From 534072d826b304e70a4cf4ebe61ab8407cd0b3d8 Mon Sep 17 00:00:00 2001 From: Yury Nahshan <yury.nahshan@intel.com> Date: Tue, 10 Sep 2019 18:02:00 +0300 Subject: [PATCH] ACIQ clipping in post-training quantization (#173) ACIQ clipping method, as described in: Post training 4-bit quantization of convolutional networks for rapid-deployment (Ron Banner , Yury Nahshan, Daniel Soudry) (NeurIPS 2019) https://arxiv.org/abs/1810.05723 Co-authored-by: Yury Nahshan <yury.nahshan@intel.com> Co-authored-by: Lev Zlotnik <lev.zlotnik@intel.com> --- distiller/data_loggers/collector.py | 52 +- distiller/quantization/q_utils.py | 78 + distiller/quantization/range_linear.py | 87 +- .../stats/resnet18_quant_stats.yaml | 1674 ++++--- .../stats/resnet50_quant_stats.yaml | 4243 +++++++++-------- tests/test_quant_utils.py | 4 + 6 files changed, 3408 insertions(+), 2730 deletions(-) diff --git a/distiller/data_loggers/collector.py b/distiller/data_loggers/collector.py index dca2419..612f7d3 100755 --- a/distiller/data_loggers/collector.py +++ b/distiller/data_loggers/collector.py @@ -314,7 +314,7 @@ class _QuantStatsRecord(object): records = OrderedDict() records['min'] = float_info.max records['max'] = -float_info.max - for stat_name in ['avg_min', 'avg_max', 'mean', 'std']: + for stat_name in ['avg_min', 'avg_max', 'mean', 'std', 'b']: records[stat_name] = 0 records['shape'] = '' return records @@ -389,6 +389,7 @@ class QuantCalibrationStatsCollector(ActivationStatsCollector): self.batch_idx = 0 self.inplace_runtime_check = inplace_runtime_check + self.collecting_laplace = False if disable_inplace_attrs: if not inplace_attr_names: @@ -398,6 +399,38 @@ class QuantCalibrationStatsCollector(ActivationStatsCollector): if hasattr(m, n): setattr(m, n, False) + def _check_required_stats(self): + """ + Check whether the required statistics were collected to allow collecting laplace distribution stats. + """ + for name, module in self.model.named_modules(): + if distiller.has_children(module) or isinstance(module, torch.nn.Identity): + continue + if not hasattr(module, 'quant_stats'): + raise RuntimeError('Collection of Laplace distribution statistics is ' + 'only allowed after collection of stats has started.') + for i, input_stats_record in enumerate(module.quant_stats.inputs): + if 'mean' not in input_stats_record: + raise RuntimeError('The required stats for input[%d] in module "%s" were not collected. ' + 'Please collect the required statistics using `collector.start()` and evaluating' + ' the model for enough batches.' % (i, name)) + if 'mean' not in module.quant_stats.output: + raise RuntimeError('The required stats for the output in module "%s" were not collected. ' + 'Please collect the required statistics using `collector.start()` and evaluating' + ' the model for enough batches.' % name) + + def start_laplace(self): + self._check_required_stats() + self.collecting_laplace = True + # reset batch_idx for all leaf modules + for module in self.model.modules(): + if distiller.has_children(module) or isinstance(module, torch.nn.Identity): + continue + module.batch_idx = 0 + + def stop_laplace(self): + self.collecting_laplace = False + def _activation_stats_cb(self, module, inputs, output): def update_mean(old_mean, new_val): return old_mean + (new_val - old_mean) / module.batch_idx @@ -412,10 +445,20 @@ class QuantCalibrationStatsCollector(ActivationStatsCollector): M += mean_diffs.sum() return sqrt((M / (total_values_so_far + numel - 1)).item()) + def update_b(values, old_b, mean): + """ + Updates the 'b' parameter of Laplace Distribution. + """ + current_b = (values - mean).abs().mean().item() + return old_b + (current_b - old_b) / module.batch_idx + def update_record(record, tensor): if not tensor.is_contiguous(): tensor = tensor.contiguous() act = tensor.view(tensor.size(0), -1) + if self.collecting_laplace: + record['b'] = update_b(act, record['b'], record['mean']) + return # In the general case, the average min/max that we're collecting are averages over the per-sample # min/max values. That is - we first calculate the min/max for each sample in the batch, then average @@ -690,7 +733,14 @@ def collect_quant_stats(model, test_fn, save_dir=None, classes=None, inplace_run disable_inplace_attrs=disable_inplace_attrs, inplace_attr_names=inplace_attr_names) with collector_context(quant_stats_collector): + msglogger.info('Pass 1: Collecting min, max, avg_min, avg_max, mean, std') test_fn(model=model) + # Collect Laplace distribution stats: + msglogger.info('Pass 2: Collecting b parameter') + quant_stats_collector.start_laplace() + test_fn(model=model) + quant_stats_collector.stop_laplace() + msglogger.info('Stats collection complete') if save_dir is not None: save_path = os.path.join(save_dir, 'acts_quantization_stats.yaml') diff --git a/distiller/quantization/q_utils.py b/distiller/quantization/q_utils.py index 25f8f7c..91d665a 100644 --- a/distiller/quantization/q_utils.py +++ b/distiller/quantization/q_utils.py @@ -14,6 +14,7 @@ # limitations under the License. # +from enum import Enum import torch @@ -175,6 +176,83 @@ def approx_scale_as_mult_and_shift(fp32_scale, mult_bits, limit=False): return multiplier / (2 ** shift_bits) +class AciqClipper(object): + """ + Implemented according to https://arxiv.org/pdf/1810.05723.pdf + """ + alpha_laplace = {0: 1.05, 1: 1.86, 2: 2.83, 3: 3.89, 4: 5.03, 5: 6.2, 6: 7.41, 7: 8.64, 8: 9.89} + alpha_laplace_positive = {0: 1.86, 1: 2.83, 2: 3.89, 3: 5.02, 4: 6.2, 5: 7.41, 6: 8.64, 7: 9.89, 8: 11.16} + alpha_gauss = {1: 1.24, 2: 1.71, 3: 2.15, 4: 2.55, 5: 2.93, 6: 3.28, 7: 3.61, 8: 3.92} + alpha_gauss_positive = {1: 1.71, 2: 2.15, 3: 2.55, 4: 2.93, 5: 3.28, 6: 3.61, 7: 3.92, 8: 4.2} + + class AciqClippingType(Enum): + Laplace = 1 + Gauss = 2 + + @staticmethod + def get_alpha_laplace(t, across_dim=None, num_bits=8, half_range=False): + if isinstance(t, torch.Tensor): + # Mean of means across dims is equivalent to global mean + b = torch.mean(torch.abs(t - t.mean())) + elif isinstance(t, dict): + # t is Quant Calibration activation stats dict. + b = t['b'] + else: + raise TypeError("Only torch.Tensors or quantization calibration activation stats dicts are acceptable.") + return b * (AciqClipper.alpha_laplace_positive[num_bits] if half_range + else AciqClipper.alpha_laplace[num_bits]) + + @staticmethod + def get_alpha_gauss(t, across_dim=None, num_bits=8, half_range=False): + if isinstance(t, torch.Tensor): + # Mean of means across dims is equivalent to global mean + std = torch.std(t) + elif isinstance(t, dict): + # t is Quant Calibration activation stats dict. + std = t['std'] + else: + raise TypeError("Only torch.Tensors or quantization calibration activation stats dicts are acceptable.") + return std * (AciqClipper.alpha_gauss_positive[num_bits] if half_range + else AciqClipper.alpha_gauss[num_bits]) + + +class AciqSymmetricClipper(AciqClipper): + def __init__(self, num_bits, clip_type=AciqClipper.AciqClippingType.Laplace): + self.num_bits = num_bits + self.clip_type = clip_type + + def __call__(self, t, across_dim=None): + if self.clip_type == AciqClipper.AciqClippingType.Laplace: + alpha = AciqClipper.get_alpha_laplace(t, across_dim, self.num_bits) + else: + alpha = AciqClipper.get_alpha_gauss(t, across_dim, self.num_bits) + if isinstance(t, dict): + mean = torch.tensor(t['mean']) + else: + mean = t.mean() + return torch.abs(mean) + alpha + + +class AciqAsymmetricClipper(AciqClipper): + def __init__(self, num_bits, clip_type=AciqClipper.AciqClippingType.Laplace): + self.num_bits = num_bits + self.clip_type = clip_type + + def __call__(self, t, across_dim=None, half_range=False): + if isinstance(t, dict): + mean, min_val = torch.tensor(t['mean']), torch.tensor(t['avg_min']) + else: + mean = t.mean() + min_val = get_tensor_min_max(t, across_dim)[0].mean() + if self.clip_type == AciqClipper.AciqClippingType.Laplace: + alpha = AciqClipper.get_alpha_laplace(t, across_dim, self.num_bits, half_range=half_range) + else: + alpha = AciqClipper.get_alpha_gauss(t, across_dim, self.num_bits, half_range=half_range) + min_val = torch.max(min_val, mean - alpha) + + return min_val, min_val + 2 * alpha + + def get_quantized_range(num_bits, signed=True): if signed: n = 2 ** (num_bits - 1) diff --git a/distiller/quantization/range_linear.py b/distiller/quantization/range_linear.py index 29a639b..e161f7f 100644 --- a/distiller/quantization/range_linear.py +++ b/distiller/quantization/range_linear.py @@ -52,6 +52,10 @@ class ClipMode(Enum): # Clip value calculated as mean of tensor + N standard deviations. N should be specified separately N_STD = 2 + # ACIQ Clipping Modes - + GAUSS = 3 + LAPLACE = 4 + def _verify_enum_value(val, enum_cls): cls_name = enum_cls.__name__ @@ -75,20 +79,24 @@ def verify_clip_mode(mode): return _verify_enum_value(mode, ClipMode) -def _get_saturation_fn(quant_mode, clip_mode, num_stds): +def _get_saturation_fn(quant_mode, clip_mode, num_stds, num_bits=None): if quant_mode == LinearQuantMode.SYMMETRIC: fns = {ClipMode.NONE: get_tensor_max_abs, ClipMode.AVG: get_tensor_avg_max_abs, - ClipMode.N_STD: partial(get_tensor_mean_n_stds_max_abs, n_stds=num_stds)} + ClipMode.N_STD: partial(get_tensor_mean_n_stds_max_abs, n_stds=num_stds), + ClipMode.GAUSS: AciqSymmetricClipper(num_bits, AciqClipper.AciqClippingType.Gauss), + ClipMode.LAPLACE: AciqSymmetricClipper(num_bits, AciqClipper.AciqClippingType.Laplace)} else: # Asymmetric mode fns = {ClipMode.NONE: get_tensor_min_max, ClipMode.AVG: get_tensor_avg_min_max, - ClipMode.N_STD: partial(get_tensor_mean_n_stds_min_max, n_stds=num_stds)} + ClipMode.N_STD: partial(get_tensor_mean_n_stds_min_max, n_stds=num_stds), + ClipMode.GAUSS: AciqAsymmetricClipper(num_bits, AciqClipper.AciqClippingType.Gauss), + ClipMode.LAPLACE: AciqAsymmetricClipper(num_bits, AciqClipper.AciqClippingType.Laplace)} return fns[clip_mode] def _get_quant_params_from_tensor(tensor, num_bits, mode, clip=ClipMode.NONE, per_channel=False, num_stds=None, - scale_approx_mult_bits=None): + half_range=False, scale_approx_mult_bits=None): if per_channel and tensor.dim() not in [2, 4]: raise ValueError('Per channel quantization possible only with 2D or 4D tensors (linear or conv layer weights)') @@ -97,14 +105,18 @@ def _get_quant_params_from_tensor(tensor, num_bits, mode, clip=ClipMode.NONE, pe raise ValueError('N_STD clipping not supported with per-channel quantization') if num_stds is None: raise ValueError('Clip mode set top N_STD but \'num_stds\' parameter not provided') + if half_range and clip not in [ClipMode.GAUSS, ClipMode.LAPLACE]: + warnings.warn("Using clip_half_range without ACIQ clip modes (GAUSS or LAPACE) will have no" + " effect.") dim = 0 if clip == ClipMode.AVG or per_channel else None - sat_fn = _get_saturation_fn(mode, clip, num_stds) + sat_fn = _get_saturation_fn(mode, clip, num_stds, num_bits) if mode == LinearQuantMode.SYMMETRIC: sat_val = sat_fn(tensor, dim) scale, zp = symmetric_linear_quantization_params(num_bits, sat_val) else: # Asymmetric mode - sat_min, sat_max = sat_fn(tensor, dim) + sat_min, sat_max = sat_fn(tensor, dim) if clip not in [ClipMode.GAUSS, ClipMode.LAPLACE] \ + else sat_fn(tensor, dim, half_range=half_range) signed = mode == LinearQuantMode.ASYMMETRIC_SIGNED scale, zp = asymmetric_linear_quantization_params(num_bits, sat_min, sat_max, signed=signed) @@ -120,13 +132,17 @@ def _get_quant_params_from_tensor(tensor, num_bits, mode, clip=ClipMode.NONE, pe return scale, zp -def _get_quant_params_from_stats_dict(stats, num_bits, mode, clip=ClipMode.NONE, num_stds=None, +def _get_quant_params_from_stats_dict(stats, num_bits, mode, clip=ClipMode.NONE, num_stds=None, half_range=False, scale_approx_mult_bits=None): if clip == ClipMode.N_STD: if num_stds is None: raise ValueError('Clip mode set to N_STD but \'num_stds\' parameter not provided') if num_stds <= 0: raise ValueError('n_stds must be > 0, got {}'.format(num_stds)) + if half_range and clip not in [ClipMode.GAUSS, ClipMode.LAPLACE]: + warnings.warn("Using clip_half_range without ACIQ clip modes (GAUSS or LAPACE) will have no" + " effect.") + prefix = 'avg_' if clip == ClipMode.AVG else '' sat_min = torch.tensor(float(stats[prefix + 'min'])) sat_max = torch.tensor(float(stats[prefix + 'max'])) @@ -135,6 +151,13 @@ def _get_quant_params_from_stats_dict(stats, num_bits, mode, clip=ClipMode.NONE, std = torch.tensor(float(stats['std'])) sat_min = torch.max(sat_min, mean - num_stds * std) sat_max = torch.min(sat_max, mean + num_stds * std) + elif clip in (ClipMode.LAPLACE, ClipMode.GAUSS): + clip = AciqClipper.AciqClippingType.Laplace if clip == ClipMode.LAPLACE else AciqClipper.AciqClippingType.Gauss + if mode == LinearQuantMode.SYMMETRIC: + sat_min, sat_max = AciqSymmetricClipper(num_bits, clip)(stats) + else: + sat_min, sat_max = AciqAsymmetricClipper(num_bits, clip)(stats, half_range=half_range) + if mode == LinearQuantMode.SYMMETRIC: scale, zp = symmetric_linear_quantization_params(num_bits, torch.max(sat_min.abs_(), sat_max.abs_())) else: @@ -157,7 +180,8 @@ def add_post_train_quant_args(argparser): 'asym_s': LinearQuantMode.ASYMMETRIC_SIGNED, 'asym_u': LinearQuantMode.ASYMMETRIC_UNSIGNED} - str_to_clip_mode_map = {'none': ClipMode.NONE, 'avg': ClipMode.AVG, 'n_std': ClipMode.N_STD} + str_to_clip_mode_map = {'none': ClipMode.NONE, 'avg': ClipMode.AVG, 'n_std': ClipMode.N_STD, + 'gauss': ClipMode.GAUSS, 'laplace': ClipMode.LAPLACE} def from_dict(d, val_str): try: @@ -220,6 +244,8 @@ class RangeLinearQuantWrapper(nn.Module): parameters. Dict should be in the format exported by distiller.data_loggers.QuantCalibrationStatsCollector. If None then parameters are calculated dynamically. clip_n_stds (float): When clip_acts == ClipMode.N_STD, this is the number of standard deviations to use + clip_half_range (bool): use half range clipping. + NOTE - this only works with ACIQ clip modes i.e. GAUSS and LAPLACE scale_approx_mult_bits (int): If not None, scale factors will be approximated using an integer multiplication followed by a bit-wise shift. This eliminates floating-point scale factors, replacing them with integer calculations. @@ -227,7 +253,8 @@ class RangeLinearQuantWrapper(nn.Module): """ def __init__(self, wrapped_module, num_bits_acts, num_bits_accum=32, mode=LinearQuantMode.SYMMETRIC, - clip_acts=ClipMode.NONE, activation_stats=None, clip_n_stds=None, scale_approx_mult_bits=None): + clip_acts=ClipMode.NONE, activation_stats=None, clip_n_stds=None, clip_half_range=False, + scale_approx_mult_bits=None): super(RangeLinearQuantWrapper, self).