds)}
+               ClipMode.N_STD: partial(get_tensor_mean_n_stds_max_abs, n_stds=num_stds),
+               ClipMode.GAUSS: AciqSymmetricClipper(num_bits, AciqClipper.AciqClippingType.Gauss),
+               ClipMode.LAPLACE: AciqSymmetricClipper(num_bits, AciqClipper.AciqClippingType.Laplace)}
     else:  # Asymmetric mode
         fns = {ClipMode.NONE: get_tensor_min_max,
                ClipMode.AVG: get_tensor_avg_min_max,
-               ClipMode.N_STD: partial(get_tensor_mean_n_stds_min_max, n_stds=num_stds)}
+               ClipMode.N_STD: partial(get_tensor_mean_n_stds_min_max, n_stds=num_stds),
+               ClipMode.GAUSS: AciqAsymmetricClipper(num_bits, AciqClipper.AciqClippingType.Gauss),
+               ClipMode.LAPLACE: AciqAsymmetricClipper(num_bits, AciqClipper.AciqClippingType.Laplace)}
     return fns[clip_mode]
 
 
 def _get_quant_params_from_tensor(tensor, num_bits, mode, clip=ClipMode.NONE, per_channel=False, num_stds=None,
-                                  scale_approx_mult_bits=None):
+                                  half_range=False, scale_approx_mult_bits=None):
     if per_channel and tensor.dim() not in [2, 4]:
         raise ValueError('Per channel quantization possible only with 2D or 4D tensors (linear or conv layer weights)')
 
@@ -97,14 +105,18 @@ def _get_quant_params_from_tensor(tensor, num_bits, mode, clip=ClipMode.NONE, pe
             raise ValueError('N_STD clipping not supported with per-channel quantization')
         if num_stds is None:
             raise ValueError('Clip mode set top N_STD but \'num_stds\' parameter not provided')
+    if half_range and clip not in [ClipMode.GAUSS, ClipMode.LAPLACE]:
+        warnings.warn("Using clip_half_range without ACIQ clip modes (GAUSS or LAPACE) will have no"
+                      " effect.")
 
     dim = 0 if clip == ClipMode.AVG or per_channel else None
-    sat_fn = _get_saturation_fn(mode, clip, num_stds)
+    sat_fn = _get_saturation_fn(mode, clip, num_stds, num_bits)
     if mode == LinearQuantMode.SYMMETRIC:
         sat_val = sat_fn(tensor, dim)
         scale, zp = symmetric_linear_quantization_params(num_bits, sat_val)
     else:   # Asymmetric mode
-        sat_min, sat_max = sat_fn(tensor, dim)
+        sat_min, sat_max = sat_fn(tensor, dim) if clip not in [ClipMode.GAUSS, ClipMode.LAPLACE] \
+            else sat_fn(tensor, dim, half_range=half_range)
         signed = mode == LinearQuantMode.ASYMMETRIC_SIGNED
         scale, zp = asymmetric_linear_quantization_params(num_bits, sat_min, sat_max, signed=signed)
 
@@ -120,13 +132,17 @@ def _get_quant_params_from_tensor(tensor, num_bits, mode, clip=ClipMode.NONE, pe
     return scale, zp
 
 
-def _get_quant_params_from_stats_dict(stats, num_bits, mode, clip=ClipMode.NONE, num_stds=None,
+def _get_quant_params_from_stats_dict(stats, num_bits, mode, clip=ClipMode.NONE, num_stds=None, half_range=False,
                                       scale_approx_mult_bits=None):
     if clip == ClipMode.N_STD:
         if num_stds is None:
             raise ValueError('Clip mode set to N_STD but \'num_stds\' parameter not provided')
         if num_stds <= 0:
             raise ValueError('n_stds must be > 0, got {}'.format(num_stds))
+    if half_range and clip not in [ClipMode.GAUSS, ClipMode.LAPLACE]:
+        warnings.warn("Using clip_half_range without ACIQ clip modes (GAUSS or LAPACE) will have no"
+                      " effect.")
+
     prefix = 'avg_' if clip == ClipMode.AVG else ''
     sat_min = torch.tensor(float(stats[prefix + 'min']))
     sat_max = torch.tensor(float(stats[prefix + 'max']))
@@ -135,6 +151,13 @@ def _get_quant_params_from_stats_dict(stats, num_bits, mode, clip=ClipMode.NONE,
         std = torch.tensor(float(stats['std']))
         sat_min = torch.max(sat_min, mean - num_stds * std)
         sat_max = torch.min(sat_max, mean + num_stds * std)
+    elif clip in (ClipMode.LAPLACE, ClipMode.GAUSS):
+        clip = AciqClipper.AciqClippingType.Laplace if clip == ClipMode.LAPLACE else AciqClipper.AciqClippingType.Gauss
+        if mode == LinearQuantMode.SYMMETRIC:
+            sat_min, sat_max = AciqSymmetricClipper(num_bits, clip)(stats)
+        else:
+            sat_min, sat_max = AciqAsymmetricClipper(num_bits, clip)(stats, half_range=half_range)
+
     if mode == LinearQuantMode.SYMMETRIC:
         scale, zp = symmetric_linear_quantization_params(num_bits, torch.max(sat_min.abs_(), sat_max.abs_()))
     else:
@@ -157,7 +180,8 @@ def add_post_train_quant_args(argparser):
                              'asym_s': LinearQuantMode.ASYMMETRIC_SIGNED,
                              'asym_u': LinearQuantMode.ASYMMETRIC_UNSIGNED}
 
-    str_to_clip_mode_map = {'none': ClipMode.NONE, 'avg': ClipMode.AVG, 'n_std': ClipMode.N_STD}
+    str_to_clip_mode_map = {'none': ClipMode.NONE, 'avg': ClipMode.AVG, 'n_std': ClipMode.N_STD,
+                            'gauss': ClipMode.GAUSS, 'laplace': ClipMode.LAPLACE}
 
     def from_dict(d, val_str):
         try:
@@ -220,6 +244,8 @@ class RangeLinearQuantWrapper(nn.Module):
             parameters. Dict should be in the format exported by distiller.data_loggers.QuantCalibrationStatsCollector.
             If None then parameters are calculated dynamically.
         clip_n_stds (float): When clip_acts == ClipMode.N_STD, this is the number of standard deviations to use
+        clip_half_range (bool): use half range clipping.
+            NOTE - this only works with ACIQ clip modes i.e. GAUSS and LAPLACE
         scale_approx_mult_bits (int): If not None, scale factors will be approximated using an integer multiplication
             followed by a bit-wise shift. This eliminates floating-point scale factors, replacing them with integer
             calculations.
@@ -227,7 +253,8 @@ class RangeLinearQuantWrapper(nn.Module):
     """
 
     def __init__(self, wrapped_module, num_bits_acts, num_bits_accum=32, mode=LinearQuantMode.SYMMETRIC,
-                 clip_acts=ClipMode.NONE, activation_stats=None, clip_n_stds=None, scale_approx_mult_bits=None):
+                 clip_acts=ClipMode.NONE, activation_stats=None, clip_n_stds=None, clip_half_range=False,
+                 scale_approx_mult_bits=None):
         super(RangeLinearQuantWrapper, self).__init__()
 
         self.wrapped_module = wrapped_module
@@ -236,6 +263,7 @@ class RangeLinearQuantWrapper(nn.Module):
         self.mode = mode
         self.clip_acts = clip_acts
         self.clip_n_stds = clip_n_stds
+        self.clip_half_range = clip_half_range
         self.scale_approx_mult_bits = scale_approx_mult_bits
 
         # Controls whether output is de-quantized at end of forward op. Meant as a debug / test flag only
@@ -253,14 +281,16 @@ class RangeLinearQuantWrapper(nn.Module):
             self.num_inputs = 0
             for idx, stats in activation_stats['inputs'].items():
                 self.num_inputs += 1
-                scale, zp = _get_quant_params_from_stats_dict(stats, num_bits_acts, mode, clip_acts, clip_n_stds,
+                scale, zp = _get_quant_params_from_stats_dict(stats, num_bits_acts,
+                                                              mode, clip_acts, clip_n_stds, clip_half_range,
                                                               scale_approx_mult_bits)
                 prefix = 'in_{0}_'.format(idx)
                 self.register_buffer(prefix + 'scale', scale)
                 self.register_buffer(prefix + 'zero_point', zp)
 
-            scale, zp = _get_quant_params_from_stats_dict(activation_stats['output'], num_bits_acts, mode, clip_acts,
-                                                          clip_n_stds, scale_approx_mult_bits)
+            scale, zp = _get_quant_params_from_stats_dict(activation_stats['output'], num_bits_acts, mode,
+                                                          clip_acts, clip_n_stds, clip_half_range,
+                                                          scale_approx_mult_bits)
             self.register_buffer('output_scale', scale)
             self.register_buffer('output_zero_point', zp)
         else:
@@ -415,14 +445,15 @@ class RangeLinearQuantParamLayerWrapper(RangeLinearQuantWrapper):
             output channel
         activation_stats (dict): See RangeLinearQuantWrapper
         clip_n_stds (int): See RangeLinearQuantWrapper
+        clip_half_range (bool) : See RangeLinearQuantWrapper
         scale_approx_mult_bits (int): See RangeLinearQuantWrapper
     """
     def __init__(self, wrapped_module, num_bits_acts, num_bits_params, num_bits_accum=32,
                  mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE, per_channel_wts=False, activation_stats=None,
-                 clip_n_stds=None, scale_approx_mult_bits=None):
+                 clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None):
         super(RangeLinearQuantParamLayerWrapper, self).__init__(wrapped_module, num_bits_acts, num_bits_accum, mode,
                                                                 clip_acts, activation_stats, clip_n_stds,
-                                                                scale_approx_mult_bits)
+                                                                clip_half_range, scale_approx_mult_bits)
 
         if not isinstance(wrapped_module, (nn.Conv2d, nn.Conv3d, nn.Linear)):
             raise ValueError(self.__class__.__name__ + ' can wrap only Conv2D, Conv3D and Linear modules')
@@ -595,10 +626,10 @@ class RangeLinearQuantMatmulWrapper(RangeLinearQuantWrapper):
     """
     def __init__(self, wrapped_module, num_bits_acts, num_bits_accum=32,
                  mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE,  activation_stats=None,
-                 clip_n_stds=None, scale_approx_mult_bits=None):
+                 clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None):
         super(RangeLinearQuantMatmulWrapper, self).__init__(wrapped_module, num_bits_acts, num_bits_accum, mode,
-                                                                clip_acts, activation_stats, clip_n_stds,
-                                                                scale_approx_mult_bits)
+                                                            clip_acts, activation_stats, clip_n_stds, clip_half_range,
+                                                            scale_approx_mult_bits)
 
         if not isinstance(wrapped_module, (distiller.modules.Matmul, distiller.modules.BatchMatmul)):
             raise ValueError(self.__class__.__name__ + ' can wrap only Matmul modules')
@@ -664,7 +695,7 @@ class NoStatsError(NotImplementedError):
 
 class RangeLinearQuantConcatWrapper(RangeLinearQuantWrapper):
     def __init__(self, wrapped_module, num_bits_acts, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE,
-                 activation_stats=None, clip_n_stds=None, scale_approx_mult_bits=None):
+                 activation_stats=None, clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None):
         if not isinstance(wrapped_module, distiller.modules.Concat):
             raise ValueError(self.__class__.__name__ + ' can only wrap distiller.modules.Concat modules')
 
@@ -674,7 +705,7 @@ class RangeLinearQuantConcatWrapper(RangeLinearQuantWrapper):
 
         super(RangeLinearQuantConcatWrapper, self).__init__(wrapped_module, num_bits_acts, mode=mode,
                                                             clip_acts=clip_acts, activation_stats=activation_stats,
-                                                            clip_n_stds=clip_n_stds,
+                                                            clip_n_stds=clip_n_stds, clip_half_range=clip_half_range,
                                                             scale_approx_mult_bits=scale_approx_mult_bits)
 
         if self.preset_act_stats:
@@ -714,7 +745,7 @@ class RangeLinearQuantConcatWrapper(RangeLinearQuantWrapper):
 
 class RangeLinearQuantEltwiseAddWrapper(RangeLinearQuantWrapper):
     def __init__(self, wrapped_module, num_bits_acts, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE,
-                 activation_stats=None, clip_n_stds=None, scale_approx_mult_bits=None):
+                 activation_stats=None, clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None):
         if not isinstance(wrapped_module, distiller.modules.EltwiseAdd):
             raise ValueError(self.__class__.__name__ + ' can only wrap distiller.modules.EltwiseAdd modules')
 
@@ -725,6 +756,7 @@ class RangeLinearQuantEltwiseAddWrapper(RangeLinearQuantWrapper):
         super(RangeLinearQuantEltwiseAddWrapper, self).__init__(wrapped_module, num_bits_acts, mode=mode,
                                                                 clip_acts=clip_acts, activation_stats=activation_stats,
                                                                 clip_n_stds=clip_n_stds,
+                                                                clip_half_range=clip_half_range,
                                                                 scale_approx_mult_bits=scale_approx_mult_bits)
 
         if self.preset_act_stats:
@@ -767,7 +799,7 @@ class RangeLinearQuantEltwiseAddWrapper(RangeLinearQuantWrapper):
 
 class RangeLinearQuantEltwiseMultWrapper(RangeLinearQuantWrapper):
     def __init__(self, wrapped_module, num_bits_acts, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE,
-                 activation_stats=None, clip_n_stds=None, scale_approx_mult_bits=None):
+                 activation_stats=None, clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None):
         if not isinstance(wrapped_module, distiller.modules.EltwiseMult):
             raise ValueError(self.__class__.__name__ + ' can only wrap distiller.modules.EltwiseMult modules')
 
@@ -778,6 +810,7 @@ class RangeLinearQuantEltwiseMultWrapper(RangeLinearQuantWrapper):
         super(RangeLinearQuantEltwiseMultWrapper, self).__init__(wrapped_module, num_bits_acts, mode=mode,
                                                                  clip_acts=clip_acts, activation_stats=activation_stats,
                                                                  clip_n_stds=clip_n_stds,
+                                                                 clip_half_range=clip_half_range,
                                                                  scale_approx_mult_bits=scale_approx_mult_bits)
 
         if self.preset_act_stats:
@@ -937,21 +970,24 @@ class PostTrainLinearQuantizer(Quantizer):
 
         def replace_param_layer(module, name, qbits_map, per_channel_wts=per_channel_wts,
                                 mode=mode, fp16=fp16, scale_approx_mult_bits=scale_approx_mult_bits,
-                                clip_acts=clip_acts, clip_n_stds=clip_n_stds):
+                                clip_acts=clip_acts, clip_half_range=False, clip_n_stds=clip_n_stds):
             if fp16:
                 return FP16Wrapper(module)
+
+            # TODO: Try auto-detecting when clip_half_range is needed
+            #  instead of having the user pass it as a parameter (same for replace_non_param_layer)
             norm_name = distiller.utils.normalize_module_name(name)
             clip_acts = verify_clip_mode(clip_acts)
             return RangeLinearQuantParamLayerWrapper(module, qbits_map[name].acts, qbits_map[name].wts,
                                                      num_bits_accum=self.bits_accum, mode=mode, clip_acts=clip_acts,
                                                      per_channel_wts=per_channel_wts,
                                                      activation_stats=self.model_activation_stats.get(norm_name, None),
-                                                     clip_n_stds=clip_n_stds,
+                                                     clip_n_stds=clip_n_stds, clip_half_range=clip_half_range,
                                                      scale_approx_mult_bits=scale_approx_mult_bits)
 