__init__() self.wrapped_module = wrapped_module @@ -236,6 +263,7 @@ class RangeLinearQuantWrapper(nn.Module): self.mode = mode self.clip_acts = clip_acts self.clip_n_stds = clip_n_stds + self.clip_half_range = clip_half_range self.scale_approx_mult_bits = scale_approx_mult_bits # Controls whether output is de-quantized at end of forward op. Meant as a debug / test flag only @@ -253,14 +281,16 @@ class RangeLinearQuantWrapper(nn.Module): self.num_inputs = 0 for idx, stats in activation_stats['inputs'].items(): self.num_inputs += 1 - scale, zp = _get_quant_params_from_stats_dict(stats, num_bits_acts, mode, clip_acts, clip_n_stds, + scale, zp = _get_quant_params_from_stats_dict(stats, num_bits_acts, + mode, clip_acts, clip_n_stds, clip_half_range, scale_approx_mult_bits) prefix = 'in_{0}_'.format(idx) self.register_buffer(prefix + 'scale', scale) self.register_buffer(prefix + 'zero_point', zp) - scale, zp = _get_quant_params_from_stats_dict(activation_stats['output'], num_bits_acts, mode, clip_acts, - clip_n_stds, scale_approx_mult_bits) + scale, zp = _get_quant_params_from_stats_dict(activation_stats['output'], num_bits_acts, mode, + clip_acts, clip_n_stds, clip_half_range, + scale_approx_mult_bits) self.register_buffer('output_scale', scale) self.register_buffer('output_zero_point', zp) else: @@ -415,14 +445,15 @@ class RangeLinearQuantParamLayerWrapper(RangeLinearQuantWrapper): output channel activation_stats (dict): See RangeLinearQuantWrapper clip_n_stds (int): See RangeLinearQuantWrapper + clip_half_range (bool) : See RangeLinearQuantWrapper scale_approx_mult_bits (int): See RangeLinearQuantWrapper """ def __init__(self, wrapped_module, num_bits_acts, num_bits_params, num_bits_accum=32, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE, per_channel_wts=False, activation_stats=None, - clip_n_stds=None, scale_approx_mult_bits=None): + clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None): super(RangeLinearQuantParamLayerWrapper, self).__init__(wrapped_module, num_bits_acts, num_bits_accum, mode, clip_acts, activation_stats, clip_n_stds, - scale_approx_mult_bits) + clip_half_range, scale_approx_mult_bits) if not isinstance(wrapped_module, (nn.Conv2d, nn.Conv3d, nn.Linear)): raise ValueError(self.__class__.__name__ + ' can wrap only Conv2D, Conv3D and Linear modules') @@ -595,10 +626,10 @@ class RangeLinearQuantMatmulWrapper(RangeLinearQuantWrapper): """ def __init__(self, wrapped_module, num_bits_acts, num_bits_accum=32, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE, activation_stats=None, - clip_n_stds=None, scale_approx_mult_bits=None): + clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None): super(RangeLinearQuantMatmulWrapper, self).__init__(wrapped_module, num_bits_acts, num_bits_accum, mode, - clip_acts, activation_stats, clip_n_stds, - scale_approx_mult_bits) + clip_acts, activation_stats, clip_n_stds, clip_half_range, + scale_approx_mult_bits) if not isinstance(wrapped_module, (distiller.modules.Matmul, distiller.modules.BatchMatmul)): raise ValueError(self.__class__.__name__ + ' can wrap only Matmul modules') @@ -664,7 +695,7 @@ class NoStatsError(NotImplementedError): class RangeLinearQuantConcatWrapper(RangeLinearQuantWrapper): def __init__(self, wrapped_module, num_bits_acts, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE, - activation_stats=None, clip_n_stds=None, scale_approx_mult_bits=None): + activation_stats=None, clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None): if not isinstance(wrapped_module, distiller.modules.Concat): raise ValueError(self.__class__.__name__ + ' can only wrap distiller.modules.Concat modules') @@ -674,7 +705,7 @@ class RangeLinearQuantConcatWrapper(RangeLinearQuantWrapper): super(RangeLinearQuantConcatWrapper, self).__init__(wrapped_module, num_bits_acts, mode=mode, clip_acts=clip_acts, activation_stats=activation_stats, - clip_n_stds=clip_n_stds, + clip_n_stds=clip_n_stds, clip_half_range=clip_half_range, scale_approx_mult_bits=scale_approx_mult_bits) if self.preset_act_stats: @@ -714,7 +745,7 @@ class RangeLinearQuantConcatWrapper(RangeLinearQuantWrapper): class RangeLinearQuantEltwiseAddWrapper(RangeLinearQuantWrapper): def __init__(self, wrapped_module, num_bits_acts, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE, - activation_stats=None, clip_n_stds=None, scale_approx_mult_bits=None): + activation_stats=None, clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None): if not isinstance(wrapped_module, distiller.modules.EltwiseAdd): raise ValueError(self.__class__.__name__ + ' can only wrap distiller.modules.EltwiseAdd modules') @@ -725,6 +756,7 @@ class RangeLinearQuantEltwiseAddWrapper(RangeLinearQuantWrapper): super(RangeLinearQuantEltwiseAddWrapper, self).__init__(wrapped_module, num_bits_acts, mode=mode, clip_acts=clip_acts, activation_stats=activation_stats, clip_n_stds=clip_n_stds, + clip_half_range=clip_half_range, scale_approx_mult_bits=scale_approx_mult_bits) if self.preset_act_stats: @@ -767,7 +799,7 @@ class RangeLinearQuantEltwiseAddWrapper(RangeLinearQuantWrapper): class RangeLinearQuantEltwiseMultWrapper(RangeLinearQuantWrapper): def __init__(self, wrapped_module, num_bits_acts, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE, - activation_stats=None, clip_n_stds=None, scale_approx_mult_bits=None): + activation_stats=None, clip_n_stds=None, clip_half_range=False, scale_approx_mult_bits=None): if not isinstance(wrapped_module, distiller.modules.EltwiseMult): raise ValueError(self.__class__.__name__ + ' can only wrap distiller.modules.EltwiseMult modules') @@ -778,6 +810,7 @@ class RangeLinearQuantEltwiseMultWrapper(RangeLinearQuantWrapper): super(RangeLinearQuantEltwiseMultWrapper, self).__init__(wrapped_module, num_bits_acts, mode=mode, clip_acts=clip_acts, activation_stats=activation_stats, clip_n_stds=clip_n_stds, + clip_half_range=clip_half_range, scale_approx_mult_bits=scale_approx_mult_bits) if self.preset_act_stats: @@ -937,21 +970,24 @@ class PostTrainLinearQuantizer(Quantizer): def replace_param_layer(module, name, qbits_map, per_channel_wts=per_channel_wts, mode=mode, fp16=fp16, scale_approx_mult_bits=scale_approx_mult_bits, - clip_acts=clip_acts, clip_n_stds=clip_n_stds): + clip_acts=clip_acts, clip_half_range=False, clip_n_stds=clip_n_stds): if fp16: return FP16Wrapper(module) + + # TODO: Try auto-detecting when clip_half_range is needed + # instead of having the user pass it as a parameter (same for replace_non_param_layer) norm_name = distiller.utils.normalize_module_name(name) clip_acts = verify_clip_mode(clip_acts) return RangeLinearQuantParamLayerWrapper(module, qbits_map[name].acts, qbits_map[name].wts, num_bits_accum=self.bits_accum, mode=mode, clip_acts=clip_acts, per_channel_wts=per_channel_wts, activation_stats=self.model_activation_stats.get(norm_name, None), - clip_n_stds=clip_n_stds, + clip_n_stds=clip_n_stds, clip_half_range=clip_half_range, scale_approx_mult_bits=scale_approx_mult_bits) def replace_non_param_layer(wrapper_type, module, name, qbits_map, fp16=fp16, scale_approx_mult_bits=scale_approx_mult_bits, - clip_acts=clip_acts, clip_n_stds=clip_n_stds): + clip_acts=clip_acts, clip_n_stds=clip_n_stds, clip_half_range=False): if fp16: return FP16Wrapper(module) norm_name = distiller.utils.normalize_module_name(name) @@ -959,7 +995,8 @@ class PostTrainLinearQuantizer(Quantizer): try: return wrapper_type(module, qbits_map[name].acts, mode=mode, clip_acts=clip_acts, activation_stats=self.model_activation_stats.get(norm_name, None), - clip_n_stds=clip_n_stds, scale_approx_mult_bits=scale_approx_mult_bits) + clip_n_stds=clip_n_stds, clip_half_range=clip_half_range, + scale_approx_mult_bits=scale_approx_mult_bits) except NoStatsError: msglogger.warning('WARNING: {0} - quantization of {1} without stats not supported. ' 'Keeping the original FP32 module'.format(name, module.__class__.__name__)) diff --git a/examples/quantization/post_train_quant/stats/resnet18_quant_stats.yaml b/examples/quantization/post_train_quant/stats/resnet18_quant_stats.yaml index 1b9814d..5513beb 100644 --- a/examples/quantization/post_train_quant/stats/resnet18_quant_stats.yaml +++ b/examples/quantization/post_train_quant/stats/resnet18_quant_stats.yaml @@ -1,7 +1,7 @@ # ResNet-18 activation statistics for post-training quantization # Generated by running: # -# python compress_classifier.py -a resnet18 -p 10 -j 22 <path_to_imagenet_dataset> --pretrained --qe-calibration 0.05 +# python compress_classifier.py -a resnet18 -p 10 -j 22 <path_to_imagenet_dataset> --pretrained --qe-calibration 0.05 --seed 0 # # Notes: # * Stats collection is triggered by the '--qe-calibration' flag. It will run evaluation on the specified portion of @@ -15,1286 +15,1430 @@ conv1: 0: min: -2.1179039478302 max: 2.640000104904175 - avg_min: -2.0155762195587155 - avg_max: 2.48675365447998 - mean: -0.05581759512424469 - std: 1.181673563348384 + avg_min: -2.0179028272628785 + avg_max: 2.4849105119705195 + mean: -0.02644771572668106 + std: 1.1904664382080992 + b: 1.0037795305252075 shape: (256, 3, 224, 224) output: - min: -35.76463317871094 - max: 35.28437423706055 - avg_min: -22.443804359436033 - avg_max: 22.809664916992187 - mean: -1.8954842971652397e-05 - std: 1.7586114042828802 + min: -37.17167663574219 + max: 36.08745574951172 + avg_min: -22.434925651550294 + avg_max: 22.787699317932127 + mean: -0.0001754729266394861 + std: 1.7580939173603671 + b: 1.0786008000373841 shape: (256, 64, 112, 112) bn1: inputs: 0: - min: -35.76463317871094 - max: 35.28437423706055 - avg_min: -22.443804359436033 - avg_max: 22.809664916992187 - mean: -1.8954842971652397e-05 - std: 1.7586114042828802 + min: -37.17167663574219 + max: 36.08745574951172 + avg_min: -22.434925651550294 + avg_max: 22.787699317932127 + mean: -0.0001754729266394861 + std: 1.7580939173603671 + b: 1.0786008000373841 shape: (256, 64, 112, 112) output: - min: -6.65138578414917 - max: 7.338484287261963 - avg_min: -2.8493101835250854 - avg_max: 3.349868631362915 - mean: 0.18185057491064072 - std: 0.41268930715153396 + min: -6.58004093170166 + max: 7.357358932495117 + avg_min: -2.821167016029358 + avg_max: 3.334167599678039 + mean: 0.18160294145345687 + std: 0.4129777229999846 + b: 0.28660632371902467 shape: (256, 64, 112, 112) relu: inputs: 0: - min: -6.65138578414917 - max: 7.338484287261963 - avg_min: -2.8493101835250854 - avg_max: 3.349868631362915 - mean: 0.18185057491064072 - std: 0.41268930715153396 + min: -6.58004093170166 + max: 7.357358932495117 + avg_min: -2.821167016029358 + avg_max: 3.334167599678039 + mean: 0.18160294145345687 + std: 0.4129777229999846 + b: 0.28660632371902467 shape: (256, 64, 112, 112) output: min: 0.0 - max: 7.338484287261963 + max: 7.357358932495117 avg_min: 0.0 - avg_max: 3.349868631362915 - mean: 0.2598995238542557 - std: 0.27431192907072754 + avg_max: 3.334167599678039 + mean: 0.25995961129665374 + std: 0.2736657824588164 + b: 0.21144414991140364 shape: (256, 64, 112, 112) maxpool: inputs: 0: min: 0.0 - max: 7.338484287261963 + max: 7.357358932495117 avg_min: 0.0 - avg_max: 3.349868631362915 - mean: 0.2598995238542557 - std: 0.27431192907072754 + avg_max: 3.334167599678039 + mean: 0.25995961129665374 + std: 0.2736657824588164 + b: 0.21144414991140364 shape: (256, 64, 112, 112) output: min: 0.0 - max: 7.338484287261963 + max: 7.357358932495117 avg_min: 0.0 - avg_max: 3.349868631362915 - mean: 0.37854534685611724 - std: 0.34987264981490734 + avg_max: 3.334167599678039 + mean: 0.37670861780643466 + std: 0.34820184864463305 + b: 0.2668348789215088 shape: (256, 64, 56, 56) layer1.0.conv1: inputs: 0: min: 0.0 - max: 7.338484287261963 + max: 7.357358932495117 avg_min: 0.0 - avg_max: 3.349868631362915 - mean: 0.37854534685611724 - std: 0.34987264981490734 + avg_max: 3.334167599678039 + mean: 0.37670861780643466 + std: 0.34820184864463305 + b: 0.2668348789215088 shape: (256, 64, 56, 56) output: - min: -17.075458526611328 - max: 9.973828315734863 - avg_min: -10.725397968292237 - avg_max: 4.599550724029541 - mean: -0.9369088828563691 - std: 1.1919106838283573 + min: -16.87494659423828 + max: 10.887310028076172 + avg_min: -10.703684616088868 + avg_max: 4.577920770645141 + mean: -0.9323187172412872 + std: 1.1861670190309386 + b: 0.8818115055561065 shape: (256, 64, 56, 56) layer1.0.bn1: inputs: 0: - min: -17.075458526611328 - max: 9.973828315734863 - avg_min: -10.725397968292237 - avg_max: 4.599550724029541 - mean: -0.9369088828563691 - std: 1.1919106838283573 + min: -16.87494659423828 + max: 10.887310028076172 + avg_min: -10.703684616088868 + avg_max: 4.577920770645141 + mean: -0.9323187172412872 + std: 1.1861670190309386 + b: 0.8818115055561065 shape: (256, 64, 56, 56) output: - min: -7.84696102142334 - max: 4.932901382446289 - avg_min: -4.371330738067627 - avg_max: 1.7983517408370973 - mean: -0.050233672186732296 - std: 0.4317025532895933 + min: -7.912492752075195 + max: 4.465096473693848 + avg_min: -4.370650768280029 + avg_max: 1.781515896320343 + mean: -0.04791574366390705 + std: 0.42959841758460565 + b: 0.30843749046325686 shape: (256, 64, 56, 56) layer1.0.relu1: inputs: 0: - min: -7.84696102142334 - max: 4.932901382446289 - avg_min: -4.371330738067627 - avg_max: 1.7983517408370973 - mean: -0.050233672186732296 - std: 0.4317025532895933 + min: -7.912492752075195 + max: 4.465096473693848 + avg_min: -4.370650768280029 + avg_max: 1.781515896320343 + mean: -0.04791574366390705 + std: 0.42959841758460565 + b: 0.30843749046325686 shape: (256, 64, 56, 56) output: min: 0.0 - max: 4.932901382446289 + max: 4.465096473693848 avg_min: 0.0 - avg_max: 1.7983517408370973 - mean: 0.12365709394216537 - std: 0.15240964320349404 + avg_max: 1.781515896320343 + mean: 0.12415257766842841 + std: 0.15184144817035658 + b: 0.12101016268134118 shape: (256, 64, 56, 56) layer1.0.conv2: inputs: 0: min: 0.0 - max: 4.932901382446289 + max: 4.465096473693848 avg_min: 0.0 - avg_max: 1.7983517408370973 - mean: 0.12365709394216537 - std: 0.15240964320349404 + avg_max: 1.781515896320343 + mean: 0.12415257766842841 + std: 0.15184144817035658 + b: 0.12101016268134118 shape: (256, 64, 56, 56) output: - min: -7.605445861816406 - max: 4.186079502105713 - avg_min: -2.843373680114746 - avg_max: 1.8348817229270935 - mean: -0.07289719507098198 - std: 0.3931055464123539 + min: -7.069628715515137 + max: 3.4729065895080566 + avg_min: -2.847720456123352 + avg_max: 1.832327115535736 + mean: -0.07194625288248062 + std: 0.39378847887850943 + b: 0.29262713491916664 shape: (256, 64, 56, 56) layer1.0.bn2: inputs: 0: - min: -7.605445861816406 - max: 4.186079502105713 - avg_min: -2.843373680114746 - avg_max: 1.8348817229270935 - mean: -0.07289719507098198 - std: 0.3931055464123539 + min: -7.069628715515137 + max: 3.4729065895080566 + avg_min: -2.847720456123352 + avg_max: 1.832327115535736 + mean: -0.07194625288248062 + std: 0.39378847887850943 + b: 0.29262713491916664 shape: (256, 64, 56, 56) output: - min: -7.029930591583252 - max: 6.096140384674072 - avg_min: -3.364328002929687 - avg_max: 2.671983480453491 - mean: -0.007625545584596693 - std: 0.4165292712020149 + min: -6.498610496520996 + max: 5.046974182128906 + avg_min: -3.3557324409484863 + avg_max: 2.6549140930175783 + mean: -0.006219549803063273 + std: 0.41592445628222435 + b: 0.30928740203380584 