         def replace_non_param_layer(wrapper_type, module, name, qbits_map, fp16=fp16,
                                     scale_approx_mult_bits=scale_approx_mult_bits,
-                                    clip_acts=clip_acts, clip_n_stds=clip_n_stds):
+                                    clip_acts=clip_acts, clip_n_stds=clip_n_stds, clip_half_range=False):
             if fp16:
                 return FP16Wrapper(module)
             norm_name = distiller.utils.normalize_module_name(name)
@@ -959,7 +995,8 @@ class PostTrainLinearQuantizer(Quantizer):
             try:
                 return wrapper_type(module, qbits_map[name].acts, mode=mode, clip_acts=clip_acts,
                                     activation_stats=self.model_activation_stats.get(norm_name, None),
-                                    clip_n_stds=clip_n_stds, scale_approx_mult_bits=scale_approx_mult_bits)
+                                    clip_n_stds=clip_n_stds, clip_half_range=clip_half_range,
+                                    scale_approx_mult_bits=scale_approx_mult_bits)
             except NoStatsError:
                 msglogger.warning('WARNING: {0} - quantization of {1} without stats not supported. '
                                   'Keeping the original FP32 module'.format(name, module.__class__.__name__))
diff --git a/examples/quantization/post_train_quant/stats/resnet18_quant_stats.yaml b/examples/quantization/post_train_quant/stats/resnet18_quant_stats.yaml
index 1b9814d..5513beb 100644
--- a/examples/quantization/post_train_quant/stats/resnet18_quant_stats.yaml
+++ b/examples/quantization/post_train_quant/stats/resnet18_quant_stats.yaml
@@ -1,7 +1,7 @@
 # ResNet-18 activation statistics for post-training quantization
 # Generated by running:
 #
-# python compress_classifier.py -a resnet18 -p 10 -j 22 <path_to_imagenet_dataset> --pretrained --qe-calibration 0.05
+# python compress_classifier.py -a resnet18 -p 10 -j 22 <path_to_imagenet_dataset> --pretrained --qe-calibration 0.05 --seed 0
 #
 # Notes:
 #  * Stats collection is triggered by the '--qe-calibration' flag. It will run evaluation on the specified portion of 
@@ -15,1286 +15,1430 @@ conv1:
     0:
       min: -2.1179039478302
       max: 2.640000104904175
-      avg_min: -2.0155762195587155
-      avg_max: 2.48675365447998
-      mean: -0.05581759512424469
-      std: 1.181673563348384
+      avg_min: -2.0179028272628785
+      avg_max: 2.4849105119705195
+      mean: -0.02644771572668106
+      std: 1.1904664382080992
+      b: 1.0037795305252075
       shape: (256, 3, 224, 224)
   output:
-    min: -35.76463317871094
-    max: 35.28437423706055
-    avg_min: -22.443804359436033
-    avg_max: 22.809664916992187
-    mean: -1.8954842971652397e-05
-    std: 1.7586114042828802
+    min: -37.17167663574219
+    max: 36.08745574951172
+    avg_min: -22.434925651550294
+    avg_max: 22.787699317932127
+    mean: -0.0001754729266394861
+    std: 1.7580939173603671
+    b: 1.0786008000373841
     shape: (256, 64, 112, 112)
 bn1:
   inputs:
     0:
-      min: -35.76463317871094
-      max: 35.28437423706055
-      avg_min: -22.443804359436033
-      avg_max: 22.809664916992187
-      mean: -1.8954842971652397e-05
-      std: 1.7586114042828802
+      min: -37.17167663574219
+      max: 36.08745574951172
+      avg_min: -22.434925651550294
+      avg_max: 22.787699317932127
+      mean: -0.0001754729266394861
+      std: 1.7580939173603671
+      b: 1.0786008000373841
       shape: (256, 64, 112, 112)
   output:
-    min: -6.65138578414917
-    max: 7.338484287261963
-    avg_min: -2.8493101835250854
-    avg_max: 3.349868631362915
-    mean: 0.18185057491064072
-    std: 0.41268930715153396
+    min: -6.58004093170166
+    max: 7.357358932495117
+    avg_min: -2.821167016029358
+    avg_max: 3.334167599678039
+    mean: 0.18160294145345687
+    std: 0.4129777229999846
+    b: 0.28660632371902467
     shape: (256, 64, 112, 112)
 relu:
   inputs:
     0:
-      min: -6.65138578414917
-      max: 7.338484287261963
-      avg_min: -2.8493101835250854
-      avg_max: 3.349868631362915
-      mean: 0.18185057491064072
-      std: 0.41268930715153396
+      min: -6.58004093170166
+      max: 7.357358932495117
+      avg_min: -2.821167016029358
+      avg_max: 3.334167599678039
+      mean: 0.18160294145345687
+      std: 0.4129777229999846
+      b: 0.28660632371902467
       shape: (256, 64, 112, 112)
   output:
     min: 0.0
-    max: 7.338484287261963
+    max: 7.357358932495117
     avg_min: 0.0
-    avg_max: 3.349868631362915
-    mean: 0.2598995238542557
-    std: 0.27431192907072754
+    avg_max: 3.334167599678039
+    mean: 0.25995961129665374
+    std: 0.2736657824588164
+    b: 0.21144414991140364
     shape: (256, 64, 112, 112)
 maxpool:
   inputs:
     0:
       min: 0.0
-      max: 7.338484287261963
+      max: 7.357358932495117
       avg_min: 0.0
-      avg_max: 3.349868631362915
-      mean: 0.2598995238542557
-      std: 0.27431192907072754
+      avg_max: 3.334167599678039
+      mean: 0.25995961129665374
+      std: 0.2736657824588164
+      b: 0.21144414991140364
       shape: (256, 64, 112, 112)
   output:
     min: 0.0
-    max: 7.338484287261963
+    max: 7.357358932495117
     avg_min: 0.0
-    avg_max: 3.349868631362915
-    mean: 0.37854534685611724
-    std: 0.34987264981490734
+    avg_max: 3.334167599678039
+    mean: 0.37670861780643466
+    std: 0.34820184864463305
+    b: 0.2668348789215088
     shape: (256, 64, 56, 56)
 layer1.0.conv1:
   inputs:
     0:
       min: 0.0
-      max: 7.338484287261963
+      max: 7.357358932495117
       avg_min: 0.0
-      avg_max: 3.349868631362915
-      mean: 0.37854534685611724
-      std: 0.34987264981490734
+      avg_max: 3.334167599678039
+      mean: 0.37670861780643466
+      std: 0.34820184864463305
+      b: 0.2668348789215088
       shape: (256, 64, 56, 56)
   output:
-    min: -17.075458526611328
-    max: 9.973828315734863
-    avg_min: -10.725397968292237
-    avg_max: 4.599550724029541
-    mean: -0.9369088828563691
-    std: 1.1919106838283573
+    min: -16.87494659423828
+    max: 10.887310028076172
+    avg_min: -10.703684616088868
+    avg_max: 4.577920770645141
+    mean: -0.9323187172412872
+    std: 1.1861670190309386
+    b: 0.8818115055561065
     shape: (256, 64, 56, 56)
 layer1.0.bn1:
   inputs:
     0:
-      min: -17.075458526611328
-      max: 9.973828315734863
-      avg_min: -10.725397968292237
-      avg_max: 4.599550724029541
-      mean: -0.9369088828563691
-      std: 1.1919106838283573
+      min: -16.87494659423828
+      max: 10.887310028076172
+      avg_min: -10.703684616088868
+      avg_max: 4.577920770645141
+      mean: -0.9323187172412872
+      std: 1.1861670190309386
+      b: 0.8818115055561065
       shape: (256, 64, 56, 56)
   output:
-    min: -7.84696102142334
-    max: 4.932901382446289
-    avg_min: -4.371330738067627
-    avg_max: 1.7983517408370973
-    mean: -0.050233672186732296
-    std: 0.4317025532895933
+    min: -7.912492752075195
+    max: 4.465096473693848
+    avg_min: -4.370650768280029
+    avg_max: 1.781515896320343
+    mean: -0.04791574366390705
+    std: 0.42959841758460565
+    b: 0.30843749046325686
     shape: (256, 64, 56, 56)
 layer1.0.relu1:
   inputs:
     0:
-      min: -7.84696102142334
-      max: 4.932901382446289
-      avg_min: -4.371330738067627
-      avg_max: 1.7983517408370973
-      mean: -0.050233672186732296
-      std: 0.4317025532895933
+      min: -7.912492752075195
+      max: 4.465096473693848
+      avg_min: -4.370650768280029
+      avg_max: 1.781515896320343
+      mean: -0.04791574366390705
+      std: 0.42959841758460565
+      b: 0.30843749046325686
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
-    max: 4.932901382446289
+    max: 4.465096473693848
     avg_min: 0.0
-    avg_max: 1.7983517408370973
-    mean: 0.12365709394216537
-    std: 0.15240964320349404
+    avg_max: 1.781515896320343
+    mean: 0.12415257766842841
+    std: 0.15184144817035658
+    b: 0.12101016268134118
     shape: (256, 64, 56, 56)
 layer1.0.conv2:
   inputs:
     0:
       min: 0.0
-      max: 4.932901382446289
+      max: 4.465096473693848
       avg_min: 0.0
-      avg_max: 1.7983517408370973
-      mean: 0.12365709394216537
-      std: 0.15240964320349404
+      avg_max: 1.781515896320343
+      mean: 0.12415257766842841
+      std: 0.15184144817035658
+      b: 0.12101016268134118
       shape: (256, 64, 56, 56)
   output:
-    min: -7.605445861816406
-    max: 4.186079502105713
-    avg_min: -2.843373680114746
-    avg_max: 1.8348817229270935
-    mean: -0.07289719507098198
-    std: 0.3931055464123539
+    min: -7.069628715515137
+    max: 3.4729065895080566
+    avg_min: -2.847720456123352
+    avg_max: 1.832327115535736
+    mean: -0.07194625288248062
+    std: 0.39378847887850943
+    b: 0.29262713491916664
     shape: (256, 64, 56, 56)
 layer1.0.bn2:
   inputs:
     0:
-      min: -7.605445861816406
-      max: 4.186079502105713
-      avg_min: -2.843373680114746
-      avg_max: 1.8348817229270935
-      mean: -0.07289719507098198
-      std: 0.3931055464123539
+      min: -7.069628715515137
+      max: 3.4729065895080566
+      avg_min: -2.847720456123352
+      avg_max: 1.832327115535736
+      mean: -0.07194625288248062
+      std: 0.39378847887850943
+      b: 0.29262713491916664
       shape: (256, 64, 56, 56)
   output:
-    min: -7.029930591583252
-    max: 6.096140384674072
-    avg_min: -3.364328002929687
-    avg_max: 2.671983480453491
-    mean: -0.007625545584596693
-    std: 0.4165292712020149
+    min: -6.498610496520996
+    max: 5.046974182128906
+    avg_min: -3.3557324409484863
+    avg_max: 2.6549140930175783
+    mean: -0.006219549803063273
+    std: 0.41592445628222435
+    b: 0.30928740203380584
     shape: (256, 64, 56, 56)
 layer1.0.relu2:
   inputs:
     0:
-      min: -6.755189895629883
-      max: 7.848092555999756
-      avg_min: -3.2848753213882445
-      avg_max: 3.888275837898254
-      mean: 0.37091979682445525
-      std: 0.5165421680711509
+      min: -6.361315727233887
+      max: 7.920192718505859
+      avg_min: -3.27264986038208
+      avg_max: 3.8547550201416017
+      mean: 0.3704890608787537
+      std: 0.5144624319661206
+      b: 0.3796554893255234
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
-    max: 7.848092555999756
+    max: 7.920192718505859
     avg_min: 0.0
-    avg_max: 3.888275837898254
-    mean: 0.4402212053537369
-    std: 0.40145754203197104
+    avg_max: 3.8547550201416017
+    mean: 0.4392666757106781
+    std: 0.39984883193751414
+    b: 0.31421991586685183
     shape: (256, 64, 56, 56)
 layer1.0.add:
   inputs:
     0:
-      min: -7.029930591583252
-      max: 6.096140384674072
-      avg_min: -3.364328002929687
-      avg_max: 2.671983480453491
-      mean: -0.007625545584596693
-      std: 0.4165292712020149
+      min: -6.498610496520996
+      max: 5.046974182128906
+      avg_min: -3.3557324409484863
+      avg_max: 2.6549140930175783
+      mean: -0.006219549803063273
+      std: 0.41592445628222435
+      b: 0.30928740203380584
       shape: (256, 64, 56, 56)
     1:
       min: 0.0
-      max: 7.338484287261963
+      max: 7.357358932495117
       avg_min: 0.0
-      avg_max: 3.349868631362915
-      mean: 0.37854534685611724
-      std: 0.34987264981490734
+      avg_max: 3.334167599678039
+      mean: 0.37670861780643466
+      std: 0.34820184864463305
+      b: 0.2668348789215088
       shape: (256, 64, 56, 56)
   output:
-    min: -6.755189895629883
-    max: 7.848092555999756
-    avg_min: -3.2848753213882445
-    avg_max: 3.888275837898254
-    mean: 0.37091979682445525
-    std: 0.5165421680711509
+    min: -6.361315727233887
+    max: 7.920192718505859
+    avg_min: -3.27264986038208
+    avg_max: 3.8547550201416017
+    mean: 0.3704890608787537
+    std: 0.5144624319661206
+    b: 0.3796554893255234
     shape: (256, 64, 56, 56)
 layer1.1.conv1:
   inputs:
     0:
       min: 0.0
-      max: 7.848092555999756
+      max: 7.920192718505859
       avg_min: 0.0
-      avg_max: 3.888275837898254
-      mean: 0.4402212053537369
-      std: 0.40145754203197104
+      avg_max: 3.8547550201416017
+      mean: 0.4392666757106781
+      std: 0.39984883193751414
+      b: 0.31421991586685183
       shape: (256, 64, 56, 56)
   output:
-    min: -12.157726287841797
-    max: 11.766583442687988
-    avg_min: -7.595281553268432
-    avg_max: 5.0373931407928465
-    mean: -0.6426207780838012
-    std: 1.1092499675944172
+    min: -11.491942405700684
+    max: 11.20591926574707
+    avg_min: -7.546071910858155
+    avg_max: 5.024500560760498
+    mean: -0.6395838379859924
+    std: 1.105064830518023
+    b: 0.8696278989315033
     shape: (256, 64, 56, 56)
 layer1.1.bn1:
   inputs:
     0:
-      min: -12.157726287841797
-      max: 11.766583442687988
-      avg_min: -7.595281553268432
-      avg_max: 5.0373931407928465
-      mean: -0.6426207780838012
-      std: 1.1092499675944172
+      min: -11.491942405700684
+      max: 11.20591926574707
+      avg_min: -7.546071910858155
+      avg_max: 5.024500560760498
+      mean: -0.6395838379859924
+      std: 1.105064830518023
+      b: 0.8696278989315033
       shape: (256, 64, 56, 56)
   output:
-    min: -6.2613606452941895
-    max: 4.365638732910156
-    avg_min: -2.9217535495758056
-    avg_max: 2.205676364898682
-    mean: -0.09596083089709283
-    std: 0.3880057257286341
+    min: -5.977788925170898
+    max: 4.373744964599609
+    avg_min: -2.9008329391479495
+    avg_max: 2.194632339477539
+    mean: -0.09455725699663163
+    std: 0.3864656062954132
+    b: 0.2955675601959229
     shape: (256, 64, 56, 56)
 layer1.1.relu1:
   inputs:
     0:
-      min: -6.2613606452941895
-      max: 4.365638732910156
-      avg_min: -2.9217535495758056
-      avg_max: 2.205676364898682
-      mean: -0.09596083089709283
-      std: 0.3880057257286341
+      min: -5.977788925170898
+      max: 4.373744964599609
+      avg_min: -2.9008329391479495
+      avg_max: 2.194632339477539
+      mean: -0.09455725699663163
+      std: 0.3864656062954132
+      b: 0.2955675601959229
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
-    max: 4.365638732910156
+    max: 4.373744964599609
     avg_min: 0.0
-    avg_max: 2.205676364898682
-    mean: 0.09787589758634567
-    std: 0.15355313597491865
+    avg_max: 2.194632339477539
+    mean: 0.09786231890320779
+    std: 0.1530014232794471
+    b: 0.11548511683940887
     shape: (256, 64, 56, 56)
 layer1.1.conv2:
   inputs:
     0:
       min: 0.0
-      max: 4.365638732910156
+      max: 4.373744964599609
       avg_min: 0.0
-      avg_max: 2.205676364898682
-      mean: 0.09787589758634567
-      std: 0.15355313597491865
+      avg_max: 2.194632339477539
+      mean: 0.09786231890320779
+      std: 0.1530014232794471
+      b: 0.11548511683940887
       shape: (256, 64, 56, 56)
   output:
-    min: -5.982235431671143
-    max: 3.2972500324249268
-    avg_min: -2.2474620580673217
-    avg_max: 1.9966080427169801
-    mean: -0.05330531485378742
-    std: 0.31662548381935623
+    min: -5.538784027099609
+    max: 3.5764734745025635
+    avg_min: -2.2407279253005985
+    avg_max: 1.994869089126587
+    mean: -0.05254508629441261
+    std: 0.31610883462752315
+    b: 0.23407733142375947
     shape: (256, 64, 56, 56)
 layer1.1.bn2:
   inputs:
     0:
-      min: -5.982235431671143
-      max: 3.2972500324249268
-      avg_min: -2.2474620580673217
-      avg_max: 1.9966080427169801
-      mean: -0.05330531485378742
-      std: 0.31662548381935623
+      min: -5.538784027099609
+      max: 3.5764734745025635
+      avg_min: -2.2407279253005985
+      avg_max: 1.994869089126587
+      mean: -0.05254508629441261
+      std: 0.31610883462752315
+      b: 0.23407733142375947
       shape: (256, 64, 56, 56)
   output:
-    min: -12.66700553894043
-    max: 6.743299961090088
-    avg_min: -4.81916880607605
-    avg_max: 3.31194531917572
-    mean: -0.03622294031083584
-    std: 0.4647229141768063
+    min: -10.714021682739258
+    max: 7.266103267669678
+    avg_min: -4.802960872650147
+    avg_max: 3.3009435892105103
+    mean: -0.03512122202664614
+    std: 0.4628194601345676
+    b: 0.3304642677307129
     shape: (256, 64, 56, 56)
 layer1.1.relu2:
   inputs:
     0:
-      min: -12.66700553894043
-      max: 9.340755462646484
-      avg_min: -4.6399578094482425
-      avg_max: 5.094357872009278
-      mean: 0.4039983034133911
-      std: 0.6460796599137519
+      min: -10.714021682739258
+      max: 8.999561309814453
+      avg_min: -4.612377023696899
+      avg_max: 5.063360500335693
+      mean: 0.40414546132087703
+      std: 0.6436291942389393
+      b: 0.4835752308368682
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
-    max: 9.340755462646484
+    max: 8.999561309814453
     avg_min: 0.0
-    avg_max: 5.094357872009278
-    mean: 0.500373387336731
-    std: 0.4991277746127741
+    avg_max: 5.063360500335693
+    mean: 0.4997546374797821
+    std: 0.4977076703010359
+    b: 0.3939255177974701
     shape: (256, 64, 56, 56)
 layer1.1.add:
   inputs:
     0:
-      min: -12.66700553894043
-      max: 6.743299961090088
-      avg_min: -4.81916880607605
-      avg_max: 3.31194531917572
-      mean: -0.03622294031083584
-      std: 0.4647229141768063
+      min: -10.714021682739258
+      max: 7.266103267669678
+      avg_min: -4.802960872650147
+      avg_max: 3.3009435892105103
+      mean: -0.03512122202664614
+      std: 0.4628194601345676
+      b: 0.3304642677307129
       shape: (256, 64, 56, 56)
     1:
       min: 0.0
-      max: 7.848092555999756
+      max: 7.920192718505859
       avg_min: 0.0
-      avg_max: 3.888275837898254
-      mean: 0.4402212053537369
-      std: 0.40145754203197104
+      avg_max: 3.8547550201416017
+      mean: 0.4392666757106781
+      std: 0.39984883193751414
+      b: 0.31421991586685183
       shape: (256, 64, 56, 56)
   output:
-    min: -12.66700553894043
-    max: 9.340755462646484
-    avg_min: -4.6399578094482425
-    avg_max: 5.094357872009278
-    mean: 0.4039983034133911
-    std: 0.6460796599137519
+    min: -10.714021682739258
+    max: 8.999561309814453
+    avg_min: -4.612377023696899
+    avg_max: 5.063360500335693
+    mean: 0.40414546132087703
+    std: 0.6436291942389393
+    b: 0.4835752308368682
     shape: (256, 64, 56, 56)
 layer2.0.conv1:
   inputs:
     0:
       min: 0.0
-      max: 9.340755462646484
+      max: 8.999561309814453
       avg_min: 0.0
-      avg_max: 5.094357872009278
-      mean: 0.500373387336731
-      std: 0.4991277746127741
+      avg_max: 5.063360500335693
+      mean: 0.4997546374797821
+      std: 0.4977076703010359
+      b: 0.3939255177974701
       shape: (256, 64, 56, 56)
   output:
-    min: -9.968571662902832
-    max: 9.612150192260742
-    avg_min: -5.820331621170044
-    avg_max: 5.143364048004151
-    mean: -0.30288831889629364
-    std: 0.9433245287159682
+    min: -9.852157592773438
+    max: 8.603440284729004
+    avg_min: -5.784541034698487
+    avg_max: 5.120952939987182
+    mean: -0.30176014006137847
+    std: 0.9407152354406
+    b: 0.7256485044956207
     shape: (256, 128, 28, 28)
 layer2.0.bn1:
   inputs:
     0:
-      min: -9.968571662902832
-      max: 9.612150192260742
-      avg_min: -5.820331621170044
-      avg_max: 5.143364048004151
-      mean: -0.30288831889629364
-      std: 0.9433245287159682
+      min: -9.852157592773438
+      max: 8.603440284729004
+      avg_min: -5.784541034698487
+      avg_max: 5.120952939987182
+      mean: -0.30176014006137847
+      std: 0.9407152354406
+      b: 0.7256485044956207
       shape: (256, 128, 28, 28)
   output:
-    min: -4.37542724609375
-    max: 3.9087069034576416
-    avg_min: -2.393132042884827
-    avg_max: 2.0897871732711795
-    mean: -0.07093800380825994
-    std: 0.35104228844101776
+    min: -4.538980960845947
+    max: 4.295030117034912
+    avg_min: -2.3778639078140262
+    avg_max: 2.0737600088119508
+    mean: -0.07045549005270005
+    std: 0.3495050093376416
+    b: 0.2644343852996826
     shape: (256, 128, 28, 28)
 layer2.0.relu1:
   inputs:
     0:
-      min: -4.37542724609375
-      max: 3.9087069034576416
-      avg_min: -2.393132042884827
-      avg_max: 2.0897871732711795
-      mean: -0.07093800380825994
-      std: 0.35104228844101776
+      min: -4.538980960845947
+      max: 4.295030117034912
+      avg_min: -2.3778639078140262
+      avg_max: 2.0737600088119508
+      mean: -0.07045549005270005
+      std: 0.3495050093376416
+      b: 0.2644343852996826
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 3.9087069034576416
+    max: 4.295030117034912
     avg_min: 0.0
-    avg_max: 2.0897871732711795
-    mean: 0.09935117959976196
-    std: 0.17955374922841472
+    avg_max: 2.0737600088119508
+    mean: 0.09899485930800438
+    std: 0.17894827086862186
+    b: 0.12912005484104158
     shape: (256, 128, 28, 28)
 layer2.0.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.9087069034576416
+      max: 4.295030117034912
       avg_min: 0.0
-      avg_max: 2.0897871732711795
-      mean: 0.09935117959976196
-      std: 0.17955374922841472
+      avg_max: 2.0737600088119508
+      mean: 0.09899485930800438
+      std: 0.17894827086862186
+      b: 0.12912005484104158
       shape: (256, 128, 28, 28)
   output:
-    min: -3.704953908920288
-    max: 3.9888672828674316
-    avg_min: -2.6193546772003176
-    avg_max: 1.94557808637619
-    mean: -0.20282634049654008
-    std: 0.37979417173710706
+    min: -3.6024770736694336
+    max: 3.939133644104004
+    avg_min: -2.6036619424819945
+    avg_max: 1.940392577648163
+    mean: -0.2027350604534149
+    std: 0.378426612016967
+    b: 0.2810466945171356
     shape: (256, 128, 28, 28)
 layer2.0.bn2:
   inputs:
     0:
-      min: -3.704953908920288
-      max: 3.9888672828674316
-      avg_min: -2.6193546772003176
-      avg_max: 1.94557808637619
-      mean: -0.20282634049654008
-      std: 0.37979417173710706
+      min: -3.6024770736694336
+      max: 3.939133644104004
+      avg_min: -2.6036619424819945
+      avg_max: 1.940392577648163
+      mean: -0.2027350604534149
+      std: 0.378426612016967
+      b: 0.2810466945171356
       shape: (256, 128, 28, 28)
   output:
-    min: -4.852682590484619
-    max: 7.3824543952941895
-    avg_min: -2.498345708847046
-    avg_max: 3.199000906944275
-    mean: -0.00949734039604664
-    std: 0.3728519149946462
+    min: -4.541533470153809
+    max: 7.281155109405518
+    avg_min: -2.47963981628418
+    avg_max: 3.1967777013778687
+    mean: -0.009329709596931935
+    std: 0.3714423700405246
+    b: 0.27521497607231143
     shape: (256, 128, 28, 28)
 layer2.0.relu2:
   inputs:
     0:
-      min: -7.15670919418335
-      max: 8.679682731628418
-      avg_min: -3.162109375
-      avg_max: 3.5441043853759764
-      mean: -0.01264746282249689
-      std: 0.4912823877262578
+      min: -6.721975803375244
+      max: 7.887903690338135
+      avg_min: -3.162062668800354
+      avg_max: 3.5391958713531495
+      mean: -0.012606612220406533
+      std: 0.48953572677576745
+      b: 0.37634200155735015
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 8.679682731628418
+    max: 7.887903690338135
     avg_min: 0.0
-    avg_max: 3.5441043853759764
-    mean: 0.18154233396053315
-    std: 0.27297060478379487
+    avg_max: 3.5391958713531495
+    mean: 0.18090671449899676
+    std: 0.2720096638291617
+    b: 0.20716362893581391
     shape: (256, 128, 28, 28)
 layer2.0.downsample.0:
   inputs:
     0:
       min: 0.0
-      max: 9.340755462646484
+      max: 8.999561309814453
       avg_min: 0.0
-      avg_max: 5.094357872009278
-      mean: 0.500373387336731
-      std: 0.4991277746127741
+      avg_max: 5.063360500335693
+      mean: 0.4997546374797821
+      std: 0.4977076703010359
+      b: 0.3939255177974701
       shape: (256, 64, 56, 56)
   output:
-    min: -5.13958740234375
-    max: 4.892611503601074
-    avg_min: -2.4796679258346552
-    avg_max: 2.903812885284424
-    mean: -0.06563309356570243
-    std: 0.41438327815559967
+    min: -4.91789436340332
+    max: 4.578188896179199
+    avg_min: -2.479439353942871
+    avg_max: 2.8897837162017823
+    mean: -0.06581298410892486
+    std: 0.4136335202051727
+    b: 0.30704599916934966
     shape: (256, 128, 28, 28)
 layer2.0.downsample.1:
   inputs:
     0:
-      min: -5.13958740234375
-      max: 4.892611503601074
-      avg_min: -2.4796679258346552
-      avg_max: 2.903812885284424
-      mean: -0.06563309356570243
-      std: 0.41438327815559967
+      min: -4.91789436340332
+      max: 4.578188896179199
+      avg_min: -2.479439353942871
+      avg_max: 2.8897837162017823
+      mean: -0.06581298410892486
+      std: 0.4136335202051727
+      b: 0.30704599916934966
       shape: (256, 128, 28, 28)
   output:
-    min: -5.447699069976807
-    max: 4.214577674865723
-    avg_min: -2.267443895339966
-    avg_max: 2.1093434810638425
-    mean: -0.003150122403167188
-    std: 0.2438290171437319
+    min: -5.507220268249512
+    max: 4.8110198974609375
+    avg_min: -2.2652245998382567
+    avg_max: 2.095703291893005
+    mean: -0.003276902949437499
+    std: 0.24279011847837823
+    b: 0.17645430564880368
     shape: (256, 128, 28, 28)
 layer2.0.add:
   inputs:
     0:
-      min: -4.852682590484619
-      max: 7.3824543952941895
-      avg_min: -2.498345708847046
-      avg_max: 3.199000906944275
-      mean: -0.00949734039604664
-      std: 0.3728519149946462
+      min: -4.541533470153809
+      max: 7.281155109405518
+      avg_min: -2.47963981628418
+      avg_max: 3.1967777013778687
+      mean: -0.009329709596931935
+      std: 0.3714423700405246
+      b: 0.27521497607231143
       shape: (256, 128, 28, 28)
     1:
-      min: -5.447699069976807
-      max: 4.214577674865723
-      avg_min: -2.267443895339966
-      avg_max: 2.1093434810638425
-      mean: -0.003150122403167188
-      std: 0.2438290171437319
+      min: -5.507220268249512
+      max: 4.8110198974609375
+      avg_min: -2.2652245998382567
+      avg_max: 2.095703291893005
+      mean: -0.003276902949437499
+      std: 0.24279011847837823
+      b: 0.17645430564880368
       shape: (256, 128, 28, 28)
   output:
-    min: -7.15670919418335
-    max: 8.679682731628418
-    avg_min: -3.162109375
-    avg_max: 3.5441043853759764
-    mean: -0.01264746282249689
-    std: 0.4912823877262578
+    min: -6.721975803375244
+    max: 7.887903690338135
+    avg_min: -3.162062668800354
+    avg_max: 3.5391958713531495
+    mean: -0.012606612220406533
+    std: 0.48953572677576745
+    b: 0.37634200155735015
     shape: (256, 128, 28, 28)
 layer2.1.conv1:
   inputs:
     0:
       min: 0.0
-      max: 8.679682731628418
+      max: 7.887903690338135
       avg_min: 0.0
-      avg_max: 3.5441043853759764
-      mean: 0.18154233396053315
-      std: 0.27297060478379487
+      avg_max: 3.5391958713531495
+      mean: 0.18090671449899676
+      std: 0.2720096638291617
+      b: 0.20716362893581391
       shape: (256, 128, 28, 28)
   output:
-    min: -5.459676742553711
-    max: 5.33770751953125
-    avg_min: -3.635084438323975
-    avg_max: 2.9290169239044186
-    mean: -0.3135085433721542
-    std: 0.5925199667467553
+    min: -5.485912322998047
+    max: 5.701521873474121
+    avg_min: -3.62958562374115
+    avg_max: 2.9352190732955936
+    mean: -0.312002956867218
+    std: 0.5907423992644697
+    b: 0.45206252336502073
     shape: (256, 128, 28, 28)
 layer2.1.bn1:
   inputs:
     0:
-      min: -5.459676742553711
-      max: 5.33770751953125
-      avg_min: -3.635084438323975
-      avg_max: 2.9290169239044186
-      mean: -0.3135085433721542
-      std: 0.5925199667467553
+      min: -5.485912322998047
+      max: 5.701521873474121
+      avg_min: -3.62958562374115
+      avg_max: 2.9352190732955936
+      mean: -0.312002956867218
+      std: 0.5907423992644697
+      b: 0.45206252336502073
       shape: (256, 128, 28, 28)
   output:
-    min: -3.8549625873565674
-    max: 4.790047645568848
-    avg_min: -2.359077382087708
-    avg_max: 2.1424240112304687
-    mean: -0.22242988049983978
-    std: 0.3518888548195055
+    min: -3.997326135635376
+    max: 5.112695693969727
+    avg_min: -2.349669742584229
+    avg_max: 2.1320471286773683
+    mean: -0.2213411748409271
+    std: 0.35073046242263367
+    b: 0.26966107189655303
     shape: (256, 128, 28, 28)
 layer2.1.relu1:
   inputs:
     0:
-      min: -3.8549625873565674
-      max: 4.790047645568848
-      avg_min: -2.359077382087708
-      avg_max: 2.1424240112304687
-      mean: -0.22242988049983978
-      std: 0.3518888548195055
+      min: -3.997326135635376
+      max: 5.112695693969727
+      avg_min: -2.349669742584229
+      avg_max: 2.1320471286773683
+      mean: -0.2213411748409271
+      std: 0.35073046242263367
+      b: 0.26966107189655303
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 4.790047645568848
+    max: 5.112695693969727
     avg_min: 0.0
-    avg_max: 2.1424240112304687
-    mean: 0.049409907683730124
-    std: 0.12833041843699824
+    avg_max: 2.1320471286773683
+    mean: 0.049340829253196716
+    std: 0.12802784917456683
+    b: 0.07695193588733673
     shape: (256, 128, 28, 28)
 layer2.1.conv2:
   inputs:
     0:
       min: 0.0
-      max: 4.790047645568848
+      max: 5.112695693969727
       avg_min: 0.0
-      avg_max: 2.1424240112304687
-      mean: 0.049409907683730124
-      std: 0.12833041843699824
+      avg_max: 2.1320471286773683
+      mean: 0.049340829253196716
+      std: 0.12802784917456683
+      b: 0.07695193588733673
       shape: (256, 128, 28, 28)
   output:
-    min: -2.9398884773254395
-    max: 3.024933338165283
-    avg_min: -1.6292295932769774
-    avg_max: 1.5198234081268311
-    mean: -0.06321807205677032
-    std: 0.22956700018686632
+    min: -2.8524694442749023
+    max: 2.8498570919036865
+    avg_min: -1.637015688419342
+    avg_max: 1.5296302437782288
+    mean: -0.06291018277406692
+    std: 0.229274719766598
+    b: 0.16916185617446902
     shape: (256, 128, 28, 28)
 layer2.1.bn2:
   inputs:
     0:
-      min: -2.9398884773254395
-      max: 3.024933338165283
-      avg_min: -1.6292295932769774
-      avg_max: 1.5198234081268311
-      mean: -0.06321807205677032
-      std: 0.22956700018686632
+      min: -2.8524694442749023
+      max: 2.8498570919036865
+      avg_min: -1.637015688419342
+      avg_max: 1.5296302437782288
+      mean: -0.06291018277406692
+      std: 0.229274719766598
+      b: 0.16916185617446902
       shape: (256, 128, 28, 28)
   output:
-    min: -7.5086164474487305
-    max: 6.0674519538879395
-    avg_min: -3.238761234283447
-    avg_max: 2.8940759420394895
-    mean: -0.1567205160856247
-    std: 0.3475644601239457
+    min: -7.946273326873779
+    max: 6.401525020599365
+    avg_min: -3.253560042381287
+    avg_max: 2.909646725654602
+    mean: -0.1562561482191086
+    std: 0.3469407401637125
+    b: 0.2514873340725899
     shape: (256, 128, 28, 28)
 layer2.1.relu2:
   inputs:
     0:
-      min: -7.064488887786865
-      max: 8.256424903869629
-      avg_min: -3.16677827835083
-      avg_max: 4.542451906204224
-      mean: 0.024821811169385907
-      std: 0.46294317470310387
+      min: -7.946273326873779
+      max: 7.8940324783325195
+      avg_min: -3.174616074562073
+      avg_max: 4.550387144088745
+      mean: 0.02465056534856558
+      std: 0.4619439823065871
+      b: 0.34511422514915463
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 8.256424903869629
+    max: 7.8940324783325195
     avg_min: 0.0
-    avg_max: 4.542451906204224
-    mean: 0.18445102572441102
-    std: 0.29705437461339534
+    avg_max: 4.550387144088745
+    mean: 0.18397492617368696
+    std: 0.29634521294304816
+    b: 0.2175905004143715
     shape: (256, 128, 28, 28)
 layer2.1.add:
   inputs:
     0:
-      min: -7.5086164474487305
-      max: 6.0674519538879395
-      avg_min: -3.238761234283447