shape: (256, 64, 56, 56) layer1.0.relu2: inputs: 0: - min: -6.755189895629883 - max: 7.848092555999756 - avg_min: -3.2848753213882445 - avg_max: 3.888275837898254 - mean: 0.37091979682445525 - std: 0.5165421680711509 + min: -6.361315727233887 + max: 7.920192718505859 + avg_min: -3.27264986038208 + avg_max: 3.8547550201416017 + mean: 0.3704890608787537 + std: 0.5144624319661206 + b: 0.3796554893255234 shape: (256, 64, 56, 56) output: min: 0.0 - max: 7.848092555999756 + max: 7.920192718505859 avg_min: 0.0 - avg_max: 3.888275837898254 - mean: 0.4402212053537369 - std: 0.40145754203197104 + avg_max: 3.8547550201416017 + mean: 0.4392666757106781 + std: 0.39984883193751414 + b: 0.31421991586685183 shape: (256, 64, 56, 56) layer1.0.add: inputs: 0: - min: -7.029930591583252 - max: 6.096140384674072 - avg_min: -3.364328002929687 - avg_max: 2.671983480453491 - mean: -0.007625545584596693 - std: 0.4165292712020149 + min: -6.498610496520996 + max: 5.046974182128906 + avg_min: -3.3557324409484863 + avg_max: 2.6549140930175783 + mean: -0.006219549803063273 + std: 0.41592445628222435 + b: 0.30928740203380584 shape: (256, 64, 56, 56) 1: min: 0.0 - max: 7.338484287261963 + max: 7.357358932495117 avg_min: 0.0 - avg_max: 3.349868631362915 - mean: 0.37854534685611724 - std: 0.34987264981490734 + avg_max: 3.334167599678039 + mean: 0.37670861780643466 + std: 0.34820184864463305 + b: 0.2668348789215088 shape: (256, 64, 56, 56) output: - min: -6.755189895629883 - max: 7.848092555999756 - avg_min: -3.2848753213882445 - avg_max: 3.888275837898254 - mean: 0.37091979682445525 - std: 0.5165421680711509 + min: -6.361315727233887 + max: 7.920192718505859 + avg_min: -3.27264986038208 + avg_max: 3.8547550201416017 + mean: 0.3704890608787537 + std: 0.5144624319661206 + b: 0.3796554893255234 shape: (256, 64, 56, 56) layer1.1.conv1: inputs: 0: min: 0.0 - max: 7.848092555999756 + max: 7.920192718505859 avg_min: 0.0 - avg_max: 3.888275837898254 - mean: 0.4402212053537369 - std: 0.40145754203197104 + avg_max: 3.8547550201416017 + mean: 0.4392666757106781 + std: 0.39984883193751414 + b: 0.31421991586685183 shape: (256, 64, 56, 56) output: - min: -12.157726287841797 - max: 11.766583442687988 - avg_min: -7.595281553268432 - avg_max: 5.0373931407928465 - mean: -0.6426207780838012 - std: 1.1092499675944172 + min: -11.491942405700684 + max: 11.20591926574707 + avg_min: -7.546071910858155 + avg_max: 5.024500560760498 + mean: -0.6395838379859924 + std: 1.105064830518023 + b: 0.8696278989315033 shape: (256, 64, 56, 56) layer1.1.bn1: inputs: 0: - min: -12.157726287841797 - max: 11.766583442687988 - avg_min: -7.595281553268432 - avg_max: 5.0373931407928465 - mean: -0.6426207780838012 - std: 1.1092499675944172 + min: -11.491942405700684 + max: 11.20591926574707 + avg_min: -7.546071910858155 + avg_max: 5.024500560760498 + mean: -0.6395838379859924 + std: 1.105064830518023 + b: 0.8696278989315033 shape: (256, 64, 56, 56) output: - min: -6.2613606452941895 - max: 4.365638732910156 - avg_min: -2.9217535495758056 - avg_max: 2.205676364898682 - mean: -0.09596083089709283 - std: 0.3880057257286341 + min: -5.977788925170898 + max: 4.373744964599609 + avg_min: -2.9008329391479495 + avg_max: 2.194632339477539 + mean: -0.09455725699663163 + std: 0.3864656062954132 + b: 0.2955675601959229 shape: (256, 64, 56, 56) layer1.1.relu1: inputs: 0: - min: -6.2613606452941895 - max: 4.365638732910156 - avg_min: -2.9217535495758056 - avg_max: 2.205676364898682 - mean: -0.09596083089709283 - std: 0.3880057257286341 + min: -5.977788925170898 + max: 4.373744964599609 + avg_min: -2.9008329391479495 + avg_max: 2.194632339477539 + mean: -0.09455725699663163 + std: 0.3864656062954132 + b: 0.2955675601959229 shape: (256, 64, 56, 56) output: min: 0.0 - max: 4.365638732910156 + max: 4.373744964599609 avg_min: 0.0 - avg_max: 2.205676364898682 - mean: 0.09787589758634567 - std: 0.15355313597491865 + avg_max: 2.194632339477539 + mean: 0.09786231890320779 + std: 0.1530014232794471 + b: 0.11548511683940887 shape: (256, 64, 56, 56) layer1.1.conv2: inputs: 0: min: 0.0 - max: 4.365638732910156 + max: 4.373744964599609 avg_min: 0.0 - avg_max: 2.205676364898682 - mean: 0.09787589758634567 - std: 0.15355313597491865 + avg_max: 2.194632339477539 + mean: 0.09786231890320779 + std: 0.1530014232794471 + b: 0.11548511683940887 shape: (256, 64, 56, 56) output: - min: -5.982235431671143 - max: 3.2972500324249268 - avg_min: -2.2474620580673217 - avg_max: 1.9966080427169801 - mean: -0.05330531485378742 - std: 0.31662548381935623 + min: -5.538784027099609 + max: 3.5764734745025635 + avg_min: -2.2407279253005985 + avg_max: 1.994869089126587 + mean: -0.05254508629441261 + std: 0.31610883462752315 + b: 0.23407733142375947 shape: (256, 64, 56, 56) layer1.1.bn2: inputs: 0: - min: -5.982235431671143 - max: 3.2972500324249268 - avg_min: -2.2474620580673217 - avg_max: 1.9966080427169801 - mean: -0.05330531485378742 - std: 0.31662548381935623 + min: -5.538784027099609 + max: 