-      avg_max: 2.8940759420394895
-      mean: -0.1567205160856247
-      std: 0.3475644601239457
+      min: -7.946273326873779
+      max: 6.401525020599365
+      avg_min: -3.253560042381287
+      avg_max: 2.909646725654602
+      mean: -0.1562561482191086
+      std: 0.3469407401637125
+      b: 0.2514873340725899
       shape: (256, 128, 28, 28)
     1:
       min: 0.0
-      max: 8.679682731628418
+      max: 7.887903690338135
       avg_min: 0.0
-      avg_max: 3.5441043853759764
-      mean: 0.18154233396053315
-      std: 0.27297060478379487
+      avg_max: 3.5391958713531495
+      mean: 0.18090671449899676
+      std: 0.2720096638291617
+      b: 0.20716362893581391
       shape: (256, 128, 28, 28)
   output:
-    min: -7.064488887786865
-    max: 8.256424903869629
-    avg_min: -3.16677827835083
-    avg_max: 4.542451906204224
-    mean: 0.024821811169385907
-    std: 0.46294317470310387
+    min: -7.946273326873779
+    max: 7.8940324783325195
+    avg_min: -3.174616074562073
+    avg_max: 4.550387144088745
+    mean: 0.02465056534856558
+    std: 0.4619439823065871
+    b: 0.34511422514915463
     shape: (256, 128, 28, 28)
 layer3.0.conv1:
   inputs:
     0:
       min: 0.0
-      max: 8.256424903869629
+      max: 7.8940324783325195
       avg_min: 0.0
-      avg_max: 4.542451906204224
-      mean: 0.18445102572441102
-      std: 0.29705437461339534
+      avg_max: 4.550387144088745
+      mean: 0.18397492617368696
+      std: 0.29634521294304816
+      b: 0.2175905004143715
       shape: (256, 128, 28, 28)
   output:
-    min: -6.438381195068359
-    max: 6.13822603225708
-    avg_min: -4.0202888488769535
-    avg_max: 3.2266300678253175
-    mean: -0.32309721112251283
-    std: 0.6154106977384659
+    min: -7.293699741363525
+    max: 5.887290000915527
+    avg_min: -4.006204152107238
+    avg_max: 3.236294198036194
+    mean: -0.321987584233284
+    std: 0.6139758604628851
+    b: 0.4753164947032929
     shape: (256, 256, 14, 14)
 layer3.0.bn1:
   inputs:
     0:
-      min: -6.438381195068359
-      max: 6.13822603225708
-      avg_min: -4.0202888488769535
-      avg_max: 3.2266300678253175
-      mean: -0.32309721112251283
-      std: 0.6154106977384659
+      min: -7.293699741363525
+      max: 5.887290000915527
+      avg_min: -4.006204152107238
+      avg_max: 3.236294198036194
+      mean: -0.321987584233284
+      std: 0.6139758604628851
+      b: 0.4753164947032929
       shape: (256, 256, 14, 14)
   output:
-    min: -3.862990140914917
-    max: 4.267152786254883
-    avg_min: -2.0022686362266544
-    avg_max: 2.3283541679382322
-    mean: -0.11319322809576988
-    std: 0.3376918494696188
+    min: -4.050312042236328
+    max: 3.9576447010040283
+    avg_min: -2.0014328956604004
+    avg_max: 2.3429682493209842
+    mean: -0.1125125139951706
+    std: 0.337134413601539
+    b: 0.2615480303764343
     shape: (256, 256, 14, 14)
 layer3.0.relu1:
   inputs:
     0:
-      min: -3.862990140914917
-      max: 4.267152786254883
-      avg_min: -2.0022686362266544
-      avg_max: 2.3283541679382322
-      mean: -0.11319322809576988
-      std: 0.3376918494696188
+      min: -4.050312042236328
+      max: 3.9576447010040283
+      avg_min: -2.0014328956604004
+      avg_max: 2.3429682493209842
+      mean: -0.1125125139951706
+      std: 0.337134413601539
+      b: 0.2615480303764343
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 4.267152786254883
+    max: 3.9576447010040283
     avg_min: 0.0
-    avg_max: 2.3283541679382322
-    mean: 0.08251831382513046
-    std: 0.16577934392575766
+    avg_max: 2.3429682493209842
+    mean: 0.08258631229400636
+    std: 0.16571162945237508
+    b: 0.11422481834888458
     shape: (256, 256, 14, 14)
 layer3.0.conv2:
   inputs:
     0:
       min: 0.0
-      max: 4.267152786254883
+      max: 3.9576447010040283
       avg_min: 0.0
-      avg_max: 2.3283541679382322
-      mean: 0.08251831382513046
-      std: 0.16577934392575766
+      avg_max: 2.3429682493209842
+      mean: 0.08258631229400636
+      std: 0.16571162945237508
+      b: 0.11422481834888458
       shape: (256, 256, 14, 14)
   output:
-    min: -4.552898406982422
-    max: 3.3713440895080566
-    avg_min: -2.3444815635681153
-    avg_max: 1.984291195869446
-    mean: -0.12965155243873594
-    std: 0.3721248356476338
+    min: -4.257213592529297
+    max: 3.6616592407226562
+    avg_min: -2.352362465858459
+    avg_max: 1.9918954730033875
+    mean: -0.1290414616465569
+    std: 0.37157258712256164
+    b: 0.2852293998003006
     shape: (256, 256, 14, 14)
 layer3.0.bn2:
   inputs:
     0:
-      min: -4.552898406982422
-      max: 3.3713440895080566
-      avg_min: -2.3444815635681153
-      avg_max: 1.984291195869446
-      mean: -0.12965155243873594
-      std: 0.3721248356476338
+      min: -4.257213592529297
+      max: 3.6616592407226562
+      avg_min: -2.352362465858459
+      avg_max: 1.9918954730033875
+      mean: -0.1290414616465569
+      std: 0.37157258712256164
+      b: 0.2852293998003006
       shape: (256, 256, 14, 14)
   output:
-    min: -3.7013936042785645
-    max: 6.379889965057373
-    avg_min: -2.267893671989441
-    avg_max: 3.2245216369628906
-    mean: -0.03604039661586284
-    std: 0.3570086273772413
+    min: -3.8997387886047363
+    max: 6.5019426345825195
+    avg_min: -2.251054048538208
+    avg_max: 3.29326958656311
+    mean: -0.035325663164258
+    std: 0.3566388375612489
+    b: 0.27053642868995664
     shape: (256, 256, 14, 14)
 layer3.0.relu2:
   inputs:
     0:
-      min: -4.1207146644592285
-      max: 6.487631797790527
-      avg_min: -2.684654211997986
-      avg_max: 3.1363016128540044
-      mean: -0.06760385036468507
-      std: 0.4199482576820755
+      min: -4.377436637878418
+      max: 6.553792953491211
+      avg_min: -2.652551221847534
+      avg_max: 3.189970088005066
+      mean: -0.06677803546190263
+      std: 0.4192177835709973
+      b: 0.322426176071167
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 6.487631797790527
+    max: 6.553792953491211
     avg_min: 0.0
-    avg_max: 3.1363016128540044
-    mean: 0.12786945104598998
-    std: 0.21144506529506946
+    avg_max: 3.189970088005066
+    mean: 0.12804426848888398
+    std: 0.21154974459479667
+    b: 0.15678034126758575
     shape: (256, 256, 14, 14)
 layer3.0.downsample.0:
   inputs:
     0:
       min: 0.0
-      max: 8.256424903869629
+      max: 7.8940324783325195
       avg_min: 0.0
-      avg_max: 4.542451906204224
-      mean: 0.18445102572441102
-      std: 0.29705437461339534
+      avg_max: 4.550387144088745
+      mean: 0.18397492617368696
+      std: 0.29634521294304816
+      b: 0.2175905004143715
       shape: (256, 128, 28, 28)
   output:
-    min: -2.1837708950042725
-    max: 2.0840232372283936
-    avg_min: -1.0446266651153564
-    avg_max: 0.8377003133296967
-    mean: -0.048206356912851335
-    std: 0.15011371161838857
+    min: -2.042365550994873
+    max: 1.68002188205719
+    avg_min: -1.0438877820968626
+    avg_max: 0.8331947326660156
+    mean: -0.04805891886353493
+    std: 0.14977744425469866
+    b: 0.11428540572524071
     shape: (256, 256, 14, 14)
 layer3.0.downsample.1:
   inputs:
     0:
-      min: -2.1837708950042725
-      max: 2.0840232372283936
-      avg_min: -1.0446266651153564
-      avg_max: 0.8377003133296967
-      mean: -0.048206356912851335
-      std: 0.15011371161838857
+      min: -2.042365550994873
+      max: 1.68002188205719
+      avg_min: -1.0438877820968626
+      avg_max: 0.8331947326660156
+      mean: -0.04805891886353493
+      std: 0.14977744425469866
+      b: 0.11428540572524071
       shape: (256, 256, 14, 14)
   output:
-    min: -2.409719228744507
-    max: 1.7153247594833374
-    avg_min: -1.2518082499504086
-    avg_max: 0.6969634890556335
-    mean: -0.03156345393508673
-    std: 0.12925449927364396
+    min: -2.620955467224121
+    max: 1.9505492448806763
+    avg_min: -1.2414526343345644
+    avg_max: 0.695954030752182
+    mean: -0.03145237248390913
+    std: 0.1289970627152763
+    b: 0.09838261082768442
     shape: (256, 256, 14, 14)
 layer3.0.add:
   inputs:
     0:
-      min: -3.7013936042785645
-      max: 6.379889965057373
-      avg_min: -2.267893671989441
-      avg_max: 3.2245216369628906
-      mean: -0.03604039661586284
-      std: 0.3570086273772413
+      min: -3.8997387886047363
+      max: 6.5019426345825195
+      avg_min: -2.251054048538208
+      avg_max: 3.29326958656311
+      mean: -0.035325663164258
+      std: 0.3566388375612489
+      b: 0.27053642868995664
       shape: (256, 256, 14, 14)
     1:
-      min: -2.409719228744507
-      max: 1.7153247594833374
-      avg_min: -1.2518082499504086
-      avg_max: 0.6969634890556335
-      mean: -0.03156345393508673
-      std: 0.12925449927364396
+      min: -2.620955467224121
+      max: 1.9505492448806763
+      avg_min: -1.2414526343345644
+      avg_max: 0.695954030752182
+      mean: -0.03145237248390913
+      std: 0.1289970627152763
+      b: 0.09838261082768442
       shape: (256, 256, 14, 14)
   output:
-    min: -4.1207146644592285
-    max: 6.487631797790527
-    avg_min: -2.684654211997986
-    avg_max: 3.1363016128540044
-    mean: -0.06760385036468507
-    std: 0.4199482576820755
+    min: -4.377436637878418
+    max: 6.553792953491211
+    avg_min: -2.652551221847534
+    avg_max: 3.189970088005066
+    mean: -0.06677803546190263
+    std: 0.4192177835709973
+    b: 0.322426176071167
     shape: (256, 256, 14, 14)
 layer3.1.conv1:
   inputs:
     0:
       min: 0.0
-      max: 6.487631797790527
+      max: 6.553792953491211
       avg_min: 0.0
-      avg_max: 3.1363016128540044
-      mean: 0.12786945104598998
-      std: 0.21144506529506946
+      avg_max: 3.189970088005066
+      mean: 0.12804426848888398
+      std: 0.21154974459479667
+      b: 0.15678034126758575
       shape: (256, 256, 14, 14)
   output:
-    min: -5.105652809143066
-    max: 4.03632926940918
-    avg_min: -2.8411794662475587
-    avg_max: 2.7561988115310667
-    mean: -0.41444424390792844
-    std: 0.5287273763772131
+    min: -5.031698226928711
+    max: 4.422638893127441
+    avg_min: -2.864979887008667
+    avg_max: 2.767142987251282
+    mean: -0.41464142203330995
+    std: 0.5293220148063538
+    b: 0.41182717978954314
     shape: (256, 256, 14, 14)
 layer3.1.bn1:
   inputs:
     0:
-      min: -5.105652809143066
-      max: 4.03632926940918
-      avg_min: -2.8411794662475587
-      avg_max: 2.7561988115310667
-      mean: -0.41444424390792844
-      std: 0.5287273763772131
+      min: -5.031698226928711
+      max: 4.422638893127441
+      avg_min: -2.864979887008667
+      avg_max: 2.767142987251282
+      mean: -0.41464142203330995
+      std: 0.5293220148063538
+      b: 0.41182717978954314
       shape: (256, 256, 14, 14)
   output:
-    min: -4.098175525665283
-    max: 4.903048038482666
-    avg_min: -2.149882984161377
-    avg_max: 1.8125177145004272
-    mean: -0.25484898984432225
-    std: 0.32307304036500245
+    min: -4.198080062866211
+    max: 5.063868522644043
+    avg_min: -2.168639850616455
+    avg_max: 1.8469656229019165
+    mean: -0.25500119626522066
+    std: 0.32347946447612314
+    b: 0.24928168803453446
     shape: (256, 256, 14, 14)
 layer3.1.relu1:
   inputs:
     0:
-      min: -4.098175525665283
-      max: 4.903048038482666
-      avg_min: -2.149882984161377
-      avg_max: 1.8125177145004272
-      mean: -0.25484898984432225
-      std: 0.32307304036500245
+      min: -4.198080062866211
+      max: 5.063868522644043
+      avg_min: -2.168639850616455
+      avg_max: 1.8469656229019165
+      mean: -0.25500119626522066
+      std: 0.32347946447612314
+      b: 0.24928168803453446
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 4.903048038482666
+    max: 5.063868522644043
     avg_min: 0.0
-    avg_max: 1.8125177145004272
-    mean: 0.032801129296422
-    std: 0.09658125962893181
+    avg_max: 1.8469656229019165
+    mean: 0.032932214066386224
+    std: 0.09702202845259125
+    b: 0.053782285377383235
     shape: (256, 256, 14, 14)
 layer3.1.conv2:
   inputs:
     0:
       min: 0.0
-      max: 4.903048038482666
+      max: 5.063868522644043
       avg_min: 0.0
-      avg_max: 1.8125177145004272
-      mean: 0.032801129296422
-      std: 0.09658125962893181
+      avg_max: 1.8469656229019165
+      mean: 0.032932214066386224
+      std: 0.09702202845259125
+      b: 0.053782285377383235
       shape: (256, 256, 14, 14)
   output:
-    min: -2.5119032859802246
-    max: 2.0646729469299316
-    avg_min: -1.3221241593360904
-    avg_max: 1.1405210494995117
-    mean: -0.09274044558405876
-    std: 0.1825111203528907
+    min: -2.715808391571045
+    max: 2.0844011306762695
+    avg_min: -1.328875982761383
+    avg_max: 1.1498247623443603
+    mean: -0.0931337259709835
+    std: 0.18346629893115088
+    b: 0.1342121735215187
     shape: (256, 256, 14, 14)
 layer3.1.bn2:
   inputs:
     0:
-      min: -2.5119032859802246
-      max: 2.0646729469299316
-      avg_min: -1.3221241593360904
-      avg_max: 1.1405210494995117
-      mean: -0.09274044558405876
-      std: 0.1825111203528907
+      min: -2.715808391571045
+      max: 2.0844011306762695
+      avg_min: -1.328875982761383
+      avg_max: 1.1498247623443603
+      mean: -0.0931337259709835
+      std: 0.18346629893115088
+      b: 0.1342121735215187
       shape: (256, 256, 14, 14)
   output:
-    min: -8.134011268615723
-    max: 5.190834999084473
-    avg_min: -3.1968623399734493
-    avg_max: 2.1643610477447512
-    mean: -0.18219314515590668
-    std: 0.33030993881964954
+    min: -8.998992919921875
+    max: 5.525249481201172
+    avg_min: -3.2370118141174316
+    avg_max: 2.205535817146301
+    mean: -0.18305919617414473
+    std: 0.3321392781164415
+    b: 0.2382770329713821
     shape: (256, 256, 14, 14)
 layer3.1.relu2:
   inputs:
     0:
-      min: -8.134011268615723
-      max: 8.119378089904785
-      avg_min: -2.983672332763672
-      avg_max: 3.2279526948928834
-      mean: -0.05432369634509087
-      std: 0.40386185761807114
+      min: -8.202404975891113
+      max: 9.872881889343262
+      avg_min: -3.0143409967422485
+      avg_max: 3.2831672906875613
+      mean: -0.05501492619514465
+      std: 0.40551403211757675
+      b: 0.2989766478538513
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 8.119378089904785
+    max: 9.872881889343262
     avg_min: 0.0
-    avg_max: 3.2279526948928834
-    mean: 0.12238837555050848
-    std: 0.2129835573395784
+    avg_max: 3.2831672906875613
+    mean: 0.12256589457392691
+    std: 0.2133638127835183
+    b: 0.15300007164478302
     shape: (256, 256, 14, 14)
 layer3.1.add:
   inputs:
     0:
-      min: -8.134011268615723
-      max: 5.190834999084473
-      avg_min: -3.1968623399734493
-      avg_max: 2.1643610477447512
-      mean: -0.18219314515590668
-      std: 0.33030993881964954
+      min: -8.998992919921875
+      max: 5.525249481201172
+      avg_min: -3.2370118141174316
+      avg_max: 2.205535817146301
+      mean: -0.18305919617414473
+      std: 0.3321392781164415
+      b: 0.2382770329713821
       shape: (256, 256, 14, 14)
     1:
       min: 0.0
-      max: 6.487631797790527
+      max: 6.553792953491211
       avg_min: 0.0
-      avg_max: 3.1363016128540044
-      mean: 0.12786945104598998
-      std: 0.21144506529506946
+      avg_max: 3.189970088005066
+      mean: 0.12804426848888398
+      std: 0.21154974459479667
+      b: 0.15678034126758575
       shape: (256, 256, 14, 14)
   output:
-    min: -8.134011268615723
-    max: 8.119378089904785
-    avg_min: -2.983672332763672
-    avg_max: 3.2279526948928834
-    mean: -0.05432369634509087
-    std: 0.40386185761807114
+    min: -8.202404975891113
+    max: 9.872881889343262
+    avg_min: -3.0143409967422485
+    avg_max: 3.2831672906875613
+    mean: -0.05501492619514465
+    std: 0.40551403211757675
+    b: 0.2989766478538513
     shape: (256, 256, 14, 14)
 layer4.0.conv1:
   inputs:
     0:
       min: 0.0
-      max: 8.119378089904785
+      max: 9.872881889343262
       avg_min: 0.0
-      avg_max: 3.2279526948928834
-      mean: 0.12238837555050848
-      std: 0.2129835573395784
+      avg_max: 3.2831672906875613
+      mean: 0.12256589457392691
+      std: 0.2133638127835183
+      b: 0.15300007164478302
       shape: (256, 256, 14, 14)
   output:
-    min: -4.76265287399292
-    max: 3.892470121383667
-    avg_min: -2.6342701673507687
-    avg_max: 2.134967827796936
-    mean: -0.4225346058607101
-    std: 0.4489012217945443
+    min: -4.950316905975342
+    max: 3.6210927963256836
+    avg_min: -2.652024030685425
+    avg_max: 2.144003534317016
+    mean: -0.42224429249763484
+    std: 0.44938412814890194
+    b: 0.3466774016618729
     shape: (256, 512, 7, 7)
 layer4.0.bn1:
   inputs:
     0:
-      min: -4.76265287399292
-      max: 3.892470121383667
-      avg_min: -2.6342701673507687
-      avg_max: 2.134967827796936
-      mean: -0.4225346058607101
-      std: 0.4489012217945443
+      min: -4.950316905975342
+      max: 3.6210927963256836
+      avg_min: -2.652024030685425
+      avg_max: 2.144003534317016
+      mean: -0.42224429249763484
+      std: 0.44938412814890194
+      b: 0.3466774016618729
       shape: (256, 512, 7, 7)
   output:
-    min: -3.8005728721618652
-    max: 3.7460832595825195
-    avg_min: -1.7839953899383545
-    avg_max: 1.5242199540138244
-    mean: -0.23563460260629654
-    std: 0.28798706168262217
+    min: -3.8442420959472656
+    max: 3.5031683444976807
+    avg_min: -1.785099470615387
+    avg_max: 1.5260862469673158
+    mean: -0.23540744632482533
+    std: 0.2883131004457901
+    b: 0.22206227332353592
     shape: (256, 512, 7, 7)
 layer4.0.relu1:
   inputs:
     0:
-      min: -3.8005728721618652
-      max: 3.7460832595825195
-      avg_min: -1.7839953899383545
-      avg_max: 1.5242199540138244
-      mean: -0.23563460260629654
-      std: 0.28798706168262217
+      min: -3.8442420959472656
+      max: 3.5031683444976807
+      avg_min: -1.785099470615387
+      avg_max: 1.5260862469673158
+      mean: -0.23540744632482533
+      std: 0.2883131004457901
+      b: 0.22206227332353592
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 3.7460832595825195
+    max: 3.5031683444976807
     avg_min: 0.0
-    avg_max: 1.5242199540138244
-    mean: 0.029761600866913797
-    std: 0.09121178273334185
+    avg_max: 1.5260862469673158
+    mean: 0.029885793291032317
+    std: 0.0914273382379062
+    b: 0.049454532191157335
     shape: (256, 512, 7, 7)
 layer4.0.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.7460832595825195
+      max: 3.5031683444976807
       avg_min: 0.0
-      avg_max: 1.5242199540138244
-      mean: 0.029761600866913797
-      std: 0.09121178273334185
+      avg_max: 1.5260862469673158
+      mean: 0.029885793291032317
+      std: 0.0914273382379062
+      b: 0.049454532191157335
       shape: (256, 512, 7, 7)
   output:
-    min: -1.8688105344772339
-    max: 2.0681681632995605
-    avg_min: -1.0883776903152464
-    avg_max: 1.1523980379104612
-    mean: -0.14923772364854812
-    std: 0.16972499161883345
+    min: -1.8449223041534424
+    max: 2.067958354949951
+    avg_min: -1.0942276358604432
+    avg_max: 1.1541351675987244
+    mean: -0.14933057725429538
+    std: 0.16971222231987543
+    b: 0.12781685888767244
     shape: (256, 512, 7, 7)
 layer4.0.bn2:
   inputs:
     0:
-      min: -1.8688105344772339
-      max: 2.0681681632995605
-      avg_min: -1.0883776903152464
-      avg_max: 1.1523980379104612
-      mean: -0.14923772364854812
-      std: 0.16972499161883345
+      min: -1.8449223041534424
+      max: 2.067958354949951
+      avg_min: -1.0942276358604432
+      avg_max: 1.1541351675987244
+      mean: -0.14933057725429538
+      std: 0.16971222231987543
+      b: 0.12781685888767244
       shape: (256, 512, 7, 7)
   output:
-    min: -5.792877674102783
-    max: 7.841123104095459
-    avg_min: -2.789129066467285
-    avg_max: 2.627374529838562
-    mean: -0.2150831580162048
-    std: 0.45363315501783613
+    min: -5.783980846405029
+    max: 6.245330333709717
+    avg_min: -2.800101137161255
+    avg_max: 2.623097443580628
+    mean: -0.21531924307346342
+    std: 0.453539395756688
+    b: 0.34523969888687134
     shape: (256, 512, 7, 7)
 layer4.0.relu2:
   inputs:
     0:
-      min: -6.891504764556885
-      max: 8.46895980834961
-      avg_min: -3.20503408908844
-      avg_max: 3.330011248588562
-      mean: -0.41423189938068394
-      std: 0.5510562453718115
+      min: -6.930498123168945
+      max: 8.567574501037598
+      avg_min: -3.1913995504379273
+      avg_max: 3.315259170532226
+      mean: -0.4142288058996201
+      std: 0.5505862330408511
+      b: 0.4232411742210388
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 8.46895980834961
+    max: 8.567574501037598
     avg_min: 0.0
-    avg_max: 3.330011248588562
-    mean: 0.06851729899644853
-    std: 0.2003228502381722
+    avg_max: 3.315259170532226
+    mean: 0.06856812238693237
+    std: 0.20035843135120962
+    b: 0.11173125430941581
     shape: (256, 512, 7, 7)
 layer4.0.downsample.0:
   inputs:
     0:
       min: 0.0
-      max: 8.119378089904785
+      max: 9.872881889343262
       avg_min: 0.0
-      avg_max: 3.2279526948928834
-      mean: 0.12238837555050848
-      std: 0.2129835573395784
+      avg_max: 3.2831672906875613
+      mean: 0.12256589457392691
+      std: 0.2133638127835183
+      b: 0.15300007164478302
       shape: (256, 256, 14, 14)
   output:
-    min: -1.9270222187042236
+    min: -2.0376739501953125
     max: 2.3532819747924805
-    avg_min: -0.9864736735820769
-    avg_max: 1.140747332572937
-    mean: -0.04585805423557758
-    std: 0.16336331221817668
+    avg_min: -0.9992474794387818
+    avg_max: 1.1578348278999329
+    mean: -0.04574307352304459
+    std: 0.1642893687178303
+    b: 0.12143977582454682
     shape: (256, 512, 7, 7)
 layer4.0.downsample.1:
   inputs:
     0:
-      min: -1.9270222187042236
+      min: -2.0376739501953125
       max: 2.3532819747924805
-      avg_min: -0.9864736735820769
-      avg_max: 1.140747332572937
-      mean: -0.04585805423557758
-      std: 0.16336331221817668
+      avg_min: -0.9992474794387818
+      avg_max: 1.1578348278999329
+      mean: -0.04574307352304459
+      std: 0.1642893687178303
+      b: 0.12143977582454682
       shape: (256, 512, 7, 7)
   output:
-    min: -3.5343539714813232
+    min: -3.7014033794403076
     max: 4.346354007720947
-    avg_min: -1.905341112613678
-    avg_max: 1.7950459957122802
-    mean: -0.19914873987436293
-    std: 0.27221953386376296
+    avg_min: -1.9194710731506348
+    avg_max: 1.8273812174797057
+    mean: -0.19890957176685334
+    std: 0.2736153024520793
+    b: 0.20122731775045397
     shape: (256, 512, 7, 7)
 layer4.0.add:
   inputs:
     0:
-      min: -5.792877674102783
-      max: 7.841123104095459
-      avg_min: -2.789129066467285
-      avg_max: 2.627374529838562
-      mean: -0.2150831580162048
-      std: 0.45363315501783613
+      min: -5.783980846405029
+      max: 6.245330333709717
+      avg_min: -2.800101137161255
+      avg_max: 2.623097443580628
+      mean: -0.21531924307346342
+      std: 0.453539395756688
+      b: 0.34523969888687134
       shape: (256, 512, 7, 7)
     1:
-      min: -3.5343539714813232
+      min: -3.7014033794403076
       max: 4.346354007720947
-      avg_min: -1.905341112613678
-      avg_max: 1.7950459957122802
-      mean: -0.19914873987436293
-      std: 0.27221953386376296
+      avg_min: -1.9194710731506348
+      avg_max: 1.8273812174797057
+      mean: -0.19890957176685334
+      std: 0.2736153024520793
+      b: 0.20122731775045397
       shape: (256, 512, 7, 7)
   output:
-    min: -6.891504764556885
-    max: 8.46895980834961
-    avg_min: -3.20503408908844
-    avg_max: 3.330011248588562
-    mean: -0.41423189938068394
-    std: 0.5510562453718115
+    min: -6.930498123168945
+    max: 8.567574501037598
+    avg_min: -3.1913995504379273
+    avg_max: 3.315259170532226
+    mean: -0.4142288058996201
+    std: 0.5505862330408511
+    b: 0.4232411742210388
     shape: (256, 512, 7, 7)
 layer4.1.conv1:
   inputs:
     0:
       min: 0.0
-      max: 8.46895980834961
+      max: 8.567574501037598
       avg_min: 0.0
-      avg_max: 3.330011248588562
-      mean: 0.06851729899644853
-      std: 0.2003228502381722
+      avg_max: 3.315259170532226
+      mean: 0.06856812238693237
+      std: 0.20035843135120962
+      b: 0.11173125430941581
       shape: (256, 512, 7, 7)
   output:
     min: -5.210203170776367
-    max: 3.5200774669647217
-    avg_min: -2.7268222093582155
-    avg_max: 2.039318561553955
-    mean: -0.6206760883331299
-    std: 0.41510913930456855
+    max: 3.741835594177246
+    avg_min: -2.727949595451355
+    avg_max: 2.022892165184021
+    mean: -0.6183191597461701
+    std: 0.41441253046239257
+    b: 0.3147238880395889
     shape: (256, 512, 7, 7)
 layer4.1.bn1:
   inputs:
     0:
       min: -5.210203170776367
-      max: 3.5200774669647217
-      avg_min: -2.7268222093582155
-      avg_max: 2.039318561553955
-      mean: -0.6206760883331299
-      std: 0.41510913930456855
+      max: 3.741835594177246
+      avg_min: -2.727949595451355
+      avg_max: 2.022892165184021
+      mean: -0.6183191597461701
+      std: 0.41441253046239257
+      b: 0.3147238880395889
       shape: (256, 512, 7, 7)
   output:
     min: -4.808124542236328
-    max: 4.104608535766602
-    avg_min: -2.1864486694335934
-    avg_max: 1.4413557529449463
-    mean: -0.2617767214775086
-    std: 0.32745514342278503
+    max: 4.1657257080078125
+    avg_min: -2.1843703031539916
+    avg_max: 1.4314042687416078
+    mean: -0.25993406772613525
+    std: 0.32693443700689745
+    b: 0.25053864270448684
     shape: (256, 512, 7, 7)
 layer4.1.relu1:
   inputs:
     0:
       min: -4.808124542236328
-      max: 4.104608535766602
-      avg_min: -2.1864486694335934
-      avg_max: 1.4413557529449463
-      mean: -0.2617767214775086
-      std: 0.32745514342278503
+      max: 4.1657257080078125
+      avg_min: -2.1843703031539916
+      avg_max: 1.4314042687416078
+      mean: -0.25993406772613525
+      std: 0.32693443700689745
+      b: 0.25053864270448684
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 4.104608535766602
+    max: 4.1657257080078125
     avg_min: 0.0
-    avg_max: 1.4413557529449463
-    mean: 0.030183648318052293
-    std: 0.0890167884469397
+    avg_max: 1.4314042687416078
+    mean: 0.030445635877549646
+    std: 0.08933091998969779
+    b: 0.049756981804966925
     shape: (256, 512, 7, 7)
 layer4.1.conv2:
   inputs:
     0:
       min: 0.0
-      max: 4.104608535766602
+      max: 4.1657257080078125
       avg_min: 0.0
-      avg_max: 1.4413557529449463
-      mean: 0.030183648318052293
-      std: 0.0890167884469397
+      avg_max: 1.4314042687416078
+      mean: 0.030445635877549646
+      std: 0.08933091998969779
+      b: 0.049756981804966925
       shape: (256, 512, 7, 7)
   output:
-    min: -1.083118200302124
-    max: 2.9936976432800293
-    avg_min: -0.5540908932685852
-    avg_max: 0.8956171870231628
-    mean: -0.027465152740478515
-    std: 0.11994073669763537
+    min: -1.1300753355026245
+    max: 4.191241264343262
+    avg_min: -0.5563786149024963
+    avg_max: 0.9013789415359497
+    mean: -0.027124672755599023
+    std: 0.1204256230341855
+    b: 0.08786393702030182
     shape: (256, 512, 7, 7)
 layer4.1.bn2:
   inputs:
     0:
-      min: -1.083118200302124
-      max: 2.9936976432800293
-      avg_min: -0.5540908932685852
-      avg_max: 0.8956171870231628
-      mean: -0.027465152740478515
-      std: 0.11994073669763537
+      min: -1.1300753355026245
+      max: 4.191241264343262
+      avg_min: -0.5563786149024963
+      avg_max: 0.9013789415359497
+      mean: -0.027124672755599023
+      std: 0.1204256230341855
+      b: 0.08786393702030182
       shape: (256, 512, 7, 7)
   output:
-    min: -17.7739200592041
-    max: 49.293739318847656
-    avg_min: -8.384725379943847
-    avg_max: 15.652357387542724
-    mean: 0.3391309440135956
-    std: 1.9559910002542347
+    min: -19.004796981811523
+    max: 68.5389175415039
+    avg_min: -8.409132289886475
+    avg_max: 15.7423565864563
+    mean: 0.34465126097202303
+    std: 1.9625875514236744
+    b: 1.4261910796165467
     shape: (256, 512, 7, 7)
 layer4.1.relu2:
   inputs:
     0:
-      min: -17.7739200592041
-      max: 53.34544372558594
-      avg_min: -8.348113536834717
-      avg_max: 16.909835433959962
-      mean: 0.4076482564210892
-      std: 2.0075340226308156
+      min: -19.004796981811523
+      max: 73.84921264648438
+      avg_min: -8.37563362121582
+      avg_max: 17.005590820312502
+      mean: 0.41321938037872313
+      std: 2.0140747496097013
+      b: 1.4604507446289061
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 53.34544372558594
+    max: 73.84921264648438
     avg_min: 0.0
-    avg_max: 16.909835433959962
-    mean: 0.9270834982395172
-    std: 1.5093241017607464
+    avg_max: 17.005590820312502
+    mean: 0.9329111337661743
+    std: 1.5150135025832752
+    b: 1.068066442012787
     shape: (256, 512, 7, 7)
 layer4.1.add:
   inputs:
     0:
-      min: -17.7739200592041
-      max: 49.293739318847656
-      avg_min: -8.384725379943847
-      avg_max: 15.652357387542724
-      mean: 0.3391309440135956
-      std: 1.9559910002542347
+      min: -19.004796981811523
+      max: 68.5389175415039
+      avg_min: -8.409132289886475
+      avg_max: 15.7423565864563
+      mean: 0.34465126097202303
+      std: 1.9625875514236744
+      b: 1.4261910796165467
       shape: (256, 512, 7, 7)
     1:
       min: 0.0
-      max: 8.46895980834961
+      max: 8.567574501037598
       avg_min: 0.0
-      avg_max: 3.330011248588562
-      mean: 0.06851729899644853
-      std: 0.2003228502381722
+      avg_max: 3.315259170532226
+      mean: 0.06856812238693237
+      std: 0.20035843135120962
+      b: 0.11173125430941581
       shape: (256, 512, 7, 7)
   output:
-    min: -17.7739200592041
-    max: 53.34544372558594
-    avg_min: -8.348113536834717
-    avg_max: 16.909835433959962
-    mean: 0.4076482564210892
-    std: 2.0075340226308156
+    min: -19.004796981811523
+    max: 73.84921264648438
+    avg_min: -8.37563362121582
+    avg_max: 17.005590820312502
+    mean: 0.41321938037872313
+    std: 2.0140747496097013
+    b: 1.4604507446289061
     shape: (256, 512, 7, 7)
 avgpool:
   inputs:
     0:
       min: 0.0
-      max: 53.34544372558594
+      max: 73.84921264648438
       avg_min: 0.0
-      avg_max: 16.909835433959962
-      mean: 0.9270834982395172
-      std: 1.5093241017607464
+      avg_max: 17.005590820312502
+      mean: 0.9329111337661743
+      std: 1.5150135025832752
+      b: 1.068066442012787
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 17.51531410217285
-    avg_min: 0.00017440698211430573
-    avg_max: 6.207659435272217
-    mean: 0.9270835041999818
-    std: 0.9303102411121627
+    max: 23.313302993774414
+    avg_min: 0.000172000216844026
+    avg_max: 6.189624261856079
+    mean: 0.9329111397266387
+    std: 0.9293646051355287
+    b: 0.68059321641922
     shape: (256, 512, 1, 1)
 fc:
   inputs:
     0:
       min: 0.0
-      max: 17.51531410217285
-      avg_min: 0.00017440698211430573
-      avg_max: 6.207659435272217
-      mean: 0.9270835041999818
-      std: 0.9303102411121627
+      max: 23.313302993774414
+      avg_min: 0.000172000216844026
+      avg_max: 6.189624261856079
+      mean: 0.9329111397266387
+      std: 0.9293646051355287
+      b: 0.68059321641922
       shape: (256, 512)
   output:
-    min: -12.437793731689453
-    max: 40.4469108581543
-    avg_min: -6.941068887710571
-    avg_max: 16.39320945739746
-    mean: 2.7895814673684066e-05
-    std: 2.8083362700072496
+    min: -12.27712631225586
+    max: 37.946144104003906
+    avg_min: -6.967176866531372
+    avg_max: 16.258214187622066
+    mean: 2.813304145092843e-05
+    std: 2.8061255378564596
+    b: 2.0943870067596433
     shape: (256, 1000)
diff --git a/examples/quantization/post_train_quant/stats/resnet50_quant_stats.yaml b/examples/quantization/post_train_quant/stats/resnet50_quant_stats.yaml
index e59ae7b..5a0a5c0 100644
--- a/examples/quantization/post_train_quant/stats/resnet50_quant_stats.yaml
+++ b/examples/quantization/post_train_quant/stats/resnet50_quant_stats.yaml
@@ -1,7 +1,7 @@
 # ResNet-50 activation statistics for post-training quantization
 # Generated by running:
 #
-# python compress_classifier.py -a resnet18 -p 10 -j 22 <path_to_imagenet_dataset> --pretrained --qe-calibration 0.05
+# python compress_classifier.py -a resnet18 -p 10 -j 22 <path_to_imagenet_dataset> --pretrained --qe-calibration 0.05 --seed 0
 #
 # Notes:
 #  * Stats collection is triggered by the '--qe-calibration' flag. It will run evaluation on the specified portion of 
@@ -9,185 +9,206 @@
 #  * Once completed, a file named 'quantization_stats.yaml' is dumped in the log directory
 #  * In this example we collect stats for the pre-trained ResNet-18 model from torchvision. If you trained the FP32
 #    model yourself, you'll need to load the checkpoint using the '--resume' flag.
+
 conv1:
   inputs:
     0:
       min: -2.1179039478302
       max: 2.640000104904175
-      avg_min: -2.0194480657577514
-      avg_max: 2.4895985126495357
-      mean: -0.04953605402261019
-      std: 1.1911271065308935
+      avg_min: -2.014737010002136
+      avg_max: 2.4884546041488647
+      mean: -0.033971998607739806
+      std: 1.201734408022518
+      b: 1.010804271697998
       shape: (256, 3, 224, 224)
   output:
-    min: -29.021743774414062
-    max: 27.613426208496094
-    avg_min: -17.249443244934085
-    avg_max: 17.603945541381833
-    mean: 0.0037155995145440102
-    std: 1.6641648668493714
+    min: -29.77520751953125
+    max: 27.7259464263916
+    avg_min: -17.287668418884277
+    avg_max: 17.605259132385253
+    mean: 0.003127608919749036
+    std: 1.6707808577493286
+    b: 0.9622739136219025
     shape: (256, 64, 112, 112)
 bn1:
   inputs:
     0:
-      min: -29.021743774414062
-      max: 27.613426208496094
-      avg_min: -17.249443244934085
-      avg_max: 17.603945541381833
-      mean: 0.0037155995145440102
-      std: 1.6641648668493714
+      min: -29.77520751953125
+      max: 27.7259464263916
+      avg_min: -17.287668418884277
+      avg_max: 17.605259132385253
+      mean: 0.003127608919749036
+      std: 1.6707808577493286
+      b: 0.9622739136219025
       shape: (256, 64, 112, 112)
   output:
-    min: -8.01382064819336
-    max: 9.588595390319824
-    avg_min: -2.8591087579727175
-    avg_max: 3.2792069911956787
-    mean: 0.2111692249774933
-    std: 0.39293307299795177
+    min: -6.802585124969482
+    max: 8.709970474243164
+    avg_min: -2.875292038917541
+    avg_max: 3.292344069480896
+    mean: 0.21110961586236954
+    std: 0.39392244937427096
+    b: 0.2580239772796631
     shape: (256, 64, 112, 112)
 relu:
   inputs:
     0:
-      min: -8.01382064819336
-      max: 9.588595390319824
-      avg_min: -2.8591087579727175
-      avg_max: 3.2792069911956787
-      mean: 0.2111692249774933
-      std: 0.39293307299795177
+      min: -6.802585124969482
+      max: 8.709970474243164
+      avg_min: -2.875292038917541
+      avg_max: 3.292344069480896
+      mean: 0.21110961586236954
+      std: 0.39392244937427096
+      b: 0.2580239772796631
       shape: (256, 64, 112, 112)
   output:
     min: 0.0
-    max: 9.588595390319824
+    max: 8.709970474243164
     avg_min: 0.0
-    avg_max: 3.2792069911956787
-    mean: 0.27234929502010347
-    std: 0.2906493627939896
+    avg_max: 3.292344069480896
+    mean: 0.27247288525104524
+    std: 0.29089813933159364
+    b: 0.2078553184866905
     shape: (256, 64, 112, 112)
 maxpool:
   inputs:
     0:
       min: 0.0
-      max: 9.588595390319824
+      max: 8.709970474243164
       avg_min: 0.0
-      avg_max: 3.2792069911956787
-      mean: 0.27234929502010347
-      std: 0.2906493627939896
+      avg_max: 3.292344069480896
+      mean: 0.27247288525104524
+      std: 0.29089813933159364
+      b: 0.2078553184866905
       shape: (256, 64, 112, 112)
   output:
     min: 0.0
-    max: 9.588595390319824
+    max: 8.709970474243164
     avg_min: 0.0
-    avg_max: 3.2792069911956787
-    mean: 0.41020182669162747
-    std: 0.34590466330561787
+    avg_max: 3.292344069480896
+    mean: 0.40832236111164094
+    std: 0.3473619222413323
+    b: 0.2558086723089218
     shape: (256, 64, 56, 56)
 layer1.0.conv1:
   inputs:
     0:
       min: 0.0
-      max: 9.588595390319824
+      max: 8.709970474243164
       avg_min: 0.0
-      avg_max: 3.2792069911956787
-      mean: 0.41020182669162747
-      std: 0.34590466330561787
+      avg_max: 3.292344069480896
+      mean: 0.40832236111164094
+      std: 0.3473619222413323
+      b: 0.2558086723089218
       shape: (256, 64, 56, 56)
   output:
-    min: -6.134335994720459
-    max: 5.119430065155029
-    avg_min: -2.87510347366333
-    avg_max: 3.2264750003814697
-    mean: -0.16020772010087964
-    std: 0.4356245989366653
+    min: -6.828606605529785
+    max: 5.236318111419678
+    avg_min: -2.8953623533248902
+    avg_max: 3.21773624420166
+    mean: -0.15903166681528091
+    std: 0.4356199981478919
+    b: 0.2817686200141907
     shape: (256, 64, 56, 56)
 layer1.0.bn1:
   inputs:
     0:
-      min: -6.134335994720459
-      max: 5.119430065155029
-      avg_min: -2.87510347366333
-      avg_max: 3.2264750003814697
-      mean: -0.16020772010087964
-      std: 0.4356245989366653
+      min: -6.828606605529785
+      max: 5.236318111419678
+      avg_min: -2.8953623533248902
+      avg_max: 3.21773624420166
+      mean: -0.15903166681528091
+      std: 0.4356199981478919
+      b: 0.2817686200141907
       shape: (256, 64, 56, 56)
   output:
-    min: -5.676072597503662
-    max: 2.838289737701416
-    avg_min: -2.651957130432129
-    avg_max: 1.2408627033233643
-    mean: 0.018273601215332752
-    std: 0.27017834978407007
+    min: -6.346645832061768
+    max: 2.856245517730713
+    avg_min: -2.6718324422836304
+    avg_max: 1.2453311443328858
+    mean: 0.019558261148631573
+    std: 0.271801838403236
+    b: 0.1766661003232002
     shape: (256, 64, 56, 56)
 layer1.0.relu1:
   inputs:
     0:
-      min: -5.676072597503662
-      max: 2.838289737701416
-      avg_min: -2.651957130432129
-      avg_max: 1.2408627033233643
-      mean: 0.018273601215332752
-      std: 0.27017834978407007
+      min: -6.346645832061768
+      max: 2.856245517730713
+      avg_min: -2.6718324422836304
+      avg_max: 1.2453311443328858
+      mean: 0.019558261148631573
+      std: 0.271801838403236
+      b: 0.1766661003232002
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
-    max: 2.838289737701416
+    max: 2.856245517730713
     avg_min: 0.0
-    avg_max: 1.2408627033233643
-    mean: 0.09888825193047523
-    std: 0.14426185012443266
+    avg_max: 1.2453311443328858
+    mean: 0.09977039471268653
+    std: 0.1446119031886064
+    b: 0.10097708702087402
     shape: (256, 64, 56, 56)
 layer1.0.conv2:
   inputs:
     0:
       min: 0.0
-      max: 2.838289737701416
+      max: 2.856245517730713
       avg_min: 0.0
-      avg_max: 1.2408627033233643
-      mean: 0.09888825193047523
-      std: 0.14426185012443266
+      avg_max: 1.2453311443328858
+      mean: 0.09977039471268653
+      std: 0.1446119031886064
+      b: 0.10097708702087402
       shape: (256, 64, 56, 56)
   output:
-    min: -2.8670847415924072
-    max: 2.428457260131836
-    avg_min: -1.5226194500923158
-    avg_max: 1.462186813354492
-    mean: 0.025130289234220983
-    std: 0.24702317462922718
+    min: -2.8630306720733643
+    max: 2.4237983226776123
+    avg_min: -1.5336567759513855
+    avg_max: 1.4681915879249572
+    mean: 0.026247738488018514
+    std: 0.24856335642971397
+    b: 0.18177948594093324
     shape: (256, 64, 56, 56)
 layer1.0.bn2:
   inputs:
     0:
-      min: -2.8670847415924072
-      max: 2.428457260131836
-      avg_min: -1.5226194500923158
-      avg_max: 1.462186813354492
-      mean: 0.025130289234220983
-      std: 0.24702317462922718
+      min: -2.8630306720733643
+      max: 2.4237983226776123
+      avg_min: -1.5336567759513855
+      avg_max: 1.4681915879249572
+      mean: 0.026247738488018514
+      std: 0.24856335642971397
+      b: 0.18177948594093324
       shape: (256, 64, 56, 56)
   output:
-    min: -2.47900390625
+    min: -2.4756059646606445
     max: 2.4024081230163574
-    avg_min: -1.3767139077186583
-    avg_max: 1.685540783405304
-    mean: 0.09658345282077789
-    std: 0.2475966625550267
+    avg_min: -1.3867925524711608
+    avg_max: 1.6982261180877687
+    mean: 0.09799071922898292
+    std: 0.2478434186338471
+    b: 0.1907553628087044
     shape: (256, 64, 56, 56)
 layer1.0.relu2:
   inputs:
     0:
-      min: -2.47900390625
+      min: -2.4756059646606445
       max: 2.4024081230163574
-      avg_min: -1.3767139077186583
-      avg_max: 1.685540783405304
-      mean: 0.09658345282077789
-      std: 0.2475966625550267
+      avg_min: -1.3867925524711608
+      avg_max: 1.6982261180877687
+      mean: 0.09799071922898292
+      std: 0.2478434186338471
+      b: 0.1907553628087044
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
     max: 2.4024081230163574
     avg_min: 0.0
-    avg_max: 1.685540783405304
-    mean: 0.15067598968744278
-    std: 0.17923840086609663
+    avg_max: 1.6982261180877687
+    mean: 0.1515715852379799
+    std: 0.1797079613687139
+    b: 0.14260999858379364
     shape: (256, 64, 56, 56)
 layer1.0.conv3:
   inputs:
@@ -195,411 +216,457 @@ layer1.0.conv3:
       min: 0.0
       max: 2.4024081230163574
       avg_min: 0.0
-      avg_max: 1.685540783405304
-      mean: 0.15067598968744278
-      std: 0.17923840086609663
+      avg_max: 1.6982261180877687
+      mean: 0.1515715852379799
+      std: 0.1797079613687139
+      b: 0.14260999858379364
       shape: (256, 64, 56, 56)
   output:
-    min: -0.9372764229774475
-    max: 1.0535180568695068
-    avg_min: -0.5658745408058167
-    avg_max: 0.531978303194046
-    mean: 0.001976134371943772
-    std: 0.09642191440462164
+    min: -1.0363574028015137
+    max: 1.0866605043411255
+    avg_min: -0.5689234554767608
+    avg_max: 0.5344017207622529
+    mean: 0.0019158420152962207
+    std: 0.09695745312469202
+    b: 0.06490625068545341
     shape: (256, 256, 56, 56)
 layer1.0.bn3:
   inputs:
     0:
-      min: -0.9372764229774475
-      max: 1.0535180568695068
-      avg_min: -0.5658745408058167
-      avg_max: 0.531978303194046
-      mean: 0.001976134371943772
-      std: 0.09642191440462164
+      min: -1.0363574028015137
+      max: 1.0866605043411255
+      avg_min: -0.5689234554767608
+      avg_max: 0.5344017207622529
+      mean: 0.0019158420152962207
+      std: 0.09695745312469202
+      b: 0.06490625068545341
       shape: (256, 256, 56, 56)
   output:
-    min: -2.1237709522247314
-    max: 2.804506540298462
-    avg_min: -1.224911904335022
-    avg_max: 1.4734266877174378
-    mean: 0.03012052457779646
-    std: 0.17642889981452323
+    min: -2.2552833557128906
+    max: 2.891174077987671
+    avg_min: -1.228823399543762
+    avg_max: 1.482080030441284
+    mean: 0.030082797259092332
+    std: 0.17757162041085733
+    b: 0.12617160230875016
     shape: (256, 256, 56, 56)
 layer1.0.relu3:
   inputs:
     0:
-      min: -6.5921950340271
-      max: 5.349836349487305
-      avg_min: -2.7074877262115478
-      avg_max: 2.225037121772766
-      mean: 0.05088358409702778
-      std: 0.2737192745689316
+      min: -5.723519802093506
+      max: 5.408143520355225
+      avg_min: -2.714110994338989
+      avg_max: 2.2517192363739014
+      mean: 0.05181790217757225
+      std: 0.2748294279651139
+      b: 0.19356327503919601
       shape: (256, 256, 56, 56)
   output:
     min: 0.0
-    max: 5.349836349487305
+    max: 5.408143520355225
     avg_min: 0.0
-    avg_max: 2.225037121772766
-    mean: 0.12471431791782378
-    std: 0.15946307436766427
+    avg_max: 2.2517192363739014
+    mean: 0.12560559958219525
+    std: 0.15995877582360993
+    b: 0.12565144300460815
     shape: (256, 256, 56, 56)
 layer1.0.downsample.0:
   inputs:
     0:
       min: 0.0
-      max: 9.588595390319824
+      max: 8.709970474243164
       avg_min: 0.0
-      avg_max: 3.2792069911956787
-      mean: 0.41020182669162747
-      std: 0.34590466330561787
+      avg_max: 3.292344069480896
+      mean: 0.40832236111164094
+      std: 0.3473619222413323
+      b: 0.2558086723089218
       shape: (256, 64, 56, 56)
   output:
-    min: -4.4379401206970215
-    max: 6.524487018585205
-    avg_min: -2.33790602684021
-    avg_max: 4.168910694122315
-    mean: -0.11462006196379662
-    std: 0.3653068470578705
+    min: -4.000418663024902
+    max: 6.921199321746826
+    avg_min: -2.3480519533157347
+    avg_max: 4.156716012954713
+    mean: -0.11391679793596267
+    std: 0.3654536032993443
+    b: 0.26149922609329224
     shape: (256, 256, 56, 56)
 layer1.0.downsample.1:
   inputs:
     0:
-      min: -4.4379401206970215
-      max: 6.524487018585205
-      avg_min: -2.33790602684021
-      avg_max: 4.168910694122315
-      mean: -0.11462006196379662
-      std: 0.3653068470578705
+      min: -4.000418663024902
+      max: 6.921199321746826
+      avg_min: -2.3480519533157347
+      avg_max: 4.156716012954713
+      mean: -0.11391679793596267
+      std: 0.3654536032993443
+      b: 0.26149922609329224
       shape: (256, 256, 56, 56)
   output:
-    min: -7.008085250854492
-    max: 5.45076322555542
-    avg_min: -2.6306499719619754
-    avg_max: 1.9708283662796018
-    mean: 0.020763059332966804
-    std: 0.25631280571324705
+    min: -5.729030609130859
+    max: 5.4052205085754395
+    avg_min: -2.6320664167404173
+    avg_max: 1.9875982880592344
+    mean: 0.021735104732215405
+    std: 0.25822147529250633
+    b: 0.17771269083023067
     shape: (256, 256, 56, 56)
 layer1.0.add:
   inputs:
     0:
-      min: -2.1237709522247314
-      max: 2.804506540298462
-      avg_min: -1.224911904335022
-      avg_max: 1.4734266877174378
-      mean: 0.03012052457779646
-      std: 0.17642889981452323
+      min: -2.2552833557128906
+      max: 2.891174077987671
+      avg_min: -1.228823399543762
+      avg_max: 1.482080030441284
+      mean: 0.030082797259092332
+      std: 0.17757162041085733
+      b: 0.12617160230875016
       shape: (256, 256, 56, 56)
     1:
-      min: -7.008085250854492
-      max: 5.45076322555542
-      avg_min: -2.6306499719619754
-      avg_max: 1.9708283662796018
-      mean: 0.020763059332966804
-      std: 0.25631280571324705
+      min: -5.729030609130859
+      max: 5.4052205085754395
+      avg_min: -2.6320664167404173
+      avg_max: 1.9875982880592344
+      mean: 0.021735104732215405
+      std: 0.25822147529250633
+      b: 0.17771269083023067
       shape: (256, 256, 56, 56)
   output:
-    min: -6.5921950340271
-    max: 5.349836349487305
-    avg_min: -2.7074877262115478
-    avg_max: 2.225037121772766
-    mean: 0.05088358409702778
-    std: 0.2737192745689316
+    min: -5.723519802093506
+    max: 5.408143520355225
+    avg_min: -2.714110994338989
+    avg_max: 2.2517192363739014
+    mean: 0.05181790217757225
+    std: 0.2748294279651139
+    b: 0.19356327503919601
     shape: (256, 256, 56, 56)
 layer1.1.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.349836349487305
+      max: 5.408143520355225
       avg_min: 0.0
-      avg_max: 2.225037121772766
-      mean: 0.12471431791782378
-      std: 0.15946307436766427
+      avg_max: 2.2517192363739014
+      mean: 0.12560559958219525
+      std: 0.15995877582360993
+      b: 0.12565144300460815
       shape: (256, 256, 56, 56)
   output:
-    min: -1.9313349723815918
-    max: 2.2554514408111572
-    avg_min: -1.1201776385307312
-    avg_max: 1.2206068515777586
-    mean: 0.012862533424049617
-    std: 0.19780537441792345
+    min: -1.9468796253204346
+    max: 2.4118616580963135
+    avg_min: -1.1247573018074035
+    avg_max: 1.2325500845909119
+    mean: 0.014543743710964918
+    std: 0.19930191734990388
+    b: 0.1495312362909317
     shape: (256, 64, 56, 56)
 layer1.1.bn1:
   inputs:
     0:
-      min: -1.9313349723815918
-      max: 2.2554514408111572
-      avg_min: -1.1201776385307312
-      avg_max: 1.2206068515777586
-      mean: 0.012862533424049617
-      std: 0.19780537441792345
+      min: -1.9468796253204346
+      max: 2.4118616580963135
+      avg_min: -1.1247573018074035
+      avg_max: 1.2325500845909119
+      mean: 0.014543743710964918
+      std: 0.19930191734990388
+      b: 0.1495312362909317
       shape: (256, 64, 56, 56)
   output:
-    min: -2.740361452102661
-    max: 2.745940685272217
-    avg_min: -1.7288200378417968
-    avg_max: 1.3055826187133788
-    mean: -0.03281154725700617
-    std: 0.2574544790456561
+    min: -3.153421640396118
+    max: 2.6203081607818604
+    avg_min: -1.731451725959778
+    avg_max: 1.3174136161804197
+    mean: -0.03057380821555853
+    std: 0.25705858740320436
+    b: 0.19142480790615082
     shape: (256, 64, 56, 56)
 layer1.1.relu1:
   inputs:
     0:
-      min: -2.740361452102661
-      max: 2.745940685272217
-      avg_min: -1.7288200378417968
-      avg_max: 1.3055826187133788
-      mean: -0.03281154725700617
-      std: 0.2574544790456561
+      min: -3.153421640396118
+      max: 2.6203081607818604
+      avg_min: -1.731451725959778
+      avg_max: 1.3174136161804197
+      mean: -0.03057380821555853
+      std: 0.25705858740320436
+      b: 0.19142480790615082
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
-    max: 2.745940685272217
+    max: 2.6203081607818604
     avg_min: 0.0
-    avg_max: 1.3055826187133788
-    mean: 0.07788005843758583
-    std: 0.12464164985578752
+    avg_max: 1.3174136161804197
+    mean: 0.07859571650624275
+    std: 0.12505600836775924
+    b: 0.09380149841308594
     shape: (256, 64, 56, 56)
 layer1.1.conv2:
   inputs:
     0:
       min: 0.0
-      max: 2.745940685272217
+      max: 2.6203081607818604
       avg_min: 0.0
-      avg_max: 1.3055826187133788
-      mean: 0.07788005843758583
-      std: 0.12464164985578752
+      avg_max: 1.3174136161804197
+      mean: 0.07859571650624275
+      std: 0.12505600836775924
+      b: 0.09380149841308594
       shape: (256, 64, 56, 56)
   output:
-    min: -1.5275675058364868
-    max: 1.6332422494888306
-    avg_min: -0.8235357999801636
-    avg_max: 0.8191621780395507
-    mean: -0.03984254710376262
-    std: 0.14252681331424472
+    min: -1.4992557764053345
+    max: 1.7087785005569458
+    avg_min: -0.827894115447998
+    avg_max: 0.826089608669281
+    mean: -0.039308606088161474
+    std: 0.14387128911630817
+    b: 0.11145214289426804
     shape: (256, 64, 56, 56)
 layer1.1.bn2:
   inputs:
     0:
-      min: -1.5275675058364868
-      max: 1.6332422494888306
-      avg_min: -0.8235357999801636
-      avg_max: 0.8191621780395507
-      mean: -0.03984254710376262
-      std: 0.14252681331424472
+      min: -1.4992557764053345
+      max: 1.7087785005569458
+      avg_min: -0.827894115447998
+      avg_max: 0.826089608669281
+      mean: -0.039308606088161474
+      std: 0.14387128911630817
+      b: 0.11145214289426804
       shape: (256, 64, 56, 56)
   output:
-    min: -2.8751518726348877
-    max: 2.8472483158111572
-    avg_min: -1.3708854317665098
-    avg_max: 1.8832740783691406
-    mean: -0.0040543241892009975
-    std: 0.2357891889237935
+    min: -2.712982177734375
+    max: 2.96404767036438
+    avg_min: -1.3832260131835936
+    avg_max: 1.894889509677887
+    mean: -0.0028795487887691706
+    std: 0.2367397066162646
+    b: 0.18719465434551238
     shape: (256, 64, 56, 56)
 layer1.1.relu2:
   inputs:
     0:
-      min: -2.8751518726348877
-      max: 2.8472483158111572
-      avg_min: -1.3708854317665098
-      avg_max: 1.8832740783691406
-      mean: -0.0040543241892009975
-      std: 0.2357891889237935
+      min: -2.712982177734375
+      max: 2.96404767036438
+      avg_min: -1.3832260131835936
+      avg_max: 1.894889509677887
+      mean: -0.0028795487887691706
+      std: 0.2367397066162646
+      b: 0.18719465434551238
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
-    max: 2.8472483158111572
+    max: 2.96404767036438
     avg_min: 0.0
-    avg_max: 1.8832740783691406
-    mean: 0.09149510115385055
-    std: 0.13550245260688218
+    avg_max: 1.894889509677887
+    mean: 0.09235606417059898
+    std: 0.13614528139168378
+    b: 0.1060811698436737
     shape: (256, 64, 56, 56)
 layer1.1.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.8472483158111572
+      max: 2.96404767036438
       avg_min: 0.0
-      avg_max: 1.8832740783691406
-      mean: 0.09149510115385055
-      std: 0.13550245260688218
+      avg_max: 1.894889509677887
+      mean: 0.09235606417059898
+      std: 0.13614528139168378
+      b: 0.1060811698436737
       shape: (256, 64, 56, 56)
   output:
-    min: -0.8538176417350769
-    max: 0.7335529923439026
-    avg_min: -0.4299289405345917
-    avg_max: 0.41846013665199283
-    mean: 0.0008781348238699138
-    std: 0.050629324330970844
+    min: -0.9220203161239624
+    max: 0.7350702881813049
+    avg_min: -0.43349442780017855
+    avg_max: 0.4201738059520721
+    mean: 0.0008345403708517552
+    std: 0.05098989611936597
+    b: 0.032644493505358696
     shape: (256, 256, 56, 56)
 layer1.1.bn3:
   inputs:
     0:
-      min: -0.8538176417350769
-      max: 0.7335529923439026
-      avg_min: -0.4299289405345917
-      avg_max: 0.41846013665199283
-      mean: 0.0008781348238699138
-      std: 0.050629324330970844
+      min: -0.9220203161239624
+      max: 0.7350702881813049
+      avg_min: -0.43349442780017855
+      avg_max: 0.4201738059520721
+      mean: 0.0008345403708517552
+      std: 0.05098989611936597
+      b: 0.032644493505358696
       shape: (256, 256, 56, 56)
   output:
-    min: -2.427877426147461
-    max: 2.1374871730804443
-    avg_min: -1.201740324497223
-    avg_max: 1.2318211555480958
-    mean: 0.0007946550496853887
-    std: 0.11612635828400251
+    min: -2.632857084274292
+    max: 1.931094765663147
+    avg_min: -1.2159965276718139
+    avg_max: 1.233963096141815
+    mean: 0.0007505259418394417
+    std: 0.11703629275307093
+    b: 0.07123817652463912
     shape: (256, 256, 56, 56)
 layer1.1.relu3:
   inputs:
     0:
-      min: -2.427877426147461
-      max: 5.353028297424316
-      avg_min: -1.1876824855804444
-      avg_max: 2.676138973236084
-      mean: 0.1255089685320854
-      std: 0.20238215991402594
+      min: -2.448188304901123
+      max: 4.483600616455078
+      avg_min: -1.200249695777893
+      avg_max: 2.704547882080078
+      mean: 0.1263561263680458
+      std: 0.20295799248888058
+      b: 0.15624594837427136
       shape: (256, 256, 56, 56)
   output:
     min: 0.0
-    max: 5.353028297424316
+    max: 4.483600616455078
     avg_min: 0.0
-    avg_max: 2.676138973236084
-    mean: 0.14902197271585463
-    std: 0.17286750482866345
+    avg_max: 2.704547882080078
+    mean: 0.1498764231801033
+    std: 0.173297613668067
+    b: 0.13614595532417295
     shape: (256, 256, 56, 56)
 layer1.1.add:
   inputs:
     0:
-      min: -2.427877426147461
-      max: 2.1374871730804443
-      avg_min: -1.201740324497223
-      avg_max: 1.2318211555480958
-      mean: 0.0007946550496853887
-      std: 0.11612635828400251
+      min: -2.632857084274292
+      max: 1.931094765663147
+      avg_min: -1.2159965276718139
+      avg_max: 1.233963096141815
+      mean: 0.0007505259418394417
+      std: 0.11703629275307093
+      b: 0.07123817652463912
       shape: (256, 256, 56, 56)
     1:
       min: 0.0
-      max: 5.349836349487305
+      max: 5.408143520355225
       avg_min: 0.0
-      avg_max: 2.225037121772766
-      mean: 0.12471431791782378
-      std: 0.15946307436766427
+      avg_max: 2.2517192363739014
+      mean: 0.12560559958219525
+      std: 0.15995877582360993
+      b: 0.12565144300460815
       shape: (256, 256, 56, 56)
   output:
-    min: -2.427877426147461
-    max: 5.353028297424316
-    avg_min: -1.1876824855804444
-    avg_max: 2.676138973236084
-    mean: 0.1255089685320854
-    std: 0.20238215991402594
+    min: -2.448188304901123
+    max: 4.483600616455078
+    avg_min: -1.200249695777893
+    avg_max: 2.704547882080078
+    mean: 0.1263561263680458
+    std: 0.20295799248888058
+    b: 0.15624594837427136
     shape: (256, 256, 56, 56)
 layer1.2.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.353028297424316
+      max: 4.483600616455078
       avg_min: 0.0
-      avg_max: 2.676138973236084
-      mean: 0.14902197271585463
-      std: 0.17286750482866345
+      avg_max: 2.704547882080078
+      mean: 0.1498764231801033
+      std: 0.173297613668067
+      b: 0.13614595532417295
       shape: (256, 256, 56, 56)
   output:
-    min: -1.7616757154464722
-    max: 1.8686389923095703
-    avg_min: -1.1013933777809142
-    avg_max: 1.0224858760833737
-    mean: -0.00525319161824882
-    std: 0.19059361957783888
+    min: -1.8167027235031128
+    max: 1.7228443622589111
+    avg_min: -1.1022038578987121
+    avg_max: 1.0339230298995974
+    mean: -0.004812098923139274
+    std: 0.19139740397973323
+    b: 0.14415460526943208
     shape: (256, 64, 56, 56)
 layer1.2.bn1:
   inputs:
     0:
-      min: -1.7616757154464722
-      max: 1.8686389923095703
-      avg_min: -1.1013933777809142
-      avg_max: 1.0224858760833737
-      mean: -0.00525319161824882
-      std: 0.19059361957783888
+      min: -1.8167027235031128
+      max: 1.7228443622589111
+      avg_min: -1.1022038578987121
+      avg_max: 1.0339230298995974
+      mean: -0.004812098923139274
+      std: 0.19139740397973323
+      b: 0.14415460526943208
       shape: (256, 64, 56, 56)
   output:
-    min: -2.7506232261657715
-    max: 2.1235201358795166
-    avg_min: -1.327807295322418
-    avg_max: 1.3330841302871705
-    mean: -0.023820190504193303
-    std: 0.21698271029400948
+    min: -2.452049493789673
+    max: 2.3626809120178223
+    avg_min: -1.3316667556762696
+    avg_max: 1.337543511390686
+    mean: -0.02338049728423357
+    std: 0.21757246588807308
+    b: 0.16897730380296705
     shape: (256, 64, 56, 56)
 layer1.2.relu1:
   inputs:
     0:
-      min: -2.7506232261657715
-      max: 2.1235201358795166
-      avg_min: -1.327807295322418
-      avg_max: 1.3330841302871705
-      mean: -0.023820190504193303
-      std: 0.21698271029400948
+      min: -2.452049493789673
+      max: 2.3626809120178223
+      avg_min: -1.3316667556762696
+      avg_max: 1.337543511390686
+      mean: -0.02338049728423357
+      std: 0.21757246588807308
+      b: 0.16897730380296705
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
-    max: 2.1235201358795166
+    max: 2.3626809120178223
     avg_min: 0.0
-    avg_max: 1.3330841302871705
-    mean: 0.0725968673825264
-    std: 0.11419613714155921
+    avg_max: 1.337543511390686
+    mean: 0.07288650646805764
+    std: 0.11454655768761988
+    b: 0.08717432022094726
     shape: (256, 64, 56, 56)
 layer1.2.conv2:
   inputs:
     0:
       min: 0.0
-      max: 2.1235201358795166
+      max: 2.3626809120178223
       avg_min: 0.0
-      avg_max: 1.3330841302871705
-      mean: 0.0725968673825264
-      std: 0.11419613714155921
+      avg_max: 1.337543511390686
+      mean: 0.07288650646805764
+      std: 0.11454655768761988
+      b: 0.08717432022094726
       shape: (256, 64, 56, 56)
   output:
-    min: -1.6971313953399658
-    max: 1.8872549533843994
-    avg_min: -0.9967679262161254
-    avg_max: 0.9692558109760284
-    mean: -0.03579312190413475
-    std: 0.15317762623712008
+    min: -1.6655040979385376
+    max: 1.8041901588439941
+    avg_min: -0.9947495043277741
+    avg_max: 0.9727156639099122
+    mean: -0.03543716296553612
+    std: 0.1532093424024214
+    b: 0.11598385646939277
     shape: (256, 64, 56, 56)
 layer1.2.bn2:
   inputs:
     0:
-      min: -1.6971313953399658
-      max: 1.8872549533843994
-      avg_min: -0.9967679262161254
-      avg_max: 0.9692558109760284
-      mean: -0.03579312190413475
-      std: 0.15317762623712008
+      min: -1.6655040979385376
+      max: 1.8041901588439941
+      avg_min: -0.9947495043277741
+      avg_max: 0.9727156639099122
+      mean: -0.03543716296553612
+      std: 0.1532093424024214
+      b: 0.11598385646939277
       shape: (256, 64, 56, 56)
   output:
-    min: -2.867137908935547
+    min: -2.9388957023620605
     max: 3.6316139698028564
-    avg_min: -1.6317484259605406
-    avg_max: 2.225333738327027
-    mean: -0.052389902994036674
-    std: 0.24594319748974067
+    avg_min: -1.6321346282958986
+    avg_max: 2.260721516609192
+    mean: -0.05179072357714176
+    std: 0.24605891571554359
+    b: 0.18591513037681578
     shape: (256, 64, 56, 56)
 layer1.2.relu2:
   inputs:
     0:
-      min: -2.867137908935547
+      min: -2.9388957023620605
       max: 3.6316139698028564
-      avg_min: -1.6317484259605406
-      avg_max: 2.225333738327027
-      mean: -0.052389902994036674
-      std: 0.24594319748974067
+      avg_min: -1.6321346282958986
+      avg_max: 2.260721516609192
+      mean: -0.05179072357714176
+      std: 0.24605891571554359
+      b: 0.18591513037681578
       shape: (256, 64, 56, 56)
   output:
     min: 0.0
     max: 3.6316139698028564
     avg_min: 0.0
-    avg_max: 2.225333738327027
-    mean: 0.06840542927384377
-    std: 0.12509801121586178
+    avg_max: 2.260721516609192
+    mean: 0.06845682263374328
+    std: 0.1254442338043625
+    b: 0.08867856264114381
     shape: (256, 64, 56, 56)
 layer1.2.conv3:
   inputs:
@@ -607,2665 +674,2963 @@ layer1.2.conv3:
       min: 0.0
       max: 3.6316139698028564
       avg_min: 0.0
-      avg_max: 2.225333738327027
-      mean: 0.06840542927384377
-      std: 0.12509801121586178
+      avg_max: 2.260721516609192
+      mean: 0.06845682263374328
+      std: 0.1254442338043625
+      b: 0.08867856264114381
       shape: (256, 64, 56, 56)
   output:
-    min: -0.8806965947151184
-    max: 0.9206370115280151
-    avg_min: -0.5347535908222198
-    avg_max: 0.45239402949810026
-    mean: -0.009428445808589458
-    std: 0.04224741520095739
+    min: -0.8854748606681824
+    max: 0.8420921564102173
+    avg_min: -0.540524697303772
+    avg_max: 0.4540196806192398
+    mean: -0.009436824824661016
+    std: 0.042373290453578
+    b: 0.026608585938811304
     shape: (256, 256, 56, 56)
 layer1.2.bn3:
   inputs:
     0:
-      min: -0.8806965947151184
-      max: 0.9206370115280151
-      avg_min: -0.5347535908222198
-      avg_max: 0.45239402949810026
-      mean: -0.009428445808589458
-      std: 0.04224741520095739
+      min: -0.8854748606681824
+      max: 0.8420921564102173
+      avg_min: -0.540524697303772
+      avg_max: 0.4540196806192398
+      mean: -0.009436824824661016
+      std: 0.042373290453578
+      b: 0.026608585938811304
       shape: (256, 256, 56, 56)
   output:
-    min: -3.56653094291687
-    max: 3.2357234954833984
-    avg_min: -1.9623473525047301
-    avg_max: 1.6716772675514222
-    mean: -0.0139082214795053
-    std: 0.13373639817461858
+    min: -3.6308648586273193
+    max: 3.573558807373047
+    avg_min: -1.9782023072242736
+    avg_max: 1.6808546781539917
+    mean: -0.01391248032450676
+    std: 0.13409984300834987
+    b: 0.07730407193303107
     shape: (256, 256, 56, 56)
 layer1.2.relu3:
   inputs:
     0:
-      min: -3.56653094291687
-      max: 5.357458591461182
-      avg_min: -1.9435741305351257
-      avg_max: 2.65454523563385
-      mean: 0.1351137563586235
-      std: 0.22185765487409212
+      min: -3.6308648586273193
+      max: 4.356468677520752
+      avg_min: -1.9601846933364866
+      avg_max: 2.668972539901733
+      mean: 0.13596393913030624
+      std: 0.22232956930205194
+      b: 0.16796152144670487
       shape: (256, 256, 56, 56)
   output:
     min: 0.0
-    max: 5.357458591461182
+    max: 4.356468677520752
     avg_min: 0.0
-    avg_max: 2.65454523563385
-    mean: 0.1635646849870682
-    std: 0.18104150882563352
+    avg_max: 2.668972539901733
+    mean: 0.16436316967010497
+    std: 0.18141619856281485
+    b: 0.142694553732872
     shape: (256, 256, 56, 56)
 layer1.2.add:
   inputs:
     0:
-      min: -3.56653094291687
-      max: 3.2357234954833984
-      avg_min: -1.9623473525047301
-      avg_max: 1.6716772675514222
-      mean: -0.0139082214795053
-      std: 0.13373639817461858
+      min: -3.6308648586273193
+      max: 3.573558807373047
+      avg_min: -1.9782023072242736
+      avg_max: 1.6808546781539917
+      mean: -0.01391248032450676
+      std: 0.13409984300834987
+      b: 0.07730407193303107
       shape: (256, 256, 56, 56)
     1:
       min: 0.0
-      max: 5.353028297424316
+      max: 4.483600616455078
       avg_min: 0.0
-      avg_max: 2.676138973236084
-      mean: 0.14902197271585463
-      std: 0.17286750482866345
+      avg_max: 2.704547882080078
+      mean: 0.1498764231801033
+      std: 0.173297613668067
+      b: 0.13614595532417295
       shape: (256, 256, 56, 56)
   output:
-    min: -3.56653094291687
-    max: 5.357458591461182
-    avg_min: -1.9435741305351257
-    avg_max: 2.65454523563385
-    mean: 0.1351137563586235
-    std: 0.22185765487409212
+    min: -3.6308648586273193
+    max: 4.356468677520752
+    avg_min: -1.9601846933364866
+    avg_max: 2.668972539901733
+    mean: 0.13596393913030624
+    std: 0.22232956930205194
+    b: 0.16796152144670487
     shape: (256, 256, 56, 56)
 layer2.0.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.357458591461182
+      max: 4.356468677520752
       avg_min: 0.0
-      avg_max: 2.65454523563385
-      mean: 0.1635646849870682
-      std: 0.18104150882563352
+      avg_max: 2.668972539901733
+      mean: 0.16436316967010497
+      std: 0.18141619856281485
+      b: 0.142694553732872
       shape: (256, 256, 56, 56)
   output:
-    min: -3.7851288318634033
-    max: 3.678927421569824
-    avg_min: -1.8964955091476443
-    avg_max: 1.8101095080375673
-    mean: -0.07384323924779893
-    std: 0.20913271229609134
+    min: -3.520413875579834
+    max: 3.360445976257324
+    avg_min: -1.899469256401062
+    avg_max: 1.820480215549469
+    mean: -0.07436543479561805
+    std: 0.2099182706551138
+    b: 0.1648312672972679
     shape: (256, 128, 56, 56)
 layer2.0.bn1:
   inputs:
     0:
-      min: -3.7851288318634033
-      max: 3.678927421569824
-      avg_min: -1.8964955091476443
-      avg_max: 1.8101095080375673
-      mean: -0.07384323924779893
-      std: 0.20913271229609134
+      min: -3.520413875579834
+      max: 3.360445976257324
+      avg_min: -1.899469256401062
+      avg_max: 1.820480215549469
+      mean: -0.07436543479561805
+      std: 0.2099182706551138
+      b: 0.1648312672972679
       shape: (256, 128, 56, 56)
   output:
-    min: -3.7101635932922363
-    max: 5.031552314758301
-    avg_min: -1.8947327494621278
-    avg_max: 2.176897025108337
-    mean: -0.06824869513511655
-    std: 0.23658398893458527
+    min: -3.668393135070801
+    max: 4.035939693450928
+    avg_min: -1.9002321958541872
+    avg_max: 2.1884294748306274
+    mean: -0.06902376189827919
+    std: 0.23721024317508332
+    b: 0.18370728492736815
     shape: (256, 128, 56, 56)
 layer2.0.relu1:
   inputs:
     0:
-      min: -3.7101635932922363
-      max: 5.031552314758301
-      avg_min: -1.8947327494621278
-      avg_max: 2.176897025108337
-      mean: -0.06824869513511655
-      std: 0.23658398893458527
+      min: -3.668393135070801
+      max: 4.035939693450928
+      avg_min: -1.9002321958541872
+      avg_max: 2.1884294748306274
+      mean: -0.06902376189827919
+      std: 0.23721024317508332
+      b: 0.18370728492736815
       shape: (256, 128, 56, 56)
   output:
     min: 0.0
-    max: 5.031552314758301
+    max: 4.035939693450928
     avg_min: 0.0
-    avg_max: 2.176897025108337
-    mean: 0.061215569078922276
-    std: 0.11362871779653372
+    avg_max: 2.1884294748306274
+    mean: 0.061090839654207224
+    std: 0.11381593666460275
+    b: 0.08104241266846658
     shape: (256, 128, 56, 56)
 layer2.0.conv2:
   inputs:
     0:
       min: 0.0
-      max: 5.031552314758301
+      max: 4.035939693450928
       avg_min: 0.0
-      avg_max: 2.176897025108337
-      mean: 0.061215569078922276
-      std: 0.11362871779653372
+      avg_max: 2.1884294748306274
+      mean: 0.061090839654207224
+      std: 0.11381593666460275
+      b: 0.08104241266846658
       shape: (256, 128, 56, 56)
   output:
-    min: -3.1401312351226807
-    max: 2.5816173553466797
-    avg_min: -1.5692914128303528
-    avg_max: 1.1475389122962953
-    mean: -0.051120304688811305
-    std: 0.2045280253897083
+    min: -2.8927805423736572
+    max: 2.533378839492798
+    avg_min: -1.569937014579773
+    avg_max: 1.1564969182014466
+    mean: -0.050718259438872336
+    std: 0.2047934963872852
+    b: 0.15267796516418458
     shape: (256, 128, 28, 28)
 layer2.0.bn2:
   inputs:
     0:
-      min: -3.1401312351226807
-      max: 2.5816173553466797
-      avg_min: -1.5692914128303528
-      avg_max: 1.1475389122962953
-      mean: -0.051120304688811305
-      std: 0.2045280253897083
+      min: -2.8927805423736572
+      max: 2.533378839492798
+      avg_min: -1.569937014579773
+      avg_max: 1.1564969182014466
+      mean: -0.050718259438872336
+      std: 0.2047934963872852
+      b: 0.15267796516418458
       shape: (256, 128, 28, 28)
   output:
-    min: -3.471578359603882
-    max: 2.7841460704803467
-    avg_min: -1.5314314007759093
-    avg_max: 1.4789586186408996
-    mean: 0.01678768452256918
-    std: 0.23481432747554928
+    min: -3.0661566257476807
+    max: 3.2075929641723633
+    avg_min: -1.532412433624268
+    avg_max: 1.4946197271347046
+    mean: 0.017315308935940268
+    std: 0.2350567676962975
+    b: 0.18010506331920623
     shape: (256, 128, 28, 28)
 layer2.0.relu2:
   inputs:
     0:
-      min: -3.471578359603882
-      max: 2.7841460704803467
-      avg_min: -1.5314314007759093
-      avg_max: 1.4789586186408996
-      mean: 0.01678768452256918
-      std: 0.23481432747554928
+      min: -3.0661566257476807
+      max: 3.2075929641723633
+      avg_min: -1.532412433624268
+      avg_max: 1.4946197271347046
+      mean: 0.017315308935940268
+      std: 0.2350567676962975
+      b: 0.18010506331920623
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 2.7841460704803467
+    max: 3.2075929641723633
     avg_min: 0.0
-    avg_max: 1.4789586186408996
-    mean: 0.09887485131621361
-    std: 0.13920928355612663
+    avg_max: 1.4946197271347046
+    mean: 0.09910958036780357
+    std: 0.13962639454620748
+    b: 0.10902709886431694
     shape: (256, 128, 28, 28)
 layer2.0.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.7841460704803467
+      max: 3.2075929641723633
       avg_min: 0.0
-      avg_max: 1.4789586186408996
-      mean: 0.09887485131621361
-      std: 0.13920928355612663
+      avg_max: 1.4946197271347046
+      mean: 0.09910958036780357
+      std: 0.13962639454620748
+      b: 0.10902709886431694
       shape: (256, 128, 28, 28)
   output:
-    min: -1.177610993385315
-    max: 1.2421445846557617
-    avg_min: -0.6588662683963776
-    avg_max: 0.6638830184936523
-    mean: -0.000365710657206364
-    std: 0.06887803523464228
+    min: -1.336847186088562
+    max: 1.2912614345550537
+    avg_min: -0.6678435862064361
+    avg_max: 0.6716985106468201
+    mean: -0.00044355815334711223
+    std: 0.06916794775849786
+    b: 0.04514490850269794
     shape: (256, 512, 28, 28)
 layer2.0.bn3:
   inputs:
     0:
-      min: -1.177610993385315
-      max: 1.2421445846557617
-      avg_min: -0.6588662683963776
-      avg_max: 0.6638830184936523
-      mean: -0.000365710657206364
-      std: 0.06887803523464228
+      min: -1.336847186088562
+      max: 1.2912614345550537
+      avg_min: -0.6678435862064361
+      avg_max: 0.6716985106468201
+      mean: -0.00044355815334711223
+      std: 0.06916794775849786
+      b: 0.04514490850269794
       shape: (256, 512, 28, 28)
   output:
-    min: -3.119234800338745
-    max: 4.322819709777832
-    avg_min: -1.6770319581031798
-    avg_max: 2.107779622077942
-    mean: 0.016614787094295022
-    std: 0.15110225873459038
+    min: -3.3697004318237305
+    max: 4.609816074371338
+    avg_min: -1.6967235922813417
+    avg_max: 2.1274492263793947
+    mean: 0.01649497915059328
+    std: 0.15168535572182057
+    b: 0.10336219519376755
     shape: (256, 512, 28, 28)
 layer2.0.relu3:
   inputs:
     0:
-      min: -3.2353434562683105
-      max: 4.374317646026611
-      avg_min: -1.908308207988739
-      avg_max: 2.2220622539520263
-      mean: 0.033156701177358625
-      std: 0.2508053622433816
+      min: -4.002346515655518
+      max: 4.612466812133789
+      avg_min: -1.9188102960586546
+      avg_max: 2.237949848175049
+      mean: 0.03293768838047981
+      std: 0.2514020230238431
+      b: 0.1826665148139
       shape: (256, 512, 28, 28)
   output:
     min: 0.0
-    max: 4.374317646026611
+    max: 4.612466812133789
     avg_min: 0.0
-    avg_max: 2.2220622539520263
-    mean: 0.1062185786664486
-    std: 0.17017215077356235
+    avg_max: 2.237949848175049
+    mean: 0.10627989619970321
+    std: 0.17048933927566284
+    b: 0.12701487839221956
     shape: (256, 512, 28, 28)
 layer2.0.downsample.0:
   inputs:
     0:
       min: 0.0
-      max: 5.357458591461182
+      max: 4.356468677520752
       avg_min: 0.0
-      avg_max: 2.65454523563385
-      mean: 0.1635646849870682
-      std: 0.18104150882563352
+      avg_max: 2.668972539901733
+      mean: 0.16436316967010497
+      std: 0.18141619856281485
+      b: 0.142694553732872
       shape: (256, 256, 56, 56)
   output:
-    min: -2.483874797821045
-    max: 1.9766814708709717
-    avg_min: -1.0712705016136168
-    avg_max: 1.0125551342964172
-    mean: -0.02215038575232029
-    std: 0.14656524968770543
+    min: -2.0867905616760254
+    max: 1.7732237577438354
+    avg_min: -1.0784248232841491
+    avg_max: 1.0184241473674776
+    mean: -0.022250166162848473
+    std: 0.14750309524682922
+    b: 0.10231632143259048
     shape: (256, 512, 28, 28)
 layer2.0.downsample.1:
   inputs:
     0:
-      min: -2.483874797821045
-      max: 1.9766814708709717
-      avg_min: -1.0712705016136168
-      avg_max: 1.0125551342964172
-      mean: -0.02215038575232029
-      std: 0.14656524968770543
+      min: -2.0867905616760254
+      max: 1.7732237577438354
+      avg_min: -1.0784248232841491
+      avg_max: 1.0184241473674776
+      mean: -0.022250166162848473
+      std: 0.14750309524682922
+      b: 0.10231632143259048
       shape: (256, 512, 28, 28)
   output:
-    min: -2.91910457611084
-    max: 3.5744688510894775
-    avg_min: -1.2576271295547483
-    avg_max: 1.5933478951454163
-    mean: 0.016541913338005542
-    std: 0.1656089514028626
+    min: -3.608018398284912
+    max: 3.6187610626220703
+    avg_min: -1.2669601321220398
+    avg_max: 1.5968916058540343
+    mean: 0.016442709229886533
+    std: 0.1659821925439484
+    b: 0.11021537482738494
     shape: (256, 512, 28, 28)
 layer2.0.add:
   inputs:
     0:
-      min: -3.119234800338745
-      max: 4.322819709777832
-      avg_min: -1.6770319581031798
-      avg_max: 2.107779622077942
-      mean: 0.016614787094295022
-      std: 0.15110225873459038
+      min: -3.3697004318237305
+      max: 4.609816074371338
+      avg_min: -1.6967235922813417
+      avg_max: 2.1274492263793947
+      mean: 0.01649497915059328
+      std: 0.15168535572182057
+      b: 0.10336219519376755
       shape: (256, 512, 28, 28)
     1:
-      min: -2.91910457611084
-      max: 3.5744688510894775
-      avg_min: -1.2576271295547483
-      avg_max: 1.5933478951454163
-      mean: 0.016541913338005542
-      std: 0.1656089514028626
+      min: -3.608018398284912
+      max: 3.6187610626220703
+      avg_min: -1.2669601321220398
+      avg_max: 1.5968916058540343
+      mean: 0.016442709229886533
+      std: 0.1659821925439484
+      b: 0.11021537482738494
       shape: (256, 512, 28, 28)
   output:
-    min: -3.2353434562683105
-    max: 4.374317646026611
-    avg_min: -1.908308207988739
-    avg_max: 2.2220622539520263
-    mean: 0.033156701177358625
-    std: 0.2508053622433816
+    min: -4.002346515655518
+    max: 4.612466812133789
+    avg_min: -1.9188102960586546
+    avg_max: 2.237949848175049
+    mean: 0.03293768838047981
+    std: 0.2514020230238431
+    b: 0.1826665148139
     shape: (256, 512, 28, 28)
 layer2.1.conv1:
   inputs:
     0:
       min: 0.0
-      max: 4.374317646026611
+      max: 4.612466812133789
       avg_min: 0.0
-      avg_max: 2.2220622539520263
-      mean: 0.1062185786664486
-      std: 0.17017215077356235
+      avg_max: 2.237949848175049
+      mean: 0.10627989619970321
+      std: 0.17048933927566284
+      b: 0.12701487839221956
       shape: (256, 512, 28, 28)
   output:
-    min: -2.484671115875244
-    max: 2.7997260093688965
-    avg_min: -1.3521671891212463
-    avg_max: 1.5311004757881166
-    mean: -0.0025881242472678423
-    std: 0.23978565922897443
+    min: -2.4400198459625244
+    max: 2.6591992378234863
+    avg_min: -1.3422257900238037
+    avg_max: 1.5224306106567382
+    mean: -0.0021878383588045834
+    std: 0.24022873042228596
+    b: 0.172952701151371
     shape: (256, 128, 28, 28)
 layer2.1.bn1:
   inputs:
     0:
-      min: -2.484671115875244
-      max: 2.7997260093688965
-      avg_min: -1.3521671891212463
-      avg_max: 1.5311004757881166
-      mean: -0.0025881242472678423
-      std: 0.23978565922897443
+      min: -2.4400198459625244
+      max: 2.6591992378234863
+      avg_min: -1.3422257900238037
+      avg_max: 1.5224306106567382
+      mean: -0.0021878383588045834
+      std: 0.24022873042228596
+      b: 0.172952701151371
       shape: (256, 128, 28, 28)
   output:
-    min: -1.3751497268676758
-    max: 1.5372964143753052
-    avg_min: -0.7502778589725494
-    avg_max: 0.7773641705513001
-    mean: 0.041915016993880276
-    std: 0.15943058110607905
+    min: -1.1313437223434448
+    max: 1.4384175539016724
+    avg_min: -0.7489587724208832
+    avg_max: 0.777692049741745
+    mean: 0.04226628541946412
+    std: 0.15941362801090433
+    b: 0.12470946162939071
     shape: (256, 128, 28, 28)
 layer2.1.relu1:
   inputs:
     0:
-      min: -1.3751497268676758
-      max: 1.5372964143753052
-      avg_min: -0.7502778589725494
-      avg_max: 0.7773641705513001
-      mean: 0.041915016993880276
-      std: 0.15943058110607905
+      min: -1.1313437223434448
+      max: 1.4384175539016724
+      avg_min: -0.7489587724208832
+      avg_max: 0.777692049741745
+      mean: 0.04226628541946412
+      std: 0.15941362801090433
+      b: 0.12470946162939071
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 1.5372964143753052
+    max: 1.4384175539016724
     avg_min: 0.0
-    avg_max: 0.7773641705513001
-    mean: 0.08515402749180793
-    std: 0.10953445816919516
+    avg_max: 0.777692049741745
+    mean: 0.08539647758007049
+    std: 0.10947066193804979
+    b: 0.08678584843873978
     shape: (256, 128, 28, 28)
 layer2.1.conv2:
   inputs:
     0:
       min: 0.0
-      max: 1.5372964143753052
+      max: 1.4384175539016724
       avg_min: 0.0
-      avg_max: 0.7773641705513001
-      mean: 0.08515402749180793
-      std: 0.10953445816919516
+      avg_max: 0.777692049741745
+      mean: 0.08539647758007049
+      std: 0.10947066193804979
+      b: 0.08678584843873978
       shape: (256, 128, 28, 28)
   output:
-    min: -2.827047348022461
-    max: 2.8728909492492676
-    avg_min: -1.2218317389488218
-    avg_max: 1.3744016766548157
-    mean: 0.017694156244397165
-    std: 0.23401971750704556
+    min: -2.740072250366211
+    max: 2.835724115371704
+    avg_min: -1.227071726322174
+    avg_max: 1.3707884073257446
+    mean: 0.01752042714506388
+    std: 0.23383963953249542
+    b: 0.17713934779167176
     shape: (256, 128, 28, 28)
 layer2.1.bn2:
   inputs:
     0:
-      min: -2.827047348022461
-      max: 2.8728909492492676
-      avg_min: -1.2218317389488218
-      avg_max: 1.3744016766548157
-      mean: 0.017694156244397165
-      std: 0.23401971750704556
+      min: -2.740072250366211
+      max: 2.835724115371704
+      avg_min: -1.227071726322174
+      avg_max: 1.3707884073257446
+      mean: 0.01752042714506388
+      std: 0.23383963953249542
+      b: 0.17713934779167176
       shape: (256, 128, 28, 28)
   output:
-    min: -2.3404579162597656
-    max: 2.1188790798187256
-    avg_min: -1.2032366633415221
-    avg_max: 1.3397652268409728
-    mean: 0.005192126682959497
-    std: 0.18923953886359324
+    min: -2.307988166809082
+    max: 2.1593756675720215
+    avg_min: -1.2076387405395508
+    avg_max: 1.337574517726898
+    mean: 0.004941523261368274
+    std: 0.18913877107325366
+    b: 0.1417484015226364
     shape: (256, 128, 28, 28)
 layer2.1.relu2:
   inputs:
     0:
-      min: -2.3404579162597656
-      max: 2.1188790798187256
-      avg_min: -1.2032366633415221
-      avg_max: 1.3397652268409728
-      mean: 0.005192126682959497
-      std: 0.18923953886359324
+      min: -2.307988166809082
+      max: 2.1593756675720215
+      avg_min: -1.2076387405395508
+      avg_max: 1.337574517726898
+      mean: 0.004941523261368274
+      std: 0.18913877107325366
+      b: 0.1417484015226364
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 2.1188790798187256
+    max: 2.1593756675720215
     avg_min: 0.0
-    avg_max: 1.3397652268409728
-    mean: 0.07319239377975464
-    std: 0.10555491195196327
+    avg_max: 1.337574517726898
+    mean: 0.07305778563022614
+    std: 0.10527022981445514
+    b: 0.07830324694514275
     shape: (256, 128, 28, 28)
 layer2.1.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.1188790798187256
+      max: 2.1593756675720215
       avg_min: 0.0
-      avg_max: 1.3397652268409728
-      mean: 0.07319239377975464
-      std: 0.10555491195196327
+      avg_max: 1.337574517726898
+      mean: 0.07305778563022614
+      std: 0.10527022981445514
+      b: 0.07830324694514275
       shape: (256, 128, 28, 28)
   output:
-    min: -1.448373556137085
-    max: 0.9460731744766235
-    avg_min: -0.6985628366470337
-    avg_max: 0.5914552569389344
-    mean: -0.011455058120191097
-    std: 0.05202940095588713
+    min: -1.4937077760696411
+    max: 0.8379456996917725
+    avg_min: -0.7004943609237672
+    avg_max: 0.5934368073940277
+    mean: -0.011473645269870759
+    std: 0.0519348436831393
+    b: 0.03241924196481705
     shape: (256, 512, 28, 28)
 layer2.1.bn3:
   inputs:
     0:
-      min: -1.448373556137085
-      max: 0.9460731744766235
-      avg_min: -0.6985628366470337
-      avg_max: 0.5914552569389344
-      mean: -0.011455058120191097
-      std: 0.05202940095588713
+      min: -1.4937077760696411
+      max: 0.8379456996917725
+      avg_min: -0.7004943609237672
+      avg_max: 0.5934368073940277
+      mean: -0.011473645269870759
+      std: 0.0519348436831393
+      b: 0.03241924196481705
       shape: (256, 512, 28, 28)
   output:
-    min: -3.6870174407958984
-    max: 3.9316952228546143
-    avg_min: -1.8213672041893005
-    avg_max: 2.1549792528152465
-    mean: -0.019266553781926633
-    std: 0.1389225386712158
+    min: -4.5032243728637695
+    max: 3.3484385013580322
+    avg_min: -1.8234599351882934
+    avg_max: 2.1647878408432004
+    mean: -0.019318597018718717
+    std: 0.13870813674698926
+    b: 0.07733476758003234
     shape: (256, 512, 28, 28)
 layer2.1.relu3:
   inputs:
     0:
-      min: -3.6870174407958984
-      max: 4.515761852264404
-      avg_min: -1.8172029733657837
-      avg_max: 2.910082507133484
-      mean: 0.08695202469825745
-      std: 0.19958436365067356
+      min: -4.5032243728637695
+      max: 4.583000659942627
+      avg_min: -1.8184925198554993
+      avg_max: 2.932859635353088
+      mean: 0.08696129843592644
+      std: 0.19960317732713073
+      b: 0.14523570090532303
       shape: (256, 512, 28, 28)
   output:
     min: 0.0
-    max: 4.515761852264404
+    max: 4.583000659942627
     avg_min: 0.0
-    avg_max: 2.910082507133484
-    mean: 0.11452547088265419
-    std: 0.16402842531117684
+    avg_max: 2.932859635353088
+    mean: 0.1144759252667427
+    std: 0.1642182382998493
+    b: 0.12441516667604446
     shape: (256, 512, 28, 28)
 layer2.1.add:
   inputs:
     0:
-      min: -3.6870174407958984
-      max: 3.9316952228546143
-      avg_min: -1.8213672041893005
-      avg_max: 2.1549792528152465
-      mean: -0.019266553781926633
-      std: 0.1389225386712158
+      min: -4.5032243728637695
+      max: 3.3484385013580322
+      avg_min: -1.8234599351882934
+      avg_max: 2.1647878408432004
+      mean: -0.019318597018718717
+      std: 0.13870813674698926
+      b: 0.07733476758003234
       shape: (256, 512, 28, 28)
     1:
       min: 0.0
-      max: 4.374317646026611
+      max: 4.612466812133789
       avg_min: 0.0
-      avg_max: 2.2220622539520263
-      mean: 0.1062185786664486
-      std: 0.17017215077356235
+      avg_max: 2.237949848175049
+      mean: 0.10627989619970321
+      std: 0.17048933927566284
+      b: 0.12701487839221956
       shape: (256, 512, 28, 28)
   output:
-    min: -3.6870174407958984
-    max: 4.515761852264404
-    avg_min: -1.8172029733657837
-    avg_max: 2.910082507133484
-    mean: 0.08695202469825745
-    std: 0.19958436365067356
+    min: -4.5032243728637695
+    max: 4.583000659942627
+    avg_min: -1.8184925198554993
+    avg_max: 2.932859635353088
+    mean: 0.08696129843592644
+    std: 0.19960317732713073
+    b: 0.14523570090532303
     shape: (256, 512, 28, 28)
 layer2.2.conv1:
   inputs:
     0:
       min: 0.0
-      max: 4.515761852264404
+      max: 4.583000659942627
       avg_min: 0.0
-      avg_max: 2.910082507133484
-      mean: 0.11452547088265419
-      std: 0.16402842531117684
+      avg_max: 2.932859635353088
+      mean: 0.1144759252667427
+      std: 0.1642182382998493
+      b: 0.12441516667604446
       shape: (256, 512, 28, 28)
   output:
-    min: -2.153200387954712
-    max: 1.75680673122406
-    avg_min: -1.2409226655960082
-    avg_max: 1.0585805296897888
-    mean: -0.038408808410167694
-    std: 0.20395210488608664
+    min: -1.9516273736953735
+    max: 2.2689409255981445
+    avg_min: -1.2415160059928894
+    avg_max: 1.0637833237648011
+    mean: -0.03815238773822784
+    std: 0.2045086537957461
+    b: 0.15627698600292209
     shape: (256, 128, 28, 28)
 layer2.2.bn1:
   inputs:
     0:
-      min: -2.153200387954712
-      max: 1.75680673122406
-      avg_min: -1.2409226655960082
-      avg_max: 1.0585805296897888
-      mean: -0.038408808410167694
-      std: 0.20395210488608664
+      min: -1.9516273736953735
+      max: 2.2689409255981445
+      avg_min: -1.2415160059928894
+      avg_max: 1.0637833237648011
+      mean: -0.03815238773822784
+      std: 0.2045086537957461
+      b: 0.15627698600292209
       shape: (256, 128, 28, 28)
   output:
-    min: -2.4399466514587402
-    max: 2.2425434589385986
-    avg_min: -1.2377371907234191
-    avg_max: 1.2034958720207214
-    mean: -0.0005848078521012212
-    std: 0.19490097560721573
+    min: -2.157986879348755
+    max: 2.8421895503997803
+    avg_min: -1.2439522862434387
+    avg_max: 1.2011296272277834
+    mean: -0.00019802693641395307
+    std: 0.19490813357856066
+    b: 0.15075489580631257
     shape: (256, 128, 28, 28)
 layer2.2.relu1:
   inputs:
     0:
-      min: -2.4399466514587402
-      max: 2.2425434589385986
-      avg_min: -1.2377371907234191
-      avg_max: 1.2034958720207214
-      mean: -0.0005848078521012212
-      std: 0.19490097560721573
+      min: -2.157986879348755
+      max: 2.8421895503997803
+      avg_min: -1.2439522862434387
+      avg_max: 1.2011296272277834
+      mean: -0.00019802693641395307
+      std: 0.19490813357856066
+      b: 0.15075489580631257
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 2.2425434589385986
+    max: 2.8421895503997803
     avg_min: 0.0
-    avg_max: 1.2034958720207214
-    mean: 0.0750021368265152
-    std: 0.11006324372373343
+    avg_max: 1.2011296272277834
+    mean: 0.0751592367887497
+    std: 0.11025385201979081
+    b: 0.08499016761779786
     shape: (256, 128, 28, 28)
 layer2.2.conv2:
   inputs:
     0:
       min: 0.0
-      max: 2.2425434589385986
+      max: 2.8421895503997803
       avg_min: 0.0
-      avg_max: 1.2034958720207214
-      mean: 0.0750021368265152
-      std: 0.11006324372373343
+      avg_max: 1.2011296272277834
+      mean: 0.0751592367887497
+      std: 0.11025385201979081
+      b: 0.08499016761779786
       shape: (256, 128, 28, 28)
   output:
-    min: -1.8205151557922363
-    max: 1.5001658201217651
-    avg_min: -0.9985635817050934
-    avg_max: 0.9279613077640534
-    mean: -0.015130505803972483
-    std: 0.18792135855709322
+    min: -1.613122582435608
+    max: 1.7418856620788574
+    avg_min: -0.997245329618454
+    avg_max: 0.9316056132316589
+    mean: -0.015266321320086717
+    std: 0.1882662118153367
+    b: 0.14754093587398528
     shape: (256, 128, 28, 28)
 layer2.2.bn2:
   inputs:
     0:
-      min: -1.8205151557922363
-      max: 1.5001658201217651
-      avg_min: -0.9985635817050934
-      avg_max: 0.9279613077640534
-      mean: -0.015130505803972483
-      std: 0.18792135855709322
+      min: -1.613122582435608
+      max: 1.7418856620788574
+      avg_min: -0.997245329618454
+      avg_max: 0.9316056132316589
+      mean: -0.015266321320086717
+      std: 0.1882662118153367
+      b: 0.14754093587398528
       shape: (256, 128, 28, 28)
   output:
-    min: -2.2865307331085205
-    max: 2.1559152603149414
-    avg_min: -1.3099663496017457
-    avg_max: 1.1049108147621154
-    mean: -0.007854383857920765
-    std: 0.20782821136970694
+    min: -2.217957019805908
+    max: 2.0694851875305176
+    avg_min: -1.30502005815506
+    avg_max: 1.1007319211959838
+    mean: -0.00797271546907723
+    std: 0.20828596510418615
+    b: 0.16165626496076585
     shape: (256, 128, 28, 28)
 layer2.2.relu2:
   inputs:
     0:
-      min: -2.2865307331085205
-      max: 2.1559152603149414
-      avg_min: -1.3099663496017457
-      avg_max: 1.1049108147621154
-      mean: -0.007854383857920765
-      std: 0.20782821136970694
+      min: -2.217957019805908
+      max: 2.0694851875305176
+      avg_min: -1.30502005815506
+      avg_max: 1.1007319211959838
+      mean: -0.00797271546907723
+      std: 0.20828596510418615
+      b: 0.16165626496076585
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 2.1559152603149414
+    max: 2.0694851875305176
     avg_min: 0.0
-    avg_max: 1.1049108147621154
-    mean: 0.07665593400597573
-    std: 0.10978674447865834
+    avg_max: 1.1007319211959838
+    mean: 0.07674569487571717
+    std: 0.10991849995103835
+    b: 0.08658588826656341
     shape: (256, 128, 28, 28)
 layer2.2.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.1559152603149414
+      max: 2.0694851875305176
       avg_min: 0.0
-      avg_max: 1.1049108147621154
-      mean: 0.07665593400597573
-      std: 0.10978674447865834
+      avg_max: 1.1007319211959838
+      mean: 0.07674569487571717
+      std: 0.10991849995103835
+      b: 0.08658588826656341
       shape: (256, 128, 28, 28)
   output:
-    min: -0.6205488443374634
-    max: 0.7466901540756226
-    avg_min: -0.3820457428693771
-    avg_max: 0.41976919770240784
-    mean: -0.0012505927705205977
-    std: 0.04769707820585745
+    min: -0.6760220527648926
+    max: 0.7367088198661804
+    avg_min: -0.3851747691631317
+    avg_max: 0.4237609177827835
+    mean: -0.001252472586929798
+    std: 0.047811372091509256
+    b: 0.035700369253754624
     shape: (256, 512, 28, 28)
 layer2.2.bn3:
   inputs:
     0:
-      min: -0.6205488443374634
-      max: 0.7466901540756226
-      avg_min: -0.3820457428693771
-      avg_max: 0.41976919770240784
-      mean: -0.0012505927705205977
-      std: 0.04769707820585745
+      min: -0.6760220527648926
+      max: 0.7367088198661804
+      avg_min: -0.3851747691631317
+      avg_max: 0.4237609177827835
+      mean: -0.001252472586929798
+      std: 0.047811372091509256
+      b: 0.035700369253754624
       shape: (256, 512, 28, 28)
   output:
-    min: -2.7473044395446777
-    max: 2.2267816066741943
-    avg_min: -1.414629876613617
-    avg_max: 1.3613874316215515
-    mean: -0.05611210577189922
-    std: 0.13365981548674036
+    min: -2.7290027141571045
+    max: 2.5251433849334717
+    avg_min: -1.422510039806366
+    avg_max: 1.3682208776474
+    mean: -0.05611655451357365
+    std: 0.1337799709600208
+    b: 0.09517002776265145
     shape: (256, 512, 28, 28)
 layer2.2.relu3:
   inputs:
     0:
-      min: -2.7473044395446777
-      max: 5.291001319885254
-      avg_min: -1.4068810582160947
-      avg_max: 3.0675222635269166
-      mean: 0.058413364738225934
-      std: 0.21902014876676296
+      min: -2.7290027141571045
+      max: 5.150259017944336
+      avg_min: -1.4164042115211486
+      avg_max: 3.101294159889221
+      mean: 0.05835936814546585
+      std: 0.21917365126183394
+      b: 0.16403476893901825
       shape: (256, 512, 28, 28)
   output:
     min: 0.0
-    max: 5.291001319885254
+    max: 5.150259017944336
     avg_min: 0.0
-    avg_max: 3.0675222635269166
-    mean: 0.11004115790128707
-    std: 0.16809938030844945
+    avg_max: 3.101294159889221
+    mean: 0.10999598503112795
+    std: 0.16825759249436043
+    b: 0.12563510090112687
     shape: (256, 512, 28, 28)
 layer2.2.add:
   inputs:
     0:
-      min: -2.7473044395446777
-      max: 2.2267816066741943
-      avg_min: -1.414629876613617
-      avg_max: 1.3613874316215515
-      mean: -0.05611210577189922
-      std: 0.13365981548674036
+      min: -2.7290027141571045
+      max: 2.5251433849334717
+      avg_min: -1.422510039806366
+      avg_max: 1.3682208776474
+      mean: -0.05611655451357365
+      std: 0.1337799709600208
+      b: 0.09517002776265145
       shape: (256, 512, 28, 28)
     1:
       min: 0.0
-      max: 4.515761852264404
+      max: 4.583000659942627
       avg_min: 0.0
-      avg_max: 2.910082507133484
-      mean: 0.11452547088265419
-      std: 0.16402842531117684
+      avg_max: 2.932859635353088
+      mean: 0.1144759252667427
+      std: 0.1642182382998493
+      b: 0.12441516667604446
       shape: (256, 512, 28, 28)
   output:
-    min: -2.7473044395446777
-    max: 5.291001319885254
-    avg_min: -1.4068810582160947
-    avg_max: 3.0675222635269166
-    mean: 0.058413364738225934
-    std: 0.21902014876676296
+    min: -2.7290027141571045
+    max: 5.150259017944336
+    avg_min: -1.4164042115211486
+    avg_max: 3.101294159889221
+    mean: 0.05835936814546585
+    std: 0.21917365126183394
+    b: 0.16403476893901825
     shape: (256, 512, 28, 28)
 layer2.3.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.291001319885254
+      max: 5.150259017944336
       avg_min: 0.0
-      avg_max: 3.0675222635269166
-      mean: 0.11004115790128707
-      std: 0.16809938030844945
+      avg_max: 3.101294159889221
+      mean: 0.10999598503112795
+      std: 0.16825759249436043
+      b: 0.12563510090112687
       shape: (256, 512, 28, 28)
   output:
-    min: -1.7123287916183472
-    max: 1.9983665943145752
-    avg_min: -1.120976448059082
-    avg_max: 1.0327415943145752
-    mean: -0.059147972241044046
-    std: 0.18666290142279535
+    min: -1.6946911811828613
+    max: 1.8168659210205078
+    avg_min: -1.122910237312317
+    avg_max: 1.042614507675171
+    mean: -0.05916286520659924
+    std: 0.18714882826918586
+    b: 0.1445247873663902
     shape: (256, 128, 28, 28)
 layer2.3.bn1:
   inputs:
     0:
-      min: -1.7123287916183472
-      max: 1.9983665943145752
-      avg_min: -1.120976448059082
-      avg_max: 1.0327415943145752
-      mean: -0.059147972241044046
-      std: 0.18666290142279535
+      min: -1.6946911811828613
+      max: 1.8168659210205078
+      avg_min: -1.122910237312317
+      avg_max: 1.042614507675171
+      mean: -0.05916286520659924
+      std: 0.18714882826918586
+      b: 0.1445247873663902
       shape: (256, 128, 28, 28)
   output:
-    min: -1.6963084936141968
-    max: 2.527071952819824
-    avg_min: -1.0431524395942688
-    avg_max: 1.3032521963119508
-    mean: -0.030146764405071736
-    std: 0.18950357453641167
+    min: -1.74959135055542
+    max: 2.4608726501464844
+    avg_min: -1.0435778141021728
+    avg_max: 1.3169567346572875
+    mean: -0.0302131736651063
+    std: 0.18998673591931972
+    b: 0.1487326830625534
     shape: (256, 128, 28, 28)
 layer2.3.relu1:
   inputs:
     0:
-      min: -1.6963084936141968
-      max: 2.527071952819824
-      avg_min: -1.0431524395942688
-      avg_max: 1.3032521963119508
-      mean: -0.030146764405071736
-      std: 0.18950357453641167
+      min: -1.74959135055542
+      max: 2.4608726501464844
+      avg_min: -1.0435778141021728
+      avg_max: 1.3169567346572875
+      mean: -0.0302131736651063
+      std: 0.18998673591931972
+      b: 0.1487326830625534
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 2.527071952819824
+    max: 2.4608726501464844
     avg_min: 0.0
-    avg_max: 1.3032521963119508
-    mean: 0.059723248705267906
-    std: 0.09843752668017071
+    avg_max: 1.3169567346572875
+    mean: 0.05982810482382774
+    std: 0.09869781089850858
+    b: 0.07376753836870194
     shape: (256, 128, 28, 28)
 layer2.3.conv2:
   inputs:
     0:
       min: 0.0
-      max: 2.527071952819824
+      max: 2.4608726501464844
       avg_min: 0.0
-      avg_max: 1.3032521963119508
-      mean: 0.059723248705267906
-      std: 0.09843752668017071
+      avg_max: 1.3169567346572875
+      mean: 0.05982810482382774
+      std: 0.09869781089850858
+      b: 0.07376753836870194
       shape: (256, 128, 28, 28)
   output:
-    min: -1.4047236442565918
-    max: 1.8705781698226929
-    avg_min: -0.9120763659477233
-    avg_max: 0.9649409115314485
-    mean: -0.04703802764415741
-    std: 0.1452560294569206
+    min: -1.47450852394104
+    max: 1.983972191810608
+    avg_min: -0.9125005841255188
+    avg_max: 0.9747460901737213
+    mean: -0.04691337496042251
+    std: 0.145616465203834
+    b: 0.1094528965651989
     shape: (256, 128, 28, 28)
 layer2.3.bn2:
   inputs:
     0:
-      min: -1.4047236442565918
-      max: 1.8705781698226929
-      avg_min: -0.9120763659477233
-      avg_max: 0.9649409115314485
-      mean: -0.04703802764415741
-      std: 0.1452560294569206
+      min: -1.47450852394104
+      max: 1.983972191810608
+      avg_min: -0.9125005841255188
+      avg_max: 0.9747460901737213
+      mean: -0.04691337496042251
+      std: 0.145616465203834
+      b: 0.1094528965651989
       shape: (256, 128, 28, 28)
   output:
-    min: -2.177183151245117
-    max: 2.612137794494629
-    avg_min: -1.3594414472579959
-    avg_max: 1.2957953453063966
-    mean: -0.0665459305047989
-    std: 0.22336803403483615
+    min: -2.3200039863586426
+    max: 2.768589496612549
+    avg_min: -1.3618900656700135
+    avg_max: 1.3013875365257261
+    mean: -0.0663405105471611
+    std: 0.2236149709989044
+    b: 0.17334737926721572
     shape: (256, 128, 28, 28)
 layer2.3.relu2:
   inputs:
     0:
-      min: -2.177183151245117
-      max: 2.612137794494629
-      avg_min: -1.3594414472579959
-      avg_max: 1.2957953453063966
-      mean: -0.0665459305047989
-      std: 0.22336803403483615
+      min: -2.3200039863586426
+      max: 2.768589496612549
+      avg_min: -1.3618900656700135
+      avg_max: 1.3013875365257261
+      mean: -0.0663405105471611
+      std: 0.2236149709989044
+      b: 0.17334737926721572
       shape: (256, 128, 28, 28)
   output:
     min: 0.0
-    max: 2.612137794494629
+    max: 2.768589496612549
     avg_min: 0.0
-    avg_max: 1.2957953453063966
-    mean: 0.05710479207336902
-    std: 0.10722036534868426
+    avg_max: 1.3013875365257261
+    mean: 0.05718408972024917
+    std: 0.10739224632179319
+    b: 0.07686744779348374
     shape: (256, 128, 28, 28)
 layer2.3.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.612137794494629
+      max: 2.768589496612549
       avg_min: 0.0
-      avg_max: 1.2957953453063966
-      mean: 0.05710479207336902
-      std: 0.10722036534868426
+      avg_max: 1.3013875365257261
+      mean: 0.05718408972024917
+      std: 0.10739224632179319
+      b: 0.07686744779348374
       shape: (256, 128, 28, 28)
   output:
-    min: -0.6665023565292358
-    max: 0.5828335881233215
-    avg_min: -0.3686159819364548
-    avg_max: 0.3431969553232193
-    mean: -0.004355491697788238
-    std: 0.04156735423026709
+    min: -0.7218047976493835
+    max: 0.6276307702064514
+    avg_min: -0.3698687642812729
+    avg_max: 0.34429562389850615
+    mean: -0.004402077058330178
+    std: 0.04163040210321516
+    b: 0.029539859481155874
     shape: (256, 512, 28, 28)
 layer2.3.bn3:
   inputs:
     0:
-      min: -0.6665023565292358
-      max: 0.5828335881233215
-      avg_min: -0.3686159819364548
-      avg_max: 0.3431969553232193
-      mean: -0.004355491697788238
-      std: 0.04156735423026709
+      min: -0.7218047976493835
+      max: 0.6276307702064514
+      avg_min: -0.3698687642812729
+      avg_max: 0.34429562389850615
+      mean: -0.004402077058330178
+      std: 0.04163040210321516
+      b: 0.029539859481155874
       shape: (256, 512, 28, 28)
   output:
-    min: -2.387338161468506
-    max: 2.7404048442840576
-    avg_min: -1.3669693470001223
-    avg_max: 1.3927722096443176
-    mean: -0.05514179095625877
-    std: 0.12834098451995893
+    min: -2.48640775680542
+    max: 2.4848639965057373
+    avg_min: -1.368903923034668
+    avg_max: 1.3881210088729858
+    mean: -0.05529118962585926
+    std: 0.12865004944424174
+    b: 0.09264691695570945
     shape: (256, 512, 28, 28)
 layer2.3.relu3:
   inputs:
     0:
-      min: -2.387338161468506
-      max: 5.610428810119629
-      avg_min: -1.3479251980781555
-      avg_max: 3.1082249164581297
-      mean: 0.054899365082383154
-      std: 0.22030707920791434
+      min: -2.46871018409729
+      max: 5.543685436248779
+      avg_min: -1.3520355224609375
+      avg_max: 3.1425770998001092
+      mean: 0.054704793542623524
+      std: 0.22058291241824587
+      b: 0.16288088411092758
       shape: (256, 512, 28, 28)
   output:
     min: 0.0
-    max: 5.610428810119629
+    max: 5.543685436248779
     avg_min: 0.0
-    avg_max: 3.1082249164581297
-    mean: 0.10747552290558815
-    std: 0.16886901235024618
+    avg_max: 3.1425770998001092
+    mean: 0.10741138309240343
+    std: 0.16899958053161548
+    b: 0.12438909709453583
     shape: (256, 512, 28, 28)
 layer2.3.add:
   inputs:
     0:
-      min: -2.387338161468506
-      max: 2.7404048442840576
-      avg_min: -1.3669693470001223
-      avg_max: 1.3927722096443176
-      mean: -0.05514179095625877
-      std: 0.12834098451995893
+      min: -2.48640775680542
+      max: 2.4848639965057373
+      avg_min: -1.368903923034668
+      avg_max: 1.3881210088729858
+      mean: -0.05529118962585926
+      std: 0.12865004944424174
+      b: 0.09264691695570945
       shape: (256, 512, 28, 28)
     1:
       min: 0.0
-      max: 5.291001319885254
+      max: 5.150259017944336
       avg_min: 0.0
-      avg_max: 3.0675222635269166
-      mean: 0.11004115790128707
-      std: 0.16809938030844945
+      avg_max: 3.101294159889221
+      mean: 0.10999598503112795
+      std: 0.16825759249436043
+      b: 0.12563510090112687
       shape: (256, 512, 28, 28)
   output:
-    min: -2.387338161468506
-    max: 5.610428810119629
-    avg_min: -1.3479251980781555
-    avg_max: 3.1082249164581297
-    mean: 0.054899365082383154
-    std: 0.22030707920791434
+    min: -2.46871018409729
+    max: 5.543685436248779
+    avg_min: -1.3520355224609375
+    avg_max: 3.1425770998001092
+    mean: 0.054704793542623524
+    std: 0.22058291241824587
+    b: 0.16288088411092758
     shape: (256, 512, 28, 28)
 layer3.0.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.610428810119629
+      max: 5.543685436248779
       avg_min: 0.0
-      avg_max: 3.1082249164581297
-      mean: 0.10747552290558815
-      std: 0.16886901235024618
+      avg_max: 3.1425770998001092
+      mean: 0.10741138309240343
+      std: 0.16899958053161548
+      b: 0.12438909709453583
       shape: (256, 512, 28, 28)
   output:
-    min: -2.1506705284118652
-    max: 2.752180576324463
-    avg_min: -1.2847834944725036
-    avg_max: 1.5333833694458008
-    mean: -0.08525406792759894
-    std: 0.20382244244012782
+    min: -2.3964364528656006
+    max: 2.5774424076080322
+    avg_min: -1.291263794898987
+    avg_max: 1.5445761322975158
+    mean: -0.08530144765973091
+    std: 0.204145910382236
+    b: 0.1565650463104248
     shape: (256, 256, 28, 28)
 layer3.0.bn1:
   inputs:
     0:
-      min: -2.1506705284118652
-      max: 2.752180576324463
-      avg_min: -1.2847834944725036
-      avg_max: 1.5333833694458008
-      mean: -0.08525406792759894
-      std: 0.20382244244012782
+      min: -2.3964364528656006
+      max: 2.5774424076080322
+      avg_min: -1.291263794898987
+      avg_max: 1.5445761322975158
+      mean: -0.08530144765973091
+      std: 0.204145910382236
+      b: 0.1565650463104248
       shape: (256, 256, 28, 28)
   output:
-    min: -4.201587200164795
-    max: 4.142081260681152
-    avg_min: -1.745651137828827
-    avg_max: 2.2761670112609864
-    mean: -0.12949516624212265
-    std: 0.259143600883797
+    min: -3.280705690383911
+    max: 4.302323818206787
+    avg_min: -1.7556286811828614
+    avg_max: 2.299310994148254
+    mean: -0.12949758619070054
+    std: 0.2590938141261067
+    b: 0.19883236587047576
     shape: (256, 256, 28, 28)
 layer3.0.relu1:
   inputs:
     0:
-      min: -4.201587200164795
-      max: 4.142081260681152
-      avg_min: -1.745651137828827
-      avg_max: 2.2761670112609864
-      mean: -0.12949516624212265
-      std: 0.259143600883797
+      min: -3.280705690383911
+      max: 4.302323818206787
+      avg_min: -1.7556286811828614
+      avg_max: 2.299310994148254
+      mean: -0.12949758619070054
+      std: 0.2590938141261067
+      b: 0.19883236587047576
       shape: (256, 256, 28, 28)
   output:
     min: 0.0
-    max: 4.142081260681152
+    max: 4.302323818206787
     avg_min: 0.0
-    avg_max: 2.2761670112609864
-    mean: 0.048614009469747546
-    std: 0.11409251980730875
+    avg_max: 2.299310994148254
+    mean: 0.0485449068248272
+    std: 0.11422170981578672
+    b: 0.0723893404006958
     shape: (256, 256, 28, 28)
 layer3.0.conv2:
   inputs:
     0:
       min: 0.0
-      max: 4.142081260681152
+      max: 4.302323818206787
       avg_min: 0.0
-      avg_max: 2.2761670112609864
-      mean: 0.048614009469747546
-      std: 0.11409251980730875
+      avg_max: 2.299310994148254
+      mean: 0.0485449068248272
+      std: 0.11422170981578672
+      b: 0.0723893404006958
       shape: (256, 256, 28, 28)
   output:
-    min: -3.3741939067840576
-    max: 2.1655614376068115
-    avg_min: -1.5039724230766296
-    avg_max: 1.1369040489196778
-    mean: -0.04351833909749985
-    std: 0.20419841275450595
+    min: -3.4686124324798584
+    max: 2.1959798336029053
+    avg_min: -1.5169257402420044
+    avg_max: 1.1435431241989136
+    mean: -0.04374343790113926
+    std: 0.20486769097657673
+    b: 0.15326781272888185
     shape: (256, 256, 14, 14)
 layer3.0.bn2:
   inputs:
     0:
-      min: -3.3741939067840576
-      max: 2.1655614376068115
-      avg_min: -1.5039724230766296
-      avg_max: 1.1369040489196778
-      mean: -0.04351833909749985
-      std: 0.20419841275450595
+      min: -3.4686124324798584
+      max: 2.1959798336029053
+      avg_min: -1.5169257402420044
+      avg_max: 1.1435431241989136
+      mean: -0.04374343790113926
+      std: 0.20486769097657673
+      b: 0.15326781272888185
       shape: (256, 256, 14, 14)
   output:
-    min: -2.7692513465881348
-    max: 2.373121976852417
-    avg_min: -1.3073265314102172
-    avg_max: 1.3381234407424927
-    mean: 0.030853643640875818
-    std: 0.20999412274367454
+    min: -2.8512134552001953
+    max: 2.8404500484466553
+    avg_min: -1.3086579084396361
+    avg_max: 1.3467670917510985
+    mean: 0.030665602162480356
+    std: 0.21051672186997883
+    b: 0.1630087062716484
     shape: (256, 256, 14, 14)
 layer3.0.relu2:
   inputs:
     0:
-      min: -2.7692513465881348
-      max: 2.373121976852417
-      avg_min: -1.3073265314102172
-      avg_max: 1.3381234407424927
-      mean: 0.030853643640875818
-      std: 0.20999412274367454
+      min: -2.8512134552001953
+      max: 2.8404500484466553
+      avg_min: -1.3086579084396361
+      avg_max: 1.3467670917510985
+      mean: 0.030665602162480356
+      std: 0.21051672186997883
+      b: 0.1630087062716484
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 2.373121976852417
+    max: 2.8404500484466553
     avg_min: 0.0
-    avg_max: 1.3381234407424927
-    mean: 0.09833981543779374
-    std: 0.127535416286626
+    avg_max: 1.3467670917510985
+    mean: 0.09837658926844596
+    std: 0.12764854697398997
+    b: 0.10166800022125244
     shape: (256, 256, 14, 14)
 layer3.0.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.373121976852417
+      max: 2.8404500484466553
       avg_min: 0.0
-      avg_max: 1.3381234407424927
-      mean: 0.09833981543779374
-      std: 0.127535416286626
+      avg_max: 1.3467670917510985
+      mean: 0.09837658926844596
+      std: 0.12764854697398997
+      b: 0.10166800022125244
       shape: (256, 256, 14, 14)
   output:
-    min: -0.9004225134849548
-    max: 1.0383435487747192
-    avg_min: -0.5600936472415924
-    avg_max: 0.5488162934780121
-    mean: -0.01155988536775112
-    std: 0.08055408556971053
+    min: -0.8636473417282104
+    max: 0.9298957586288452
+    avg_min: -0.5607096254825592
+    avg_max: 0.551286804676056
+    mean: -0.011694833915680648
+    std: 0.08071751728401433
+    b: 0.060358358174562456
     shape: (256, 1024, 14, 14)
 layer3.0.bn3:
   inputs:
     0:
-      min: -0.9004225134849548
-      max: 1.0383435487747192
-      avg_min: -0.5600936472415924
-      avg_max: 0.5488162934780121
-      mean: -0.01155988536775112
-      std: 0.08055408556971053
+      min: -0.8636473417282104
+      max: 0.9298957586288452
+      avg_min: -0.5607096254825592
+      avg_max: 0.551286804676056
+      mean: -0.011694833915680648
+      std: 0.08071751728401433
+      b: 0.060358358174562456
       shape: (256, 1024, 14, 14)
   output:
-    min: -2.856438398361206
-    max: 4.004288196563721
-    avg_min: -1.373575758934021
-    avg_max: 1.7947681903839112
-    mean: -0.008522651623934509
-    std: 0.16116935431228463
+    min: -2.9403719902038574
+    max: 3.599351167678833
+    avg_min: -1.370452868938446
+    avg_max: 1.798511266708374
+    mean: -0.008863335102796554
+    std: 0.16145241570139246
+    b: 0.11582729294896127
     shape: (256, 1024, 14, 14)
 layer3.0.relu3:
   inputs:
     0:
-      min: -3.152515172958374
-      max: 4.966125011444092
-      avg_min: -1.7205133795738219
-      avg_max: 2.0686687946319577
-      mean: -0.018004749529063703
-      std: 0.23591557268223448
+      min: -3.2695698738098145
+      max: 3.885859251022339
+      avg_min: -1.7176255106925964
+      avg_max: 2.07050096988678
+      mean: -0.018386876024305818
+      std: 0.2362749970043466
+      b: 0.17508144527673722
       shape: (256, 1024, 14, 14)
   output:
     min: 0.0
-    max: 4.966125011444092
+    max: 3.885859251022339
     avg_min: 0.0
-    avg_max: 2.0686687946319577
-    mean: 0.07857876121997834
-    std: 0.14036395427253853
+    avg_max: 2.07050096988678
+    mean: 0.0785293348133564
+    std: 0.1405307533428432
+    b: 0.1004234530031681
     shape: (256, 1024, 14, 14)
 layer3.0.downsample.0:
   inputs:
     0:
       min: 0.0
-      max: 5.610428810119629
+      max: 5.543685436248779
       avg_min: 0.0
-      avg_max: 3.1082249164581297
-      mean: 0.10747552290558815
-      std: 0.16886901235024618
+      avg_max: 3.1425770998001092
+      mean: 0.10741138309240343
+      std: 0.16899958053161548
+      b: 0.12438909709453583
       shape: (256, 512, 28, 28)
   output:
-    min: -1.3851948976516724
-    max: 1.4554047584533691
-    avg_min: -0.8382481336593628
-    avg_max: 0.8391178846359253
-    mean: 0.0025203160010278227
-    std: 0.11824097770422358
+    min: -1.4215424060821533
+    max: 1.33884596824646
+    avg_min: -0.838221824169159
+    avg_max: 0.8429729878902434
+    mean: 0.002461075526662171
+    std: 0.1181533193827643
+    b: 0.08602300807833671
     shape: (256, 1024, 14, 14)
 layer3.0.downsample.1:
   inputs:
     0:
-      min: -1.3851948976516724
-      max: 1.4554047584533691
-      avg_min: -0.8382481336593628
-      avg_max: 0.8391178846359253
-      mean: 0.0025203160010278227
-      std: 0.11824097770422358
+      min: -1.4215424060821533
+      max: 1.33884596824646
+      avg_min: -0.838221824169159
+      avg_max: 0.8429729878902434
+      mean: 0.002461075526662171
+      std: 0.1181533193827643
+      b: 0.08602300807833671
       shape: (256, 1024, 14, 14)
   output:
-    min: -2.4001338481903076
-    max: 2.3011090755462646
-    avg_min: -1.0339784502983094
-    avg_max: 1.1814965248107911
-    mean: -0.009482097718864678
-    std: 0.13144392435097568
+    min: -2.206541061401367
+    max: 2.0164079666137695
+    avg_min: -1.0341671466827393
+    avg_max: 1.1840182304382325
+    mean: -0.009523541014641524
+    std: 0.1316129211003301
+    b: 0.09400165900588035
     shape: (256, 1024, 14, 14)
 layer3.0.add:
   inputs:
     0:
-      min: -2.856438398361206
-      max: 4.004288196563721
-      avg_min: -1.373575758934021
-      avg_max: 1.7947681903839112
-      mean: -0.008522651623934509
-      std: 0.16116935431228463
+      min: -2.9403719902038574
+      max: 3.599351167678833
+      avg_min: -1.370452868938446
+      avg_max: 1.798511266708374
+      mean: -0.008863335102796554
+      std: 0.16145241570139246
+      b: 0.11582729294896127
       shape: (256, 1024, 14, 14)
     1:
-      min: -2.4001338481903076
-      max: 2.3011090755462646
-      avg_min: -1.0339784502983094
-      avg_max: 1.1814965248107911
-      mean: -0.009482097718864678
-      std: 0.13144392435097568
+      min: -2.206541061401367
+      max: 2.0164079666137695
+      avg_min: -1.0341671466827393
+      avg_max: 1.1840182304382325
+      mean: -0.009523541014641524
+      std: 0.1316129211003301
+      b: 0.09400165900588035
       shape: (256, 1024, 14, 14)
   output:
-    min: -3.152515172958374
-    max: 4.966125011444092
-    avg_min: -1.7205133795738219
-    avg_max: 2.0686687946319577
-    mean: -0.018004749529063703
-    std: 0.23591557268223448
+    min: -3.2695698738098145
+    max: 3.885859251022339
+    avg_min: -1.7176255106925964
+    avg_max: 2.07050096988678
+    mean: -0.018386876024305818
+    std: 0.2362749970043466
+    b: 0.17508144527673722
     shape: (256, 1024, 14, 14)
 layer3.1.conv1:
   inputs:
     0:
       min: 0.0
-      max: 4.966125011444092
+      max: 3.885859251022339
       avg_min: 0.0
-      avg_max: 2.0686687946319577
-      mean: 0.07857876121997834
-      std: 0.14036395427253853
+      avg_max: 2.07050096988678
+      mean: 0.0785293348133564
+      std: 0.1405307533428432
+      b: 0.1004234530031681
       shape: (256, 1024, 14, 14)
   output:
-    min: -2.573533535003662
-    max: 2.3799889087677
-    avg_min: -1.7555355191230775
-    avg_max: 1.3433432459831238
-    mean: -0.04870695397257805
-    std: 0.2029741442303472
+    min: -2.544332265853882
+    max: 2.204393148422241
+    avg_min: -1.767021894454956
+    avg_max: 1.350142776966095
+    mean: -0.04852357394993306
+    std: 0.20349916512378985
+    b: 0.15100980401039124
     shape: (256, 256, 14, 14)
 layer3.1.bn1:
   inputs:
     0:
-      min: -2.573533535003662
-      max: 2.3799889087677
-      avg_min: -1.7555355191230775
-      avg_max: 1.3433432459831238
-      mean: -0.04870695397257805
-      std: 0.2029741442303472
+      min: -2.544332265853882
+      max: 2.204393148422241
+      avg_min: -1.767021894454956
+      avg_max: 1.350142776966095
+      mean: -0.04852357394993306
+      std: 0.20349916512378985
+      b: 0.15100980401039124
       shape: (256, 256, 14, 14)
   output:
-    min: -1.5699790716171265
-    max: 3.5420637130737305
-    avg_min: -0.9634433090686798
-    avg_max: 1.5214613676071165
-    mean: -0.015885374043136835
-    std: 0.17602129017449333
+    min: -1.6161019802093506
+    max: 2.983110189437866
+    avg_min: -0.9667601943016051
+    avg_max: 1.5406762599945067
+    mean: -0.01569236721843481
+    std: 0.17601199370260534
+    b: 0.13754853010177615
     shape: (256, 256, 14, 14)
 layer3.1.relu1:
   inputs:
     0:
-      min: -1.5699790716171265
-      max: 3.5420637130737305
-      avg_min: -0.9634433090686798
-      avg_max: 1.5214613676071165
-      mean: -0.015885374043136835
-      std: 0.17602129017449333
+      min: -1.6161019802093506
+      max: 2.983110189437866
+      avg_min: -0.9667601943016051
+      avg_max: 1.5406762599945067
+      mean: -0.01569236721843481
+      std: 0.17601199370260534
+      b: 0.13754853010177615
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 3.5420637130737305
+    max: 2.983110189437866
     avg_min: 0.0
-    avg_max: 1.5214613676071165
-    mean: 0.061081795766949644
-    std: 0.09911060277733746
+    avg_max: 1.5406762599945067
+    mean: 0.06115706749260426
+    std: 0.09923994990512984
+    b: 0.07437251433730126
     shape: (256, 256, 14, 14)
 layer3.1.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.5420637130737305
+      max: 2.983110189437866
       avg_min: 0.0
-      avg_max: 1.5214613676071165
-      mean: 0.061081795766949644
-      std: 0.09911060277733746
+      avg_max: 1.5406762599945067
+      mean: 0.06115706749260426
+      std: 0.09923994990512984
+      b: 0.07437251433730126
       shape: (256, 256, 14, 14)
   output:
-    min: -1.8370589017868042
-    max: 1.7697947025299072
-    avg_min: -1.2735301136970518
-    avg_max: 1.0772642254829405
-    mean: -0.03541758507490158
-    std: 0.20633945403652537
+    min: -1.798546552658081
+    max: 1.7840861082077026
+    avg_min: -1.2717079281806947
+    avg_max: 1.0835587620735168
+    mean: -0.03531114533543586
+    std: 0.20681588649369226
+    b: 0.15196347385644915
     shape: (256, 256, 14, 14)
 layer3.1.bn2:
   inputs:
     0:
-      min: -1.8370589017868042
-      max: 1.7697947025299072
-      avg_min: -1.2735301136970518
-      avg_max: 1.0772642254829405
-      mean: -0.03541758507490158
-      std: 0.20633945403652537
+      min: -1.798546552658081
+      max: 1.7840861082077026
+      avg_min: -1.2717079281806947
+      avg_max: 1.0835587620735168
+      mean: -0.03531114533543586
+      std: 0.20681588649369226
+      b: 0.15196347385644915
       shape: (256, 256, 14, 14)
   output:
-    min: -2.284364700317383
-    max: 2.185650587081909
-    avg_min: -1.3686025261878967
-    avg_max: 1.1445939898490904
-    mean: -0.05900828167796135
-    std: 0.2121280258015733
+    min: -2.22202730178833
+    max: 2.0688633918762207
+    avg_min: -1.3674750208854678
+    avg_max: 1.1406042933464051
+    mean: -0.058935262635350226
+    std: 0.21238500590101247
+    b: 0.1633559986948967
     shape: (256, 256, 14, 14)
 layer3.1.relu2:
   inputs:
     0:
-      min: -2.284364700317383
-      max: 2.185650587081909
-      avg_min: -1.3686025261878967
-      avg_max: 1.1445939898490904
-      mean: -0.05900828167796135
-      std: 0.2121280258015733
+      min: -2.22202730178833
+      max: 2.0688633918762207
+      avg_min: -1.3674750208854678
+      avg_max: 1.1406042933464051
+      mean: -0.058935262635350226
+      std: 0.21238500590101247
+      b: 0.1633559986948967
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 2.185650587081909
+    max: 2.0688633918762207
     avg_min: 0.0
-    avg_max: 1.1445939898490904
-    mean: 0.054092993214726444
-    std: 0.09642952525979674
+    avg_max: 1.1406042933464051
+    mean: 0.0542198222130537
+    std: 0.09659185176404667
+    b: 0.07039967179298401
     shape: (256, 256, 14, 14)
 layer3.1.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.185650587081909
+      max: 2.0688633918762207
       avg_min: 0.0
-      avg_max: 1.1445939898490904
-      mean: 0.054092993214726444
-      std: 0.09642952525979674
+      avg_max: 1.1406042933464051
+      mean: 0.0542198222130537
+      std: 0.09659185176404667
+      b: 0.07039967179298401
       shape: (256, 256, 14, 14)
   output:
-    min: -1.34781813621521
-    max: 0.7786300778388977
-    avg_min: -0.6242852985858917
-    avg_max: 0.4462780714035034
-    mean: -0.013363566249608994
-    std: 0.04846282929293715
+    min: -1.3832844495773315
+    max: 0.8828577399253845
+    avg_min: -0.634152603149414
+    avg_max: 0.4512269586324692
+    mean: -0.013461796008050442
+    std: 0.04860209601875486
+    b: 0.03585576899349689
     shape: (256, 1024, 14, 14)
 layer3.1.bn3:
   inputs:
     0:
-      min: -1.34781813621521
-      max: 0.7786300778388977
-      avg_min: -0.6242852985858917
-      avg_max: 0.4462780714035034
-      mean: -0.013363566249608994
-      std: 0.04846282929293715
+      min: -1.3832844495773315
+      max: 0.8828577399253845
+      avg_min: -0.634152603149414
+      avg_max: 0.4512269586324692
+      mean: -0.013461796008050442
+      std: 0.04860209601875486
+      b: 0.03585576899349689
       shape: (256, 1024, 14, 14)
   output:
-    min: -3.294891834259033
-    max: 3.723362684249878
-    avg_min: -1.6095285058021545
-    avg_max: 1.6560726761817932
-    mean: -0.05646139085292816
-    std: 0.12761106196736757
+    min: -3.381093978881836
+    max: 3.740654468536377
+    avg_min: -1.6280961871147155
+    avg_max: 1.6817717552185059
+    mean: -0.05673395991325378
+    std: 0.128007741223229
+    b: 0.0918328732252121
     shape: (256, 1024, 14, 14)
 layer3.1.relu3:
   inputs:
     0:
-      min: -3.1985933780670166
-      max: 5.164384365081787
-      avg_min: -1.4450559258460998
-      avg_max: 2.5544893026351927
-      mean: 0.022117372043430807
-      std: 0.188348746567498
+      min: -3.1117358207702637
+      max: 4.73187780380249
+      avg_min: -1.4645264506340028
+      avg_max: 2.5773601055145257
+      mean: 0.02179537620395422
+      std: 0.18858668218483263
+      b: 0.137426121532917
       shape: (256, 1024, 14, 14)
   output:
     min: 0.0
-    max: 5.164384365081787
+    max: 4.73187780380249
     avg_min: 0.0
-    avg_max: 2.5544893026351927
-    mean: 0.07852560207247734
-    std: 0.13740038568745888
+    avg_max: 2.5773601055145257
+    mean: 0.0784379482269287
+    std: 0.13747982993440178
+    b: 0.09709081798791885
     shape: (256, 1024, 14, 14)
 layer3.1.add:
   inputs:
     0:
-      min: -3.294891834259033
-      max: 3.723362684249878
-      avg_min: -1.6095285058021545
-      avg_max: 1.6560726761817932
-      mean: -0.05646139085292816
-      std: 0.12761106196736757
+      min: -3.381093978881836
+      max: 3.740654468536377
+      avg_min: -1.6280961871147155
+      avg_max: 1.6817717552185059
+      mean: -0.05673395991325378
+      std: 0.128007741223229
+      b: 0.0918328732252121
       shape: (256, 1024, 14, 14)
     1:
       min: 0.0
-      max: 4.966125011444092
+      max: 3.885859251022339
       avg_min: 0.0
-      avg_max: 2.0686687946319577
-      mean: 0.07857876121997834
-      std: 0.14036395427253853
+      avg_max: 2.07050096988678
+      mean: 0.0785293348133564
+      std: 0.1405307533428432
+      b: 0.1004234530031681
       shape: (256, 1024, 14, 14)
   output:
-    min: -3.1985933780670166
-    max: 5.164384365081787
-    avg_min: -1.4450559258460998
-    avg_max: 2.5544893026351927
-    mean: 0.022117372043430807
-    std: 0.188348746567498
+    min: -3.1117358207702637
+    max: 4.73187780380249
+    avg_min: -1.4645264506340028
+    avg_max: 2.5773601055145257
+    mean: 0.02179537620395422
+    std: 0.18858668218483263
+    b: 0.137426121532917
     shape: (256, 1024, 14, 14)
 layer3.2.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.164384365081787
+      max: 4.73187780380249
       avg_min: 0.0
-      avg_max: 2.5544893026351927
-      mean: 0.07852560207247734
-      std: 0.13740038568745888
+      avg_max: 2.5773601055145257
+      mean: 0.0784379482269287
+      std: 0.13747982993440178
+      b: 0.09709081798791885
       shape: (256, 1024, 14, 14)
   output:
-    min: -1.2739536762237549
-    max: 1.4812618494033813
-    avg_min: -0.8040408909320831
-    avg_max: 0.897527688741684
-    mean: -0.05355839878320694
-    std: 0.1558172790545742
+    min: -1.2255059480667114
+    max: 1.4404200315475464
+    avg_min: -0.8069432020187378
+    avg_max: 0.8993860423564911
+    mean: -0.0536116048693657
+    std: 0.15604660982464846
+    b: 0.12109908014535906
     shape: (256, 256, 14, 14)
 layer3.2.bn1:
   inputs:
     0:
-      min: -1.2739536762237549
-      max: 1.4812618494033813
-      avg_min: -0.8040408909320831
-      avg_max: 0.897527688741684
-      mean: -0.05355839878320694
-      std: 0.1558172790545742
+      min: -1.2255059480667114
+      max: 1.4404200315475464
+      avg_min: -0.8069432020187378
+      avg_max: 0.8993860423564911
+      mean: -0.0536116048693657
+      std: 0.15604660982464846
+      b: 0.12109908014535906
       shape: (256, 256, 14, 14)
   output:
-    min: -1.6091384887695312
-    max: 2.1613590717315674
-    avg_min: -0.974888825416565
-    avg_max: 1.1463863968849184
-    mean: -0.04899360761046409
-    std: 0.17298899321911881
+    min: -1.8467423915863037
+    max: 2.2698769569396973
+    avg_min: -0.984872955083847
+    avg_max: 1.148739492893219
+    mean: -0.049125467985868455
+    std: 0.17332222002728023
+    b: 0.1354315713047981
     shape: (256, 256, 14, 14)
 layer3.2.relu1:
   inputs:
     0:
-      min: -1.6091384887695312
-      max: 2.1613590717315674
-      avg_min: -0.974888825416565
-      avg_max: 1.1463863968849184
-      mean: -0.04899360761046409
-      std: 0.17298899321911881
+      min: -1.8467423915863037
+      max: 2.2698769569396973
+      avg_min: -0.984872955083847
+      avg_max: 1.148739492893219
+      mean: -0.049125467985868455
+      std: 0.17332222002728023
+      b: 0.1354315713047981
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 2.1613590717315674
+    max: 2.2698769569396973
     avg_min: 0.0
-    avg_max: 1.1463863968849184
-    mean: 0.04594111070036888
-    std: 0.08596560170466168
+    avg_max: 1.148739492893219
+    mean: 0.04598236232995987
+    std: 0.0860365410692216
+    b: 0.06129458211362362
     shape: (256, 256, 14, 14)
 layer3.2.conv2:
   inputs:
     0:
       min: 0.0
-      max: 2.1613590717315674
+      max: 2.2698769569396973
       avg_min: 0.0
-      avg_max: 1.1463863968849184
-      mean: 0.04594111070036888
-      std: 0.08596560170466168
+      avg_max: 1.148739492893219
+      mean: 0.04598236232995987
+      std: 0.0860365410692216
+      b: 0.06129458211362362
       shape: (256, 256, 14, 14)
   output:
-    min: -1.7100857496261597
-    max: 1.2296204566955566
-    avg_min: -0.9203199565410615
-    avg_max: 0.7516951560974121
-    mean: -0.060491649061441416
-    std: 0.14446424529132146
+    min: -1.794222354888916
+    max: 1.2121577262878418
+    avg_min: -0.9345794081687927
+    avg_max: 0.7509669005870818
+    mean: -0.06053247414529324
+    std: 0.14489036484835555
+    b: 0.11009075939655304
     shape: (256, 256, 14, 14)
 layer3.2.bn2:
   inputs:
     0:
-      min: -1.7100857496261597
-      max: 1.2296204566955566
-      avg_min: -0.9203199565410615
-      avg_max: 0.7516951560974121
-      mean: -0.060491649061441416
-      std: 0.14446424529132146
+      min: -1.794222354888916
+      max: 1.2121577262878418
+      avg_min: -0.9345794081687927
+      avg_max: 0.7509669005870818
+      mean: -0.06053247414529324
+      std: 0.14489036484835555
+      b: 0.11009075939655304
       shape: (256, 256, 14, 14)
   output:
-    min: -1.9307109117507935
-    max: 1.9227837324142456
-    avg_min: -1.1561131119728087
-    avg_max: 0.9304027497768402
-    mean: -0.07359198182821274
-    std: 0.20287761846310984
+    min: -1.9024134874343872
+    max: 1.9195441007614136
+    avg_min: -1.1631374835968018
+    avg_max: 0.9291424274444579
+    mean: -0.07363725379109383
+    std: 0.20335560326553556
+    b: 0.15889842957258224
     shape: (256, 256, 14, 14)
 layer3.2.relu2:
   inputs:
     0:
-      min: -1.9307109117507935
-      max: 1.9227837324142456
-      avg_min: -1.1561131119728087
-      avg_max: 0.9304027497768402
-      mean: -0.07359198182821274
-      std: 0.20287761846310984
+      min: -1.9024134874343872
+      max: 1.9195441007614136
+      avg_min: -1.1631374835968018
+      avg_max: 0.9291424274444579
+      mean: -0.07363725379109383
+      std: 0.20335560326553556
+      b: 0.15889842957258224
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 1.9227837324142456
+    max: 1.9195441007614136
     avg_min: 0.0
-    avg_max: 0.9304027497768402
-    mean: 0.046708225086331365
-    std: 0.08785573478754449
+    avg_max: 0.9291424274444579
+    mean: 0.04677422530949116
+    std: 0.08788993623251712
+    b: 0.06332858055830001
     shape: (256, 256, 14, 14)
 layer3.2.conv3:
   inputs:
     0:
       min: 0.0
-      max: 1.9227837324142456
+      max: 1.9195441007614136
       avg_min: 0.0
-      avg_max: 0.9304027497768402
-      mean: 0.046708225086331365
-      std: 0.08785573478754449
+      avg_max: 0.9291424274444579
+      mean: 0.04677422530949116
+      std: 0.08788993623251712
+      b: 0.06332858055830001
       shape: (256, 256, 14, 14)
   output:
-    min: -0.5223075151443481
-    max: 0.4661237299442291
-    avg_min: -0.28980413973331454
-    avg_max: 0.2777348279953003
-    mean: -0.01015338534489274
-    std: 0.03769439630679751
+    min: -0.47167831659317017
+    max: 0.4768223762512207
+    avg_min: -0.2897565901279449
+    avg_max: 0.27852504253387445
+    mean: -0.010115890670567751
+    std: 0.03771922503141036
+    b: 0.028730955161154273
     shape: (256, 1024, 14, 14)
 layer3.2.bn3:
   inputs:
     0:
-      min: -0.5223075151443481
-      max: 0.4661237299442291
-      avg_min: -0.28980413973331454
-      avg_max: 0.2777348279953003
-      mean: -0.01015338534489274
-      std: 0.03769439630679751
+      min: -0.47167831659317017
+      max: 0.4768223762512207
+      avg_min: -0.2897565901279449
+      avg_max: 0.27852504253387445
+      mean: -0.010115890670567751
+      std: 0.03771922503141036
+      b: 0.028730955161154273
       shape: (256, 1024, 14, 14)
   output:
-    min: -1.6972358226776123
-    max: 2.3993289470672607
-    avg_min: -1.0052876293659212
-    avg_max: 0.990718525648117
-    mean: -0.05901466868817807
-    std: 0.10956712860948606
+    min: -1.8715596199035645
+    max: 1.7016105651855469
+    avg_min: -1.007363897562027
+    avg_max: 0.9949472427368165
+    mean: -0.05890159755945206
+    std: 0.10968252783425551
+    b: 0.07940443232655524
     shape: (256, 1024, 14, 14)
 layer3.2.relu3:
   inputs:
     0:
-      min: -1.6363203525543213
-      max: 5.327512264251709
-      avg_min: -0.9630495011806489
-      avg_max: 2.45657742023468
-      mean: 0.019510931707918643
-      std: 0.17988520609270667
+      min: -1.6510663032531738
+      max: 4.400269985198975
+      avg_min: -0.9679112792015075
+      avg_max: 2.471791648864746
+      mean: 0.01953635085374117
+      std: 0.17995644221188434
+      b: 0.1306268095970154
       shape: (256, 1024, 14, 14)
   output:
     min: 0.0
-    max: 5.327512264251709
+    max: 4.400269985198975
     avg_min: 0.0
-    avg_max: 2.45657742023468
-    mean: 0.0736074797809124
-    std: 0.135348297399026
+    avg_max: 2.471791648864746
+    mean: 0.07360321879386901
+    std: 0.13545314285325727
+    b: 0.09394648149609566
     shape: (256, 1024, 14, 14)
 layer3.2.add:
   inputs:
     0:
-      min: -1.6972358226776123
-      max: 2.3993289470672607
-      avg_min: -1.0052876293659212
-      avg_max: 0.990718525648117
-      mean: -0.05901466868817807
-      std: 0.10956712860948606
+      min: -1.8715596199035645
+      max: 1.7016105651855469
+      avg_min: -1.007363897562027
+      avg_max: 0.9949472427368165
+      mean: -0.05890159755945206
+      std: 0.10968252783425551
+      b: 0.07940443232655524
       shape: (256, 1024, 14, 14)
     1:
       min: 0.0
-      max: 5.164384365081787
+      max: 4.73187780380249
       avg_min: 0.0
-      avg_max: 2.5544893026351927
-      mean: 0.07852560207247734
-      std: 0.13740038568745888
+      avg_max: 2.5773601055145257
+      mean: 0.0784379482269287
+      std: 0.13747982993440178
+      b: 0.09709081798791885
       shape: (256, 1024, 14, 14)
   output:
-    min: -1.6363203525543213
-    max: 5.327512264251709
-    avg_min: -0.9630495011806489
-    avg_max: 2.45657742023468
-    mean: 0.019510931707918643
-    std: 0.17988520609270667
+    min: -1.6510663032531738
+    max: 4.400269985198975
+    avg_min: -0.9679112792015075
+    avg_max: 2.471791648864746
+    mean: 0.01953635085374117
+    std: 0.17995644221188434
+    b: 0.1306268095970154
     shape: (256, 1024, 14, 14)
 layer3.3.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.327512264251709
+      max: 4.400269985198975
       avg_min: 0.0
-      avg_max: 2.45657742023468
-      mean: 0.0736074797809124
-      std: 0.135348297399026
+      avg_max: 2.471791648864746
+      mean: 0.07360321879386901
+      std: 0.13545314285325727
+      b: 0.09394648149609566
       shape: (256, 1024, 14, 14)
   output:
-    min: -1.3141155242919922
-    max: 1.7013614177703857
-    avg_min: -0.8733409106731416
-    avg_max: 0.9241234064102173
-    mean: -0.06390224620699882
-    std: 0.1473729016075356
+    min: -1.4107123613357544
+    max: 1.4724128246307373
+    avg_min: -0.8722572386264801
+    avg_max: 0.9246708631515502
+    mean: -0.06400578320026397
+    std: 0.14765933250560168
+    b: 0.11368035450577735
     shape: (256, 256, 14, 14)
 layer3.3.bn1:
   inputs:
     0:
-      min: -1.3141155242919922
-      max: 1.7013614177703857
-      avg_min: -0.8733409106731416
-      avg_max: 0.9241234064102173
-      mean: -0.06390224620699882
-      std: 0.1473729016075356
+      min: -1.4107123613357544
+      max: 1.4724128246307373
+      avg_min: -0.8722572386264801
+      avg_max: 0.9246708631515502
+      mean: -0.06400578320026397
+      std: 0.14765933250560168
+      b: 0.11368035450577735
       shape: (256, 256, 14, 14)
   output:
-    min: -1.820160984992981
-    max: 3.5110983848571777
-    avg_min: -1.074443531036377
-    avg_max: 1.26715726852417
-    mean: -0.08310422375798224
-    std: 0.1866364461272101
+    min: -1.835134744644165
+    max: 2.820369005203247
+    avg_min: -1.080615472793579
+    avg_max: 1.2621156215667724
+    mean: -0.08339516818523407
+    std: 0.1871334705486934
+    b: 0.14537983685731887
     shape: (256, 256, 14, 14)
 layer3.3.relu1:
   inputs:
     0:
-      min: -1.820160984992981
-      max: 3.5110983848571777
-      avg_min: -1.074443531036377
-      avg_max: 1.26715726852417
-      mean: -0.08310422375798224
-      std: 0.1866364461272101
+      min: -1.835134744644165
+      max: 2.820369005203247
+      avg_min: -1.080615472793579
+      avg_max: 1.2621156215667724
+      mean: -0.08339516818523407
+      std: 0.1871334705486934
+      b: 0.14537983685731887
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 3.5110983848571777
+    max: 2.820369005203247
     avg_min: 0.0
-    avg_max: 1.26715726852417
-    mean: 0.03824471198022366
-    std: 0.08215332314659896
+    avg_max: 1.2621156215667724
+    mean: 0.03830158524215222
+    std: 0.08225821137419886
+    b: 0.05480455048382282
     shape: (256, 256, 14, 14)
 layer3.3.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.5110983848571777
+      max: 2.820369005203247
       avg_min: 0.0
-      avg_max: 1.26715726852417
-      mean: 0.03824471198022366
-      std: 0.08215332314659896
+      avg_max: 1.2621156215667724
+      mean: 0.03830158524215222
+      std: 0.08225821137419886
+      b: 0.05480455048382282
       shape: (256, 256, 14, 14)
   output:
-    min: -1.9625822305679321
-    max: 1.4796524047851562
-    avg_min: -0.8453774690628051
-    avg_max: 0.7829941272735595
-    mean: -0.05455365739762783
-    std: 0.12259960248373775
+    min: -2.286611557006836
+    max: 1.4300570487976074
+    avg_min: -0.8553887069225312
+    avg_max: 0.7814723491668701
+    mean: -0.054597464576363566
+    std: 0.1227312809161389
+    b: 0.09269454330205919
     shape: (256, 256, 14, 14)
 layer3.3.bn2:
   inputs:
     0:
-      min: -1.9625822305679321
-      max: 1.4796524047851562
-      avg_min: -0.8453774690628051
-      avg_max: 0.7829941272735595
-      mean: -0.05455365739762783
-      std: 0.12259960248373775
+      min: -2.286611557006836
+      max: 1.4300570487976074
+      avg_min: -0.8553887069225312
+      avg_max: 0.7814723491668701
+      mean: -0.054597464576363566
+      std: 0.1227312809161389
+      b: 0.09269454330205919
       shape: (256, 256, 14, 14)
   output:
-    min: -2.5048694610595703
-    max: 2.1857171058654785
-    avg_min: -1.197688341140747
-    avg_max: 1.0186122715473174
-    mean: -0.07380441427230836
-    std: 0.19102371682344027
+    min: -2.693354606628418
+    max: 2.3429768085479736
+    avg_min: -1.201731312274933
+    avg_max: 1.00928692817688
+    mean: -0.07395727038383484
+    std: 0.19134458210184954
+    b: 0.1484989792108536
     shape: (256, 256, 14, 14)
 layer3.3.relu2:
   inputs:
     0:
-      min: -2.5048694610595703
-      max: 2.1857171058654785
-      avg_min: -1.197688341140747
-      avg_max: 1.0186122715473174
-      mean: -0.07380441427230836
-      std: 0.19102371682344027
+      min: -2.693354606628418
+      max: 2.3429768085479736
+      avg_min: -1.201731312274933
+      avg_max: 1.00928692817688
+      mean: -0.07395727038383484
+      std: 0.19134458210184954
+      b: 0.1484989792108536
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 2.1857171058654785
+    max: 2.3429768085479736
     avg_min: 0.0
-    avg_max: 1.0186122715473174
-    mean: 0.04190520346164703
-    std: 0.08191135989157138
+    avg_max: 1.00928692817688
+    mean: 0.04196812137961387
+    std: 0.0819769037830909
+    b: 0.05776412300765514
     shape: (256, 256, 14, 14)
 layer3.3.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.1857171058654785
+      max: 2.3429768085479736
       avg_min: 0.0
-      avg_max: 1.0186122715473174
-      mean: 0.04190520346164703
-      std: 0.08191135989157138
+      avg_max: 1.00928692817688
+      mean: 0.04196812137961387
+      std: 0.0819769037830909
+      b: 0.05776412300765514
       shape: (256, 256, 14, 14)
   output:
-    min: -0.8744244575500488
-    max: 0.6701964735984802
-    avg_min: -0.4116904616355896
-    avg_max: 0.30033474564552304
-    mean: -0.013642842136323451
-    std: 0.03284520891780353
+    min: -0.8529643416404724
+    max: 0.5916772484779358
+    avg_min: -0.4155533730983734
+    avg_max: 0.29963394105434416
+    mean: -0.01357287410646677
+    std: 0.03285487120054015
+    b: 0.024781853519380094
     shape: (256, 1024, 14, 14)
 layer3.3.bn3:
   inputs:
     0:
-      min: -0.8744244575500488
-      max: 0.6701964735984802
-      avg_min: -0.4116904616355896
-      avg_max: 0.30033474564552304
-      mean: -0.013642842136323451
-      std: 0.03284520891780353
+      min: -0.8529643416404724
+      max: 0.5916772484779358
+      avg_min: -0.4155533730983734
+      avg_max: 0.29963394105434416
+      mean: -0.01357287410646677
+      std: 0.03285487120054015
+      b: 0.024781853519380094
       shape: (256, 1024, 14, 14)
   output:
-    min: -2.780369281768799
-    max: 5.047985553741455
-    avg_min: -1.3500766515731815
-    avg_max: 1.3014169096946715
-    mean: -0.06484036147594452
-    std: 0.1106017955255637
+    min: -2.7871150970458984
+    max: 4.472135066986084
+    avg_min: -1.3642309188842772
+    avg_max: 1.2945337533950807
+    mean: -0.0646173596382141
+    std: 0.11064792183430848
+    b: 0.08059151545166969
     shape: (256, 1024, 14, 14)
 layer3.3.relu3:
   inputs:
     0:
-      min: -2.4268336296081543
-      max: 6.842432498931885
-      avg_min: -1.2578607439994811
-      avg_max: 2.773927688598633
-      mean: 0.008767120074480772
-      std: 0.18065239121137047
+      min: -2.4470155239105225
+      max: 5.5454607009887695
+      avg_min: -1.2687544226646423
+      avg_max: 2.776830315589905
+      mean: 0.008985858596861362
+      std: 0.1807051431499482
+      b: 0.12704886943101884
       shape: (256, 1024, 14, 14)
   output:
     min: 0.0
-    max: 6.842432498931885
+    max: 5.5454607009887695
     avg_min: 0.0
-    avg_max: 2.773927688598633
-    mean: 0.06711363941431045
-    std: 0.13257718978893668
+    avg_max: 2.776830315589905
+    mean: 0.0671969495713711
+    std: 0.1327272239563941
+    b: 0.08904388174414635
     shape: (256, 1024, 14, 14)
 layer3.3.add:
   inputs:
     0:
-      min: -2.780369281768799
-      max: 5.047985553741455
-      avg_min: -1.3500766515731815
-      avg_max: 1.3014169096946715
-      mean: -0.06484036147594452
-      std: 0.1106017955255637
+      min: -2.7871150970458984
+      max: 4.472135066986084
+      avg_min: -1.3642309188842772
+      avg_max: 1.2945337533950807
+      mean: -0.0646173596382141
+      std: 0.11064792183430848
+      b: 0.08059151545166969
       shape: (256, 1024, 14, 14)
     1:
       min: 0.0
-      max: 5.327512264251709
+      max: 4.400269985198975
       avg_min: 0.0
-      avg_max: 2.45657742023468
-      mean: 0.0736074797809124
-      std: 0.135348297399026
+      avg_max: 2.471791648864746
+      mean: 0.07360321879386901
+      std: 0.13545314285325727
+      b: 0.09394648149609566
       shape: (256, 1024, 14, 14)
   output:
-    min: -2.4268336296081543
-    max: 6.842432498931885
-    avg_min: -1.2578607439994811
-    avg_max: 2.773927688598633
-    mean: 0.008767120074480772
-    std: 0.18065239121137047
+    min: -2.4470155239105225
+    max: 5.5454607009887695
+    avg_min: -1.2687544226646423
+    avg_max: 2.776830315589905
+    mean: 0.008985858596861362
+    std: 0.1807051431499482
+    b: 0.12704886943101884
     shape: (256, 1024, 14, 14)
 layer3.4.conv1:
   inputs:
     0:
       min: 0.0
-      max: 6.842432498931885
+      max: 5.5454607009887695
       avg_min: 0.0
-      avg_max: 2.773927688598633
-      mean: 0.06711363941431045
-      std: 0.13257718978893668
+      avg_max: 2.776830315589905
+      mean: 0.0671969495713711
+      std: 0.1327272239563941
+      b: 0.08904388174414635
       shape: (256, 1024, 14, 14)
   output:
-    min: -1.4036506414413452
-    max: 1.4978818893432617
-    avg_min: -0.8180736482143403
-    avg_max: 0.9027495622634889
-    mean: -0.07035565003752708
-    std: 0.14141915510101635
+    min: -1.4321876764297485
+    max: 1.4811002016067505
+    avg_min: -0.8182755529880523
+    avg_max: 0.9019500613212587
+    mean: -0.07049371376633644
+    std: 0.14159163078468326
+    b: 0.10927761346101761
     shape: (256, 256, 14, 14)
 layer3.4.bn1:
   inputs:
     0:
-      min: -1.4036506414413452
-      max: 1.4978818893432617
-      avg_min: -0.8180736482143403
-      avg_max: 0.9027495622634889
-      mean: -0.07035565003752708
-      std: 0.14141915510101635
+      min: -1.4321876764297485
+      max: 1.4811002016067505
+      avg_min: -0.8182755529880523
+      avg_max: 0.9019500613212587
+      mean: -0.07049371376633644
+      std: 0.14159163078468326
+      b: 0.10927761346101761
       shape: (256, 256, 14, 14)
   output:
-    min: -2.287900686264038
-    max: 3.120579957962036
-    avg_min: -1.2428925752639772
-    avg_max: 1.3030256152153015
-    mean: -0.09182318076491355
-    std: 0.19056795431409293
+    min: -2.1923842430114746
+    max: 2.9939489364624023
+    avg_min: -1.2474177479743955
+    avg_max: 1.2880850553512573
+    mean: -0.09210593849420548
+    std: 0.1908010822551101
+    b: 0.14730767905712128
     shape: (256, 256, 14, 14)
 layer3.4.relu1:
   inputs:
     0:
-      min: -2.287900686264038
-      max: 3.120579957962036
-      avg_min: -1.2428925752639772
-      avg_max: 1.3030256152153015
-      mean: -0.09182318076491355
-      std: 0.19056795431409293
+      min: -2.1923842430114746
+      max: 2.9939489364624023
+      avg_min: -1.2474177479743955
+      avg_max: 1.2880850553512573
+      mean: -0.09210593849420548
+      std: 0.1908010822551101
+      b: 0.14730767905712128
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 3.120579957962036
+    max: 2.9939489364624023
     avg_min: 0.0
-    avg_max: 1.3030256152153015
-    mean: 0.036129880324006075
-    std: 0.08013136187320138
+    avg_max: 1.2880850553512573
+    mean: 0.0361121691763401
+    std: 0.0800226152899751
+    b: 0.052542395517230035
     shape: (256, 256, 14, 14)
 layer3.4.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.120579957962036
+      max: 2.9939489364624023
       avg_min: 0.0
-      avg_max: 1.3030256152153015
-      mean: 0.036129880324006075
-      std: 0.08013136187320138
+      avg_max: 1.2880850553512573
+      mean: 0.0361121691763401
+      std: 0.0800226152899751
+      b: 0.052542395517230035
       shape: (256, 256, 14, 14)
   output:
-    min: -1.2296303510665894
-    max: 1.360468864440918
-    avg_min: -0.6864560902118683
-    avg_max: 0.6652375042438508
-    mean: -0.06385108977556228
-    std: 0.1197144650046181
+    min: -1.3785531520843506
+    max: 1.1173038482666016
+    avg_min: -0.6841362714767456
+    avg_max: 0.6594028234481811
+    mean: -0.0635660532861948
+    std: 0.11917848063795294
+    b: 0.09063096791505815
     shape: (256, 256, 14, 14)
 layer3.4.bn2:
   inputs:
     0:
-      min: -1.2296303510665894
-      max: 1.360468864440918
-      avg_min: -0.6864560902118683
-      avg_max: 0.6652375042438508
-      mean: -0.06385108977556228
-      std: 0.1197144650046181
+      min: -1.3785531520843506
+      max: 1.1173038482666016
+      avg_min: -0.6841362714767456
+      avg_max: 0.6594028234481811
+      mean: -0.0635660532861948
+      std: 0.11917848063795294
+      b: 0.09063096791505815
       shape: (256, 256, 14, 14)
   output:
-    min: -2.5258262157440186
-    max: 2.5762646198272705
-    avg_min: -1.202998912334442
-    avg_max: 1.060443115234375
-    mean: -0.0941622532904148
-    std: 0.19918728561258164
+    min: -2.5578463077545166
+    max: 2.6030020713806152
+    avg_min: -1.1932874560356141
+    avg_max: 1.0532284140586852
+    mean: -0.09362928867340088
+    std: 0.19828422927421832
+    b: 0.15405910462141037
     shape: (256, 256, 14, 14)
 layer3.4.relu2:
   inputs:
     0:
-      min: -2.5258262157440186
-      max: 2.5762646198272705
-      avg_min: -1.202998912334442
-      avg_max: 1.060443115234375
-      mean: -0.0941622532904148
-      std: 0.19918728561258164
+      min: -2.5578463077545166
+      max: 2.6030020713806152
+      avg_min: -1.1932874560356141
+      avg_max: 1.0532284140586852
+      mean: -0.09362928867340088
+      std: 0.19828422927421832
+      b: 0.15405910462141037
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 2.5762646198272705
+    max: 2.6030020713806152
     avg_min: 0.0
-    avg_max: 1.060443115234375
-    mean: 0.0378439262509346
-    std: 0.08109124921698624
+    avg_max: 1.0532284140586852
+    mean: 0.03780082538723946
+    std: 0.08083680466761649
+    b: 0.054279979318380356
     shape: (256, 256, 14, 14)
 layer3.4.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.5762646198272705
+      max: 2.6030020713806152
       avg_min: 0.0
-      avg_max: 1.060443115234375
-      mean: 0.0378439262509346
-      std: 0.08109124921698624
+      avg_max: 1.0532284140586852
+      mean: 0.03780082538723946
+      std: 0.08083680466761649
+      b: 0.054279979318380356
       shape: (256, 256, 14, 14)
   output:
-    min: -0.6274950504302979
-    max: 0.5474128127098083
-    avg_min: -0.31079573035240177
-    avg_max: 0.31312489509582514
-    mean: -0.018573758937418458
-    std: 0.03237467743002246
+    min: -0.617553174495697
+    max: 0.5405022501945496
+    avg_min: -0.31024474799633023
+    avg_max: 0.30949910879135134
+    mean: -0.01831467431038618
+    std: 0.03220125309911986
+    b: 0.02396907676011324
     shape: (256, 1024, 14, 14)
 layer3.4.bn3:
   inputs:
     0:
-      min: -0.6274950504302979
-      max: 0.5474128127098083
-      avg_min: -0.31079573035240177
-      avg_max: 0.31312489509582514
-      mean: -0.018573758937418458
-      std: 0.03237467743002246
+      min: -0.617553174495697
+      max: 0.5405022501945496
+      avg_min: -0.31024474799633023
+      avg_max: 0.30949910879135134
+      mean: -0.01831467431038618
+      std: 0.03220125309911986
+      b: 0.02396907676011324
       shape: (256, 1024, 14, 14)
   output:
-    min: -3.0660805702209473
-    max: 2.9988577365875244
-    avg_min: -1.2700673937797546
-    avg_max: 1.0780652999877929
-    mean: -0.08978047668933868
-    std: 0.12112411379834422
+    min: -2.7760021686553955
+    max: 3.0912625789642334
+    avg_min: -1.2608299374580383
+    avg_max: 1.0748429894447327
+    mean: -0.08889898136258126
+    std: 0.12065517312522482
+    b: 0.0887866385281086
     shape: (256, 1024, 14, 14)
 layer3.4.relu3:
   inputs:
     0:
-      min: -2.9198529720306396
-      max: 5.9765801429748535
-      avg_min: -1.2321366190910341
-      avg_max: 2.8483860015869147
-      mean: -0.0226668369024992
-      std: 0.1857150470146882
+      min: -2.7760021686553955
+      max: 5.285286903381348
+      avg_min: -1.2248466730117797
+      avg_max: 2.8475504875183106
+      mean: -0.021702030487358567
+      std: 0.18543194674812571
+      b: 0.1282407984137535
       shape: (256, 1024, 14, 14)
   output:
     min: 0.0
-    max: 5.9765801429748535
+    max: 5.285286903381348
     avg_min: 0.0
-    avg_max: 2.8483860015869147
-    mean: 0.055139701813459396
-    std: 0.12426296892592821
+    avg_max: 2.8475504875183106
+    mean: 0.05537210628390312
+    std: 0.12453756625097041
+    b: 0.07891639769077301
     shape: (256, 1024, 14, 14)
 layer3.4.add:
   inputs:
     0:
-      min: -3.0660805702209473
-      max: 2.9988577365875244
-      avg_min: -1.2700673937797546
-      avg_max: 1.0780652999877929
-      mean: -0.08978047668933868
-      std: 0.12112411379834422
+      min: -2.7760021686553955
+      max: 3.0912625789642334
+      avg_min: -1.2608299374580383
+      avg_max: 1.0748429894447327
+      mean: -0.08889898136258126
+      std: 0.12065517312522482
+      b: 0.0887866385281086
       shape: (256, 1024, 14, 14)
     1:
       min: 0.0
-      max: 6.842432498931885
+      max: 5.5454607009887695
       avg_min: 0.0
-      avg_max: 2.773927688598633
-      mean: 0.06711363941431045
-      std: 0.13257718978893668
+      avg_max: 2.776830315589905
+      mean: 0.0671969495713711
+      std: 0.1327272239563941
+      b: 0.08904388174414635
       shape: (256, 1024, 14, 14)
   output:
-    min: -2.9198529720306396
-    max: 5.9765801429748535
-    avg_min: -1.2321366190910341
-    avg_max: 2.8483860015869147
-    mean: -0.0226668369024992
-    std: 0.1857150470146882
+    min: -2.7760021686553955
+    max: 5.285286903381348
+    avg_min: -1.2248466730117797
+    avg_max: 2.8475504875183106
+    mean: -0.021702030487358567
+    std: 0.18543194674812571
+    b: 0.1282407984137535
     shape: (256, 1024, 14, 14)
 layer3.5.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.9765801429748535
+      max: 5.285286903381348
       avg_min: 0.0
-      avg_max: 2.8483860015869147
-      mean: 0.055139701813459396
-      std: 0.12426296892592821
+      avg_max: 2.8475504875183106
+      mean: 0.05537210628390312
+      std: 0.12453756625097041
+      b: 0.07891639769077301
       shape: (256, 1024, 14, 14)
   output:
-    min: -1.2228301763534546
-    max: 1.7884830236434937
-    avg_min: -0.7673625111579895
-    avg_max: 1.0236753463745116
-    mean: -0.058728481829166415
-    std: 0.1335905788558348
+    min: -1.2114547491073608
+    max: 1.8547759056091309
+    avg_min: -0.7687224447727204
+    avg_max: 1.0366832494735716
+    mean: -0.05898677967488766
+    std: 0.1339720497912883
+    b: 0.10209123492240905
     shape: (256, 256, 14, 14)
 layer3.5.bn1:
   inputs:
     0:
-      min: -1.2228301763534546
-      max: 1.7884830236434937
-      avg_min: -0.7673625111579895
-      avg_max: 1.0236753463745116
-      mean: -0.058728481829166415
-      std: 0.1335905788558348
+      min: -1.2114547491073608
+      max: 1.8547759056091309
+      avg_min: -0.7687224447727204
+      avg_max: 1.0366832494735716
+      mean: -0.05898677967488766
+      std: 0.1339720497912883
+      b: 0.10209123492240905
       shape: (256, 256, 14, 14)
   output:
-    min: -2.146045684814453
-    max: 3.04902720451355
-    avg_min: -1.3436482310295104
-    avg_max: 1.538545846939087
-    mean: -0.11112343668937684
-    std: 0.20606540814755064
+    min: -2.405616521835327
+    max: 2.9770092964172363
+    avg_min: -1.345890736579895
+    avg_max: 1.5401015281677246
+    mean: -0.11162762120366096
+    std: 0.2067524814549052
+    b: 0.158324958384037
     shape: (256, 256, 14, 14)
 layer3.5.relu1:
   inputs:
     0:
-      min: -2.146045684814453
-      max: 3.04902720451355
-      avg_min: -1.3436482310295104
-      avg_max: 1.538545846939087
-      mean: -0.11112343668937684
-      std: 0.20606540814755064
+      min: -2.405616521835327
+      max: 2.9770092964172363
+      avg_min: -1.345890736579895
+      avg_max: 1.5401015281677246
+      mean: -0.11162762120366096
+      std: 0.2067524814549052
+      b: 0.158324958384037
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 3.04902720451355
+    max: 2.9770092964172363
     avg_min: 0.0
-    avg_max: 1.538545846939087
-    mean: 0.035909949243068694
-    std: 0.08706416070683066
+    avg_max: 1.5401015281677246
+    mean: 0.03598667941987514
+    std: 0.08728598462606063
+    b: 0.054116987437009816
     shape: (256, 256, 14, 14)
 layer3.5.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.04902720451355
+      max: 2.9770092964172363
       avg_min: 0.0
-      avg_max: 1.538545846939087
-      mean: 0.035909949243068694
-      std: 0.08706416070683066
+      avg_max: 1.5401015281677246
+      mean: 0.03598667941987514
+      std: 0.08728598462606063
+      b: 0.054116987437009816
       shape: (256, 256, 14, 14)
   output:
-    min: -2.057424306869507
-    max: 1.784161925315857
-    avg_min: -0.9600347816944121
-    avg_max: 0.8400526225566863
-    mean: -0.05844097547233105
-    std: 0.13002081401800156
+    min: -2.1120169162750244
+    max: 1.774125337600708
+    avg_min: -0.9561347246170043
+    avg_max: 0.8397526204586028
+    mean: -0.058581435680389406
+    std: 0.1299289392006273
+    b: 0.09731543958187104
     shape: (256, 256, 14, 14)
 layer3.5.bn2:
   inputs:
     0:
-      min: -2.057424306869507
-      max: 1.784161925315857
-      avg_min: -0.9600347816944121
-      avg_max: 0.8400526225566863
-      mean: -0.05844097547233105
-      std: 0.13002081401800156
+      min: -2.1120169162750244
+      max: 1.774125337600708
+      avg_min: -0.9561347246170043
+      avg_max: 0.8397526204586028
+      mean: -0.058581435680389406
+      std: 0.1299289392006273
+      b: 0.09731543958187104
       shape: (256, 256, 14, 14)
   output:
-    min: -4.574428558349609
-    max: 3.455890417098999
-    avg_min: -1.8004912614822388
-    avg_max: 1.494127357006073
-    mean: -0.08998745903372765
-    std: 0.21385513341368986
+    min: -4.698740482330322
+    max: 3.3609368801116943
+    avg_min: -1.7777138948440552
+    avg_max: 1.4988572001457214
+    mean: -0.09034643545746802
+    std: 0.21381942006553892
+    b: 0.16239558458328246
     shape: (256, 256, 14, 14)
 layer3.5.relu2:
   inputs:
     0:
-      min: -4.574428558349609
-      max: 3.455890417098999
-      avg_min: -1.8004912614822388
-      avg_max: 1.494127357006073
-      mean: -0.08998745903372765
-      std: 0.21385513341368986
+      min: -4.698740482330322
+      max: 3.3609368801116943
+      avg_min: -1.7777138948440552
+      avg_max: 1.4988572001457214
+      mean: -0.09034643545746802
+      std: 0.21381942006553892
+      b: 0.16239558458328246
       shape: (256, 256, 14, 14)
   output:
     min: 0.0
-    max: 3.455890417098999
+    max: 3.3609368801116943
     avg_min: 0.0
-    avg_max: 1.494127357006073
-    mean: 0.043055493384599686
-    std: 0.09389931986430936
+    avg_max: 1.4988572001457214
+    mean: 0.04298026263713837
+    std: 0.09398657532999506
+    b: 0.061214948818087575
     shape: (256, 256, 14, 14)
 layer3.5.conv3:
   inputs:
     0:
       min: 0.0
-      max: 3.455890417098999
+      max: 3.3609368801116943
       avg_min: 0.0
-      avg_max: 1.494127357006073
-      mean: 0.043055493384599686
-      std: 0.09389931986430936
+      avg_max: 1.4988572001457214
+      mean: 0.04298026263713837
+      std: 0.09398657532999506
+      b: 0.061214948818087575
       shape: (256, 256, 14, 14)
   output:
-    min: -1.604799509048462
-    max: 1.5653789043426514
-    avg_min: -0.5808867990970612
-    avg_max: 0.4830966383218765
-    mean: -0.0280995761975646
-    std: 0.04402634514173766
+    min: -1.5942188501358032
+    max: 1.6467878818511963
+    avg_min: -0.5832379519939421
+    avg_max: 0.48611052334308624
+    mean: -0.027793312817811965
+    std: 0.044006184962549925
+    b: 0.031050648726522925
     shape: (256, 1024, 14, 14)
 layer3.5.bn3:
   inputs:
     0:
-      min: -1.604799509048462
-      max: 1.5653789043426514
-      avg_min: -0.5808867990970612
-      avg_max: 0.4830966383218765
-      mean: -0.0280995761975646
-      std: 0.04402634514173766
+      min: -1.5942188501358032
+      max: 1.6467878818511963
+      avg_min: -0.5832379519939421
+      avg_max: 0.48611052334308624
+      mean: -0.027793312817811965
+      std: 0.044006184962549925
+      b: 0.031050648726522925
       shape: (256, 1024, 14, 14)
   output:
-    min: -4.996767997741699
-    max: 3.009377956390381
-    avg_min: -1.7419140815734864
-    avg_max: 1.1948076128959655
-    mean: -0.1218911699950695
-    std: 0.14199012849303966
+    min: -4.571747303009033
+    max: 2.951798677444458
+    avg_min: -1.7450510263442993
+    avg_max: 1.1962575674057008
+    mean: -0.12095604911446571
+    std: 0.14193320406976667
+    b: 0.10260932072997093
     shape: (256, 1024, 14, 14)
 layer3.5.relu3:
   inputs:
     0:
-      min: -4.979601860046387
-      max: 5.826275825500488
-      avg_min: -1.6993945837020874
-      avg_max: 2.372250032424927
-      mean: -0.06675146967172624
-      std: 0.19184784648937794
+      min: -4.525286674499512
+      max: 5.23931360244751
+      avg_min: -1.7014144301414489
+      avg_max: 2.36359326839447
+      mean: -0.06558393985033036
+      std: 0.19186352583657984
+      b: 0.13366126269102097
       shape: (256, 1024, 14, 14)
   output:
     min: 0.0
-    max: 5.826275825500488
+    max: 5.23931360244751
     avg_min: 0.0
-    avg_max: 2.372250032424927
-    mean: 0.04188145287334919
-    std: 0.10869858401882222
+    avg_max: 2.36359326839447
+    mean: 0.04217293076217175
+    std: 0.1091152794488751
+    b: 0.06395013406872749
     shape: (256, 1024, 14, 14)
 layer3.5.add:
   inputs:
     0:
-      min: -4.996767997741699
-      max: 3.009377956390381
-      avg_min: -1.7419140815734864
-      avg_max: 1.1948076128959655
-      mean: -0.1218911699950695
-      std: 0.14199012849303966
+      min: -4.571747303009033
+      max: 2.951798677444458
+      avg_min: -1.7450510263442993
+      avg_max: 1.1962575674057008
+      mean: -0.12095604911446571
+      std: 0.14193320406976667
+      b: 0.10260932072997093
       shape: (256, 1024, 14, 14)
     1:
       min: 0.0
-      max: 5.9765801429748535
+      max: 5.285286903381348
       avg_min: 0.0
-      avg_max: 2.8483860015869147
-      mean: 0.055139701813459396
-      std: 0.12426296892592821
+      avg_max: 2.8475504875183106
+      mean: 0.05537210628390312
+      std: 0.12453756625097041
+      b: 0.07891639769077301
       shape: (256, 1024, 14, 14)
   output:
-    min: -4.979601860046387
-    max: 5.826275825500488
-    avg_min: -1.6993945837020874
-    avg_max: 2.372250032424927
-    mean: -0.06675146967172624
-    std: 0.19184784648937794
+    min: -4.525286674499512
+    max: 5.23931360244751
+    avg_min: -1.7014144301414489
+    avg_max: 2.36359326839447
+    mean: -0.06558393985033036
+    std: 0.19186352583657984
+    b: 0.13366126269102097
     shape: (256, 1024, 14, 14)
 layer4.0.conv1:
   inputs:
     0:
       min: 0.0
-      max: 5.826275825500488
+      max: 5.23931360244751
       avg_min: 0.0
-      avg_max: 2.372250032424927
-      mean: 0.04188145287334919
-      std: 0.10869858401882222
+      avg_max: 2.36359326839447
+      mean: 0.04217293076217175
+      std: 0.1091152794488751
+      b: 0.06395013406872749
       shape: (256, 1024, 14, 14)
   output:
-    min: -1.8680962324142456
-    max: 2.072019338607788
-    avg_min: -0.8458249628543854
-    avg_max: 1.1026112914085389
-    mean: -0.0717989057302475
-    std: 0.12618302275360743
+    min: -1.4335159063339233
+    max: 2.24897837638855
+    avg_min: -0.8487613260746003
+    avg_max: 1.11501168012619
+    mean: -0.07229557856917382
+    std: 0.12663921280108223
+    b: 0.0972863495349884
     shape: (256, 512, 14, 14)
 layer4.0.bn1:
   inputs:
     0:
-      min: -1.8680962324142456
-      max: 2.072019338607788
-      avg_min: -0.8458249628543854
-      avg_max: 1.1026112914085389
-      mean: -0.0717989057302475
-      std: 0.12618302275360743
+      min: -1.4335159063339233
+      max: 2.24897837638855
+      avg_min: -0.8487613260746003
+      avg_max: 1.11501168012619
+      mean: -0.07229557856917382
+      std: 0.12663921280108223
+      b: 0.0972863495349884
       shape: (256, 512, 14, 14)
   output:
-    min: -3.593630790710449
-    max: 3.2606091499328613
-    avg_min: -1.6349144220352172
-    avg_max: 1.6812901854515077
-    mean: -0.1790903091430664
-    std: 0.23478242906040558
+    min: -2.7142622470855713
+    max: 3.9750595092773438
+    avg_min: -1.6426753759384156
+    avg_max: 1.6983023881912231
+    mean: -0.18003325015306473
+    std: 0.23553510291698715
+    b: 0.18160098195075988
     shape: (256, 512, 14, 14)
 layer4.0.relu1:
   inputs:
     0:
-      min: -3.593630790710449
-      max: 3.2606091499328613
-      avg_min: -1.6349144220352172
-      avg_max: 1.6812901854515077
-      mean: -0.1790903091430664
-      std: 0.23478242906040558
+      min: -2.7142622470855713
+      max: 3.9750595092773438
+      avg_min: -1.6426753759384156
+      avg_max: 1.6983023881912231
+      mean: -0.18003325015306473
+      std: 0.23553510291698715
+      b: 0.18160098195075988
       shape: (256, 512, 14, 14)
   output:
     min: 0.0
-    max: 3.2606091499328613
+    max: 3.9750595092773438
     avg_min: 0.0
-    avg_max: 1.6812901854515077
-    mean: 0.027496328577399254
-    std: 0.08083931621131461
+    avg_max: 1.6983023881912231
+    mean: 0.02757811862975359
+    std: 0.08129693793771489
+    b: 0.04465844742953777
     shape: (256, 512, 14, 14)
 layer4.0.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.2606091499328613
+      max: 3.9750595092773438
       avg_min: 0.0
-      avg_max: 1.6812901854515077
-      mean: 0.027496328577399254
-      std: 0.08083931621131461
+      avg_max: 1.6983023881912231
+      mean: 0.02757811862975359
+      std: 0.08129693793771489
+      b: 0.04465844742953777
       shape: (256, 512, 14, 14)
   output:
-    min: -1.3391225337982178
-    max: 4.449892520904541
-    avg_min: -0.7592607617378234
-    avg_max: 2.0322049498558044
-    mean: -0.05972258634865284
-    std: 0.1230026536527826
+    min: -1.4324591159820557
+    max: 4.7528862953186035
+    avg_min: -0.7631796002388
+    avg_max: 2.0517775774002076
+    mean: -0.06008922792971134
+    std: 0.1236309388848869
+    b: 0.09124014303088188
     shape: (256, 512, 7, 7)
 layer4.0.bn2:
   inputs:
     0:
-      min: -1.3391225337982178
-      max: 4.449892520904541
-      avg_min: -0.7592607617378234
-      avg_max: 2.0322049498558044
-      mean: -0.05972258634865284
-      std: 0.1230026536527826
+      min: -1.4324591159820557
+      max: 4.7528862953186035
+      avg_min: -0.7631796002388
+      avg_max: 2.0517775774002076
+      mean: -0.06008922792971134
+      std: 0.1236309388848869
+      b: 0.09124014303088188
       shape: (256, 512, 7, 7)
   output:
-    min: -2.419914722442627
-    max: 2.922405242919922
-    avg_min: -1.2842280507087707
-    avg_max: 1.4931201457977294
-    mean: -0.07085175514221191
-    std: 0.20338800716012204
+    min: -2.299038887023926
+    max: 3.0023880004882812
+    avg_min: -1.2877141833305359
+    avg_max: 1.504377818107605
+    mean: -0.07149159386754037
+    std: 0.20444094353763842
+    b: 0.15338601619005204
     shape: (256, 512, 7, 7)
 layer4.0.relu2:
   inputs:
     0:
-      min: -2.419914722442627
-      max: 2.922405242919922
-      avg_min: -1.2842280507087707
-      avg_max: 1.4931201457977294
-      mean: -0.07085175514221191
-      std: 0.20338800716012204
+      min: -2.299038887023926
+      max: 3.0023880004882812
+      avg_min: -1.2877141833305359
+      avg_max: 1.504377818107605
+      mean: -0.07149159386754037
+      std: 0.20444094353763842
+      b: 0.15338601619005204
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 2.922405242919922
+    max: 3.0023880004882812
     avg_min: 0.0
-    avg_max: 1.4931201457977294
-    mean: 0.04532395452260971
-    std: 0.09375201163517889
+    avg_max: 1.504377818107605
+    mean: 0.04548850581049919
+    std: 0.09431950621527688
+    b: 0.06261445246636868
     shape: (256, 512, 7, 7)
 layer4.0.conv3:
   inputs:
     0:
       min: 0.0
-      max: 2.922405242919922
+      max: 3.0023880004882812
       avg_min: 0.0
-      avg_max: 1.4931201457977294
-      mean: 0.04532395452260971
-      std: 0.09375201163517889
+      avg_max: 1.504377818107605
+      mean: 0.04548850581049919
+      std: 0.09431950621527688
+      b: 0.06261445246636868
       shape: (256, 512, 7, 7)
   output:
-    min: -0.6368839144706726
-    max: 1.323559284210205
-    avg_min: -0.3070966720581054
-    avg_max: 0.7012514829635621
-    mean: -0.010877870675176381
-    std: 0.041120885136769904
+    min: -0.5987082719802856
+    max: 1.5258204936981201
+    avg_min: -0.3098115563392639
+    avg_max: 0.7123926103115082
+    mean: -0.010965112689882517
+    std: 0.04135415887402174
+    b: 0.029770647548139097
     shape: (256, 2048, 7, 7)
 layer4.0.bn3:
   inputs:
     0:
-      min: -0.6368839144706726
-      max: 1.323559284210205
-      avg_min: -0.3070966720581054
-      avg_max: 0.7012514829635621
-      mean: -0.010877870675176381
-      std: 0.041120885136769904
+      min: -0.5987082719802856
+      max: 1.5258204936981201
+      avg_min: -0.3098115563392639
+      avg_max: 0.7123926103115082
+      mean: -0.010965112689882517
+      std: 0.04135415887402174
+      b: 0.029770647548139097
       shape: (256, 2048, 7, 7)
   output:
-    min: -5.650322437286377
-    max: 10.3650541305542
-    avg_min: -2.660940623283386
-    avg_max: 4.150222921371459
-    mean: -0.05162550434470176
-    std: 0.3701791434657885
+    min: -5.897299289703369
+    max: 10.226350784301758
+    avg_min: -2.6857427835464476
+    avg_max: 4.1744291305541985
+    mean: -0.05250943563878536
+    std: 0.372229354388355
+    b: 0.2691747516393661
     shape: (256, 2048, 7, 7)
 layer4.0.relu3:
   inputs:
     0:
-      min: -6.423315048217773
-      max: 14.22767448425293
-      avg_min: -3.3700012683868406
-      avg_max: 6.008050060272216
-      mean: -0.09795540422201157
-      std: 0.525356986518252
+      min: -6.699728965759277
+      max: 13.658317565917969
+      avg_min: -3.4002754211425783
+      avg_max: 6.046979331970214
+      mean: -0.09980391934514046
+      std: 0.5281300087414749
+      b: 0.38734574913978576
       shape: (256, 2048, 7, 7)
   output:
     min: 0.0
-    max: 14.22767448425293
+    max: 13.658317565917969
     avg_min: 0.0
-    avg_max: 6.008050060272216
-    mean: 0.15043075829744337
-    std: 0.30337482510307434
+    avg_max: 6.046979331970214
+    mean: 0.15064231157302857
+    std: 0.3047735630655197
+    b: 0.20074622333049771
     shape: (256, 2048, 7, 7)
 layer4.0.downsample.0:
   inputs:
     0:
       min: 0.0
-      max: 5.826275825500488
+      max: 5.23931360244751
       avg_min: 0.0
-      avg_max: 2.372250032424927
-      mean: 0.04188145287334919
-      std: 0.10869858401882222
+      avg_max: 2.36359326839447
+      mean: 0.04217293076217175
+      std: 0.1091152794488751
+      b: 0.06395013406872749
       shape: (256, 1024, 14, 14)
   output:
-    min: -0.9875660538673401
-    max: 1.025713562965393
-    avg_min: -0.40008404552936555
-    avg_max: 0.5596464991569519
-    mean: -0.0018997724866494537
-    std: 0.04478833314131102
+    min: -0.9935919642448425
+    max: 1.1387205123901367
+    avg_min: -0.4057608276605606
+    avg_max: 0.5647095024585723
+    mean: -0.0020400895620696245
+    std: 0.04503375095699802
+    b: 0.03349826894700527
     shape: (256, 2048, 7, 7)
 layer4.0.downsample.1:
   inputs:
     0:
-      min: -0.9875660538673401
-      max: 1.025713562965393
-      avg_min: -0.40008404552936555
-      avg_max: 0.5596464991569519
-      mean: -0.0018997724866494537
-      std: 0.04478833314131102
+      min: -0.9935919642448425
+      max: 1.1387205123901367
+      avg_min: -0.4057608276605606
+      avg_max: 0.5647095024585723
+      mean: -0.0020400895620696245
+      std: 0.04503375095699802
+      b: 0.03349826894700527
       shape: (256, 2048, 7, 7)
   output:
-    min: -5.736306190490723
-    max: 8.570878982543945
-    avg_min: -2.5375996589660645
-    avg_max: 3.4327509403228755
-    mean: -0.04632990062236786
-    std: 0.2795490646869294
+    min: -5.771829605102539
+    max: 10.470277786254883
+    avg_min: -2.570528817176819
+    avg_max: 3.467215657234192
+    mean: -0.0472944837063551
+    std: 0.28102231081108675
+    b: 0.2068473920226097
     shape: (256, 2048, 7, 7)
 layer4.0.add:
   inputs:
     0:
-      min: -5.650322437286377
-      max: 10.3650541305542
-      avg_min: -2.660940623283386
-      avg_max: 4.150222921371459
-      mean: -0.05162550434470176
-      std: 0.3701791434657885
+      min: -5.897299289703369
+      max: 10.226350784301758
+      avg_min: -2.6857427835464476
+      avg_max: 4.1744291305541985
+      mean: -0.05250943563878536
+      std: 0.372229354388355
+      b: 0.2691747516393661
       shape: (256, 2048, 7, 7)
     1:
-      min: -5.736306190490723
-      max: 8.570878982543945
-      avg_min: -2.5375996589660645
-      avg_max: 3.4327509403228755
-      mean: -0.04632990062236786
-      std: 0.2795490646869294
+      min: -5.771829605102539
+      max: 10.470277786254883
+      avg_min: -2.570528817176819
+      avg_max: 3.467215657234192
+      mean: -0.0472944837063551
+      std: 0.28102231081108675
+      b: 0.2068473920226097
       shape: (256, 2048, 7, 7)
   output:
-    min: -6.423315048217773
-    max: 14.22767448425293
-    avg_min: -3.3700012683868406
-    avg_max: 6.008050060272216
-    mean: -0.09795540422201157
-    std: 0.525356986518252
+    min: -6.699728965759277
+    max: 13.658317565917969
+    avg_min: -3.4002754211425783
+    avg_max: 6.046979331970214
+    mean: -0.09980391934514046
+    std: 0.5281300087414749
+    b: 0.38734574913978576
     shape: (256, 2048, 7, 7)
 layer4.1.conv1:
   inputs:
     0:
       min: 0.0
-      max: 14.22767448425293
+      max: 13.658317565917969
       avg_min: 0.0
-      avg_max: 6.008050060272216
-      mean: 0.15043075829744337
-      std: 0.30337482510307434
+      avg_max: 6.046979331970214
+      mean: 0.15064231157302857
+      std: 0.3047735630655197
+      b: 0.20074622333049771
       shape: (256, 2048, 7, 7)
   output:
-    min: -5.776525497436523
-    max: 5.520820140838623
-    avg_min: -3.0566482782363895
-    avg_max: 2.6946291446685793
-    mean: -0.2902308404445648
-    std: 0.42515803582413286
+    min: -5.892574787139893
+    max: 6.385313034057617
+    avg_min: -3.1141114711761477
+    avg_max: 2.725090193748474
+    mean: -0.29104059636592866
+    std: 0.42700416908975997
+    b: 0.319489336013794
     shape: (256, 512, 7, 7)
 layer4.1.bn1:
   inputs:
     0:
-      min: -5.776525497436523
-      max: 5.520820140838623
-      avg_min: -3.0566482782363895
-      avg_max: 2.6946291446685793
-      mean: -0.2902308404445648
-      std: 0.42515803582413286
+      min: -5.892574787139893
+      max: 6.385313034057617
+      avg_min: -3.1141114711761477
+      avg_max: 2.725090193748474
+      mean: -0.29104059636592866
+      std: 0.42700416908975997
+      b: 0.319489336013794
       shape: (256, 512, 7, 7)
   output:
-    min: -2.804481029510498
-    max: 3.274775743484497
-    avg_min: -1.3639482259750366
-    avg_max: 1.3442501544952392
-    mean: -0.1264665238559246
-    std: 0.20664190172980043
+    min: -2.633080244064331
+    max: 3.322444438934326
+    avg_min: -1.376031005382538
+    avg_max: 1.3575427532196045
+    mean: -0.12690107226371763
+    std: 0.2076203045471985
+    b: 0.1560998097062111
     shape: (256, 512, 7, 7)
 layer4.1.relu1:
   inputs:
     0:
-      min: -2.804481029510498
-      max: 3.274775743484497
-      avg_min: -1.3639482259750366
-      avg_max: 1.3442501544952392
-      mean: -0.1264665238559246
-      std: 0.20664190172980043
+      min: -2.633080244064331
+      max: 3.322444438934326
+      avg_min: -1.376031005382538
+      avg_max: 1.3575427532196045
+      mean: -0.12690107226371763
+      std: 0.2076203045471985
+      b: 0.1560998097062111
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 3.274775743484497
+    max: 3.322444438934326
     avg_min: 0.0
-    avg_max: 1.3442501544952392
-    mean: 0.03091691676527262
-    std: 0.08251424072731946
+    avg_max: 1.3575427532196045
+    mean: 0.031074754521250726
+    std: 0.08300226978421395
+    b: 0.04830825217068195
     shape: (256, 512, 7, 7)
 layer4.1.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.274775743484497
+      max: 3.322444438934326
       avg_min: 0.0
-      avg_max: 1.3442501544952392
-      mean: 0.03091691676527262
-      std: 0.08251424072731946
+      avg_max: 1.3575427532196045
+      mean: 0.031074754521250726
+      std: 0.08300226978421395
+      b: 0.04830825217068195
       shape: (256, 512, 7, 7)
   output:
-    min: -1.4676694869995117
-    max: 1.6270296573638916
-    avg_min: -0.8793348789215087
-    avg_max: 0.8756729066371918
-    mean: -0.09616649672389031
-    std: 0.13029953782361198
+    min: -1.7283744812011719
+    max: 1.7074284553527832
+    avg_min: -0.8793049991130829
+    avg_max: 0.8782530605793
+    mean: -0.09670415595173835
+    std: 0.13061944829970526
+    b: 0.09738585278391837
     shape: (256, 512, 7, 7)
 layer4.1.bn2:
   inputs:
     0:
-      min: -1.4676694869995117
-      max: 1.6270296573638916
-      avg_min: -0.8793348789215087
-      avg_max: 0.8756729066371918
-      mean: -0.09616649672389031
-      std: 0.13029953782361198
+      min: -1.7283744812011719
+      max: 1.7074284553527832
+      avg_min: -0.8793049991130829
+      avg_max: 0.8782530605793
+      mean: -0.09670415595173835
+      std: 0.13061944829970526
+      b: 0.09738585278391837
       shape: (256, 512, 7, 7)
   output:
-    min: -2.599773645401001
-    max: 3.8549869060516357
-    avg_min: -1.3596017718315125
-    avg_max: 1.0324531495571136
-    mean: -0.13164937347173689
-    std: 0.22796876796228183
+    min: -2.554882049560547
+    max: 2.8101301193237305
+    avg_min: -1.357684051990509
+    avg_max: 1.0293413877487183
+    mean: -0.1327122911810875
+    std: 0.22860852008018598
+    b: 0.17513000816106794
     shape: (256, 512, 7, 7)
 layer4.1.relu2:
   inputs:
     0:
-      min: -2.599773645401001
-      max: 3.8549869060516357
-      avg_min: -1.3596017718315125
-      avg_max: 1.0324531495571136
-      mean: -0.13164937347173689
-      std: 0.22796876796228183
+      min: -2.554882049560547
+      max: 2.8101301193237305
+      avg_min: -1.357684051990509
+      avg_max: 1.0293413877487183
+      mean: -0.1327122911810875
+      std: 0.22860852008018598
+      b: 0.17513000816106794
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 3.8549869060516357
+    max: 2.8101301193237305
     avg_min: 0.0
-    avg_max: 1.0324531495571136
-    mean: 0.034236426651477816
-    std: 0.08112417540127474
+    avg_max: 1.0293413877487183
+    mean: 0.0341867882758379
+    std: 0.0812101367215543
+    b: 0.05145231895148754
     shape: (256, 512, 7, 7)
 layer4.1.conv3:
   inputs:
     0:
       min: 0.0
-      max: 3.8549869060516357
+      max: 2.8101301193237305
       avg_min: 0.0
-      avg_max: 1.0324531495571136
-      mean: 0.034236426651477816
-      std: 0.08112417540127474
+      avg_max: 1.0293413877487183
+      mean: 0.0341867882758379
+      std: 0.0812101367215543
+      b: 0.05145231895148754
       shape: (256, 512, 7, 7)
   output:
-    min: -0.4920940697193146
-    max: 0.9806932806968689
-    avg_min: -0.3192786365747452
-    avg_max: 0.3261650323867798
-    mean: -0.0005754437879659235
-    std: 0.03354625255049893
+    min: -0.5584905743598938
+    max: 0.7271759510040283
+    avg_min: -0.3177788823843003
+    avg_max: 0.3269481897354126
+    mean: -0.0006348539493046701
+    std: 0.03355272402253311
+    b: 0.02459335662424564
     shape: (256, 2048, 7, 7)
 layer4.1.bn3:
   inputs:
     0:
-      min: -0.4920940697193146
-      max: 0.9806932806968689
-      avg_min: -0.3192786365747452
-      avg_max: 0.3261650323867798
-      mean: -0.0005754437879659235
-      std: 0.03354625255049893
+      min: -0.5584905743598938
+      max: 0.7271759510040283
+      avg_min: -0.3177788823843003
+      avg_max: 0.3269481897354126
+      mean: -0.0006348539493046701
+      std: 0.03355272402253311
+      b: 0.02459335662424564
       shape: (256, 2048, 7, 7)
   output:
-    min: -5.395097732543945
-    max: 14.336352348327637
-    avg_min: -2.411039137840271
-    avg_max: 3.4030594348907472
-    mean: -0.055087806284427644
-    std: 0.38007112753406547
+    min: -4.98611307144165
+    max: 10.873602867126465
+    avg_min: -2.399258136749268
+    avg_max: 3.3770268917083737
+    mean: -0.05591708905994892
+    std: 0.3803597915008399
+    b: 0.28279241025447843
     shape: (256, 2048, 7, 7)
 layer4.1.relu3:
   inputs:
     0:
-      min: -5.395097732543945
-      max: 21.834545135498047
-      avg_min: -2.382943248748779
-      avg_max: 7.608690929412842
-      mean: 0.09534295722842218
-      std: 0.5429858198158471
+      min: -4.98611307144165
+      max: 15.573689460754395
+      avg_min: -2.3728135108947757
+      avg_max: 7.612712144851685
+      mean: 0.09472521916031837
+      std: 0.5441690529259338
+      b: 0.38570883572101594
       shape: (256, 2048, 7, 7)
   output:
     min: 0.0
-    max: 21.834545135498047
+    max: 15.573689460754395
     avg_min: 0.0
-    avg_max: 7.608690929412842
-    mean: 0.2376137301325798
-    std: 0.42102969218495145
+    avg_max: 7.612712144851685
+    mean: 0.23763893991708757
+    std: 0.421922963559466
+    b: 0.28288681507110597
     shape: (256, 2048, 7, 7)
 layer4.1.add:
   inputs:
     0:
-      min: -5.395097732543945
-      max: 14.336352348327637
-      avg_min: -2.411039137840271
-      avg_max: 3.4030594348907472
-      mean: -0.055087806284427644
-      std: 0.38007112753406547
+      min: -4.98611307144165
+      max: 10.873602867126465
+      avg_min: -2.399258136749268
+      avg_max: 3.3770268917083737
+      mean: -0.05591708905994892
+      std: 0.3803597915008399
+      b: 0.28279241025447843
       shape: (256, 2048, 7, 7)
     1:
       min: 0.0
-      max: 14.22767448425293
+      max: 13.658317565917969
       avg_min: 0.0
-      avg_max: 6.008050060272216
-      mean: 0.15043075829744337
-      std: 0.30337482510307434
+      avg_max: 6.046979331970214
+      mean: 0.15064231157302857
+      std: 0.3047735630655197
+      b: 0.20074622333049771
       shape: (256, 2048, 7, 7)
   output:
-    min: -5.395097732543945
-    max: 21.834545135498047
-    avg_min: -2.382943248748779
-    avg_max: 7.608690929412842
-    mean: 0.09534295722842218
-    std: 0.5429858198158471
+    min: -4.98611307144165
+    max: 15.573689460754395
+    avg_min: -2.3728135108947757
+    avg_max: 7.612712144851685
+    mean: 0.09472521916031837
+    std: 0.5441690529259338
+    b: 0.38570883572101594
     shape: (256, 2048, 7, 7)
 layer4.2.conv1:
   inputs:
     0:
       min: 0.0
-      max: 21.834545135498047
+      max: 15.573689460754395
       avg_min: 0.0
-      avg_max: 7.608690929412842
-      mean: 0.2376137301325798
-      std: 0.42102969218495145
+      avg_max: 7.612712144851685
+      mean: 0.23763893991708757
+      std: 0.421922963559466
+      b: 0.28288681507110597
       shape: (256, 2048, 7, 7)
   output:
-    min: -8.234384536743164
-    max: 10.143657684326172
-    avg_min: -3.6996648788452147
-    avg_max: 4.8178520679473875
-    mean: -0.37534233629703523
-    std: 0.5932820885697296
+    min: -9.58436393737793
+    max: 11.206789016723633
+    avg_min: -3.72519166469574
+    avg_max: 4.8316075801849365
+    mean: -0.37615325152873996
+    std: 0.595941064560886
+    b: 0.4408860713243485
     shape: (256, 512, 7, 7)
 layer4.2.bn1:
   inputs:
     0:
-      min: -8.234384536743164
-      max: 10.143657684326172
-      avg_min: -3.6996648788452147
-      avg_max: 4.8178520679473875
-      mean: -0.37534233629703523
-      std: 0.5932820885697296
+      min: -9.58436393737793
+      max: 11.206789016723633
+      avg_min: -3.72519166469574
+      avg_max: 4.8316075801849365
+      mean: -0.37615325152873996
+      std: 0.595941064560886
+      b: 0.4408860713243485
       shape: (256, 512, 7, 7)
   output:
-    min: -4.7313079833984375
-    max: 3.271481513977051
-    avg_min: -1.9235025644302368
-    avg_max: 1.3267321467399598
-    mean: -0.18585808724164962
-    std: 0.23886620528361513
+    min: -4.725255012512207
+    max: 3.7600879669189453
+    avg_min: -1.9559222102165221
+    avg_max: 1.3456191301345826
+    mean: -0.18621423989534377
+    std: 0.23998140957227934
+    b: 0.18112000524997712
     shape: (256, 512, 7, 7)
 layer4.2.relu1:
   inputs:
     0:
-      min: -4.7313079833984375
-      max: 3.271481513977051
-      avg_min: -1.9235025644302368
-      avg_max: 1.3267321467399598
-      mean: -0.18585808724164962
-      std: 0.23886620528361513
+      min: -4.725255012512207
+      max: 3.7600879669189453
+      avg_min: -1.9559222102165221
+      avg_max: 1.3456191301345826
+      mean: -0.18621423989534377
+      std: 0.23998140957227934
+      b: 0.18112000524997712
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 3.271481513977051
+    max: 3.7600879669189453
     avg_min: 0.0
-    avg_max: 1.3267321467399598
-    mean: 0.027702832594513893
-    std: 0.08519395028712683
+    avg_max: 1.3456191301345826
+    mean: 0.027887877076864246
+    std: 0.08590010349519465
+    b: 0.04585573598742485
     shape: (256, 512, 7, 7)
 layer4.2.conv2:
   inputs:
     0:
       min: 0.0
-      max: 3.271481513977051
+      max: 3.7600879669189453
       avg_min: 0.0
-      avg_max: 1.3267321467399598
-      mean: 0.027702832594513893
-      std: 0.08519395028712683
+      avg_max: 1.3456191301345826
+      mean: 0.027887877076864246
+      std: 0.08590010349519465
+      b: 0.04585573598742485
       shape: (256, 512, 7, 7)
   output:
-    min: -1.5278054475784302
+    min: -1.7627720832824707
     max: 1.3895208835601807
-    avg_min: -0.7480606913566589
-    avg_max: 0.4983356356620789
-    mean: -0.09653943628072739
-    std: 0.11747523190693027
+    avg_min: -0.7464761197566987
+    avg_max: 0.49596920609474177
+    mean: -0.09737756326794625
+    std: 0.1179024859188269
+    b: 0.08659397140145303
     shape: (256, 512, 7, 7)
 layer4.2.bn2:
   inputs:
     0:
-      min: -1.5278054475784302
+      min: -1.7627720832824707
       max: 1.3895208835601807
-      avg_min: -0.7480606913566589
-      avg_max: 0.4983356356620789
-      mean: -0.09653943628072739
-      std: 0.11747523190693027
+      avg_min: -0.7464761197566987
+      avg_max: 0.49596920609474177
+      mean: -0.09737756326794625
+      std: 0.1179024859188269
+      b: 0.08659397140145303
       shape: (256, 512, 7, 7)
   output:
-    min: -3.4718167781829834
-    max: 3.0931997299194336
-    avg_min: -1.5589052200317381
-    avg_max: 1.1348651885986327
-    mean: -0.10689140781760216
-    std: 0.2426536058698193
+    min: -3.6767067909240723
+    max: 3.5860390663146973
+    avg_min: -1.5616470336914063
+    avg_max: 1.1276326537132264
+    mean: -0.10860036164522172
+    std: 0.24351960352418686
+    b: 0.17832687497138977
     shape: (256, 512, 7, 7)
 layer4.2.relu2:
   inputs:
     0:
-      min: -3.4718167781829834
-      max: 3.0931997299194336
-      avg_min: -1.5589052200317381
-      avg_max: 1.1348651885986327
-      mean: -0.10689140781760216
-      std: 0.2426536058698193
+      min: -3.6767067909240723
+      max: 3.5860390663146973
+      avg_min: -1.5616470336914063
+      avg_max: 1.1276326537132264
+      mean: -0.10860036164522172
+      std: 0.24351960352418686
+      b: 0.17832687497138977
       shape: (256, 512, 7, 7)
   output:
     min: 0.0
-    max: 3.0931997299194336
+    max: 3.5860390663146973
     avg_min: 0.0
-    avg_max: 1.1348651885986327
-    mean: 0.04021419957280159
-    std: 0.08940358768433947
+    avg_max: 1.1276326537132264
+    mean: 0.03995291851460933
+    std: 0.08932434644843026
+    b: 0.05705068595707417
     shape: (256, 512, 7, 7)
 layer4.2.conv3:
   inputs:
     0:
       min: 0.0
-      max: 3.0931997299194336
+      max: 3.5860390663146973
       avg_min: 0.0
-      avg_max: 1.1348651885986327
-      mean: 0.04021419957280159
-      std: 0.08940358768433947
+      avg_max: 1.1276326537132264
+      mean: 0.03995291851460933
+      std: 0.08932434644843026
+      b: 0.05705068595707417
       shape: (256, 512, 7, 7)
   output:
-    min: -0.38114556670188904
-    max: 0.9265015721321106
-    avg_min: -0.17205106019973754
-    avg_max: 0.33860428631305695
-    mean: -0.004819883033633232
-    std: 0.031674283868545705
+    min: -0.355619341135025
+    max: 0.9995235800743103
+    avg_min: -0.17218078225851058
+    avg_max: 0.33757891058921813
+    mean: -0.004912816500291228
+    std: 0.03159407352457316
+    b: 0.02231343388557434
     shape: (256, 2048, 7, 7)
 layer4.2.bn3:
   inputs:
     0:
-      min: -0.38114556670188904
-      max: 0.9265015721321106
-      avg_min: -0.17205106019973754
-      avg_max: 0.33860428631305695
-      mean: -0.004819883033633232
-      std: 0.031674283868545705
+      min: -0.355619341135025
+      max: 0.9995235800743103
+      avg_min: -0.17218078225851058
+      avg_max: 0.33757891058921813
+      mean: -0.004912816500291228
+      std: 0.03159407352457316
+      b: 0.02231343388557434
       shape: (256, 2048, 7, 7)
   output:
-    min: -8.627450942993164
-    max: 23.089508056640625
-    avg_min: -3.8609111070632935
-    avg_max: 8.419857215881347
-    mean: 0.044161788746714586
-    std: 0.7364083810472319
+    min: -8.60328197479248
+    max: 25.900434494018555
+    avg_min: -3.8589781522750854
+    avg_max: 8.387232303619385
+    mean: 0.0419552706182003
+    std: 0.7342189054779193
+    b: 0.5134885013103485
     shape: (256, 2048, 7, 7)
 layer4.2.relu3:
   inputs:
     0:
-      min: -8.627450942993164
-      max: 37.85447692871094
-      avg_min: -3.8068380832672117
-      avg_max: 12.922265243530273
-      mean: 0.28177551329135897
-      std: 0.9598800299108187
+      min: -8.60328197479248
+      max: 33.94049072265625
+      avg_min: -3.8049381256103514
+      avg_max: 12.866481399536132
+      mean: 0.27959421277046204
+      std: 0.9580428712984075
+      b: 0.6664626657962799
       shape: (256, 2048, 7, 7)
   output:
     min: 0.0
-    max: 37.85447692871094
+    max: 33.94049072265625
     avg_min: 0.0
-    avg_max: 12.922265243530273
-    mean: 0.4688317000865936
-    std: 0.7975003649671909
+    avg_max: 12.866481399536132
+    mean: 0.46672946214675903
+    std: 0.7957383819844129
+    b: 0.5334559381008148
     shape: (256, 2048, 7, 7)
 layer4.2.add:
   inputs:
     0:
-      min: -8.627450942993164
-      max: 23.089508056640625
-      avg_min: -3.8609111070632935
-      avg_max: 8.419857215881347
-      mean: 0.044161788746714586
-      std: 0.7364083810472319
+      min: -8.60328197479248
+      max: 25.900434494018555
+      avg_min: -3.8589781522750854
+      avg_max: 8.387232303619385
+      mean: 0.0419552706182003
+      std: 0.7342189054779193
+      b: 0.5134885013103485
       shape: (256, 2048, 7, 7)
     1:
       min: 0.0
-      max: 21.834545135498047
+      max: 15.573689460754395
       avg_min: 0.0
-      avg_max: 7.608690929412842
-      mean: 0.2376137301325798
-      std: 0.42102969218495145
+      avg_max: 7.612712144851685
+      mean: 0.23763893991708757
+      std: 0.421922963559466
+      b: 0.28288681507110597
       shape: (256, 2048, 7, 7)
   output:
-    min: -8.627450942993164
-    max: 37.85447692871094
-    avg_min: -3.8068380832672117
-    avg_max: 12.922265243530273
-    mean: 0.28177551329135897
-    std: 0.9598800299108187
+    min: -8.60328197479248
+    max: 33.94049072265625
+    avg_min: -3.8049381256103514
+    avg_max: 12.866481399536132
+    mean: 0.27959421277046204
+    std: 0.9580428712984075
+    b: 0.6664626657962799
     shape: (256, 2048, 7, 7)
 avgpool:
   inputs:
     0:
       min: 0.0
-      max: 37.85447692871094
+      max: 33.94049072265625
       avg_min: 0.0
-      avg_max: 12.922265243530273
-      mean: 0.4688317000865936
-      std: 0.7975003649671909
+      avg_max: 12.866481399536132
+      mean: 0.46672946214675903
+      std: 0.7957383819844129
+      b: 0.5334559381008148
       shape: (256, 2048, 7, 7)
   output:
     min: 0.0
-    max: 11.611199378967285
-    avg_min: 0.00023435175244230778
-    avg_max: 4.508990335464477
-    mean: 0.46883170604705815
-    std: 0.47031575008549364
+    max: 11.13111686706543
+    avg_min: 0.00022523058578372002
+    avg_max: 4.461482810974122
+    mean: 0.4667294651269912
+    std: 0.46829107389433205
+    b: 0.3259382039308548
     shape: (256, 2048, 1, 1)
 fc:
   inputs:
     0:
       min: 0.0
-      max: 11.611199378967285
-      avg_min: 0.00023435175244230778
-      avg_max: 4.508990335464477
-      mean: 0.46883170604705815
-      std: 0.47031575008549364
+      max: 11.13111686706543
+      avg_min: 0.00022523058578372002
+      avg_max: 4.461482810974122
+      mean: 0.4667294651269912
+      std: 0.46829107389433205
+      b: 0.3259382039308548
       shape: (256, 2048)
   output:
-    min: -11.310169219970703
-    max: 40.48712158203125
-    avg_min: -5.810240793228149
-    avg_max: 16.912589836120606
-    mean: 8.312767749885096e-06
-    std: 2.4802703537784003
+    min: -9.757831573486328
+    max: 36.7446174621582
+    avg_min: -5.790046501159668
+    avg_max: 16.712891578674316
+    mean: 8.333060395671055e-06
+    std: 2.483018996892336
+    b: 1.8292282938957214
     shape: (256, 1000)
diff --git a/tests/test_quant_utils.py b/tests/test_quant_utils.py
index 4243438..de9afe3 100644
--- a/tests/test_quant_utils.py
+++ b/tests/test_quant_utils.py
@@ -241,3 +241,7 @@ def test_get_tensor_mean_n_stds_min_max():
     t_min, t_max = qu.get_tensor_mean_n_stds_min_max(test_tensor, n_stds=2)
     torch.testing.assert_allclose(t_min, torch.tensor(-95.))
     torch.testing.assert_allclose(t_max, torch.tensor(87.))
+
+# TODO - Implement testing for ACIQ clipping
+# def test_aciq_clipping():
+#     pass
-- 
GitLab