3.5764734745025635 + avg_min: -2.2407279253005985 + avg_max: 1.994869089126587 + mean: -0.05254508629441261 + std: 0.31610883462752315 + b: 0.23407733142375947 shape: (256, 64, 56, 56) output: - min: -12.66700553894043 - max: 6.743299961090088 - avg_min: -4.81916880607605 - avg_max: 3.31194531917572 - mean: -0.03622294031083584 - std: 0.4647229141768063 + min: -10.714021682739258 + max: 7.266103267669678 + avg_min: -4.802960872650147 + avg_max: 3.3009435892105103 + mean: -0.03512122202664614 + std: 0.4628194601345676 + b: 0.3304642677307129 shape: (256, 64, 56, 56) layer1.1.relu2: inputs: 0: - min: -12.66700553894043 - max: 9.340755462646484 - avg_min: -4.6399578094482425 - avg_max: 5.094357872009278 - mean: 0.4039983034133911 - std: 0.6460796599137519 + min: -10.714021682739258 + max: 8.999561309814453 + avg_min: -4.612377023696899 + avg_max: 5.063360500335693 + mean: 0.40414546132087703 + std: 0.6436291942389393 + b: 0.4835752308368682 shape: (256, 64, 56, 56) output: min: 0.0 - max: 9.340755462646484 + max: 8.999561309814453 avg_min: 0.0 - avg_max: 5.094357872009278 - mean: 0.500373387336731 - std: 0.4991277746127741 + avg_max: 5.063360500335693 + mean: 0.4997546374797821 + std: 0.4977076703010359 + b: 0.3939255177974701 shape: (256, 64, 56, 56) layer1.1.add: inputs: 0: - min: -12.66700553894043 - max: 6.743299961090088 - avg_min: -4.81916880607605 - avg_max: 3.31194531917572 - mean: -0.03622294031083584 - std: 0.4647229141768063 + min: -10.714021682739258 + max: 7.266103267669678 + avg_min: -4.802960872650147 + avg_max: 3.3009435892105103 + mean: -0.03512122202664614 + std: 0.4628194601345676 + b: 0.3304642677307129 shape: (256, 64, 56, 56) 1: min: 0.0 - max: 7.848092555999756 + max: 7.920192718505859 avg_min: 0.0 - avg_max: 3.888275837898254 - mean: 0.4402212053537369 - std: 0.40145754203197104 + avg_max: 3.8547550201416017 + mean: 0.4392666757106781 + std: 0.39984883193751414 + b: 0.31421991586685183 shape: (256, 64, 56, 56) output: - min: -12.66700553894043 - max: 9.340755462646484 - avg_min: -4.6399578094482425 - avg_max: 5.094357872009278 - mean: 0.4039983034133911 - std: 0.6460796599137519 + min: -10.714021682739258 + max: 8.999561309814453 + avg_min: -4.612377023696899 + avg_max: 5.063360500335693 + mean: 0.40414546132087703 + std: 0.6436291942389393 + b: 0.4835752308368682 shape: (256, 64, 56, 56) layer2.0.conv1: inputs: 0: min: 0.0 - max: 9.340755462646484 + max: 8.999561309814453 avg_min: 0.0 - avg_max: 5.094357872009278 - mean: 0.500373387336731 - std: 0.4991277746127741 + avg_max: 5.063360500335693 + mean: 0.4997546374797821 + std: 0.4977076703010359 + b: 0.3939255177974701 shape: (256, 64, 56, 56) output: - min: -9.968571662902832 - max: 9.612150192260742 - avg_min: -5.820331621170044 - avg_max: 5.143364048004151 - mean: -0.30288831889629364 - std: 0.9433245287159682 + min: -9.852157592773438 + max: 8.603440284729004 + avg_min: -5.784541034698487 + avg_max: 5.120952939987182 + mean: -0.30176014006137847 + std: 0.9407152354406 + b: 0.7256485044956207 shape: (256, 128, 28, 28) layer2.0.bn1: inputs: 0: - min: -9.968571662902832 - max: 9.612150192260742 - avg_min: -5.820331621170044 - avg_max: 5.143364048004151 - mean: -0.30288831889629364 - std: 0.9433245287159682 + min: -9.852157592773438 + max: 8.603440284729004 + avg_min: -5.784541034698487 + avg_max: 5.120952939987182 + mean: -0.30176014006137847 + std: 0.9407152354406 + b: 0.7256485044956207 shape: (256, 128, 28, 28) output: - min: -4.37542724609375 - max: 3.9087069034576416 - avg_min: -2.393132042884827 - avg_max: 2.0897871732711795 - mean: -0.07093800380825994 - std: 0.35104228844101776 + min: -4.538980960845947 + max: 4.295030117034912 + avg_min: -2.3778639078140262 + avg_max: 2.0737600088119508 + mean: -0.07045549005270005 + std: 0.3495050093376416 + b: 0.2644343852996826 shape: (256, 128, 28, 28) layer2.0.relu1: inputs: 0: - min: -4.37542724609375 - max: 3.9087069034576416 - avg_min: -2.393132042884827 - avg_max: 2.0897871732711795 - mean: -0.07093800380825994 - std: 0.35104228844101776 + min: -4.538980960845947 + max: 4.295030117034912 + avg_min: -2.3778639078140262 + avg_max: 2.0737600088119508 + mean: -0.07045549005270005 + std: 0.3495050093376416 + b: 0.2644343852996826 shape: (256, 128, 28, 28) output: min: 0.0 - max: 3.9087069034576416 + max: 4.295030117034912 avg_min: 0.0 - avg_max: 2.0897871732711795 - mean: 0.09935117959976196 - std: 0.17955374922841472 + avg_max: 2.0737600088119508 + mean: 0.09899485930800438 + std: 0.17894827086862186 + b: 0.12912005484104158 shape: (256, 128, 28, 28) layer2.0.conv2: inputs: 0: min: 0.0 - max: 3.9087069034576416 + max: 4.295030117034912 avg_min: 0.0 - avg_max: 2.0897871732711795 - mean: 0.09935117959976196 - std: 0.17955374922841472 + avg_max: 2.0737600088119508 + mean: 0.09899485930800438 + std: 0.17894827086862186 + b: 0.12912005484104158 shape: (256, 128, 28, 28) output: - min: -3.704953908920288 - max: 3.9888672828674316 - avg_min: -2.6193546772003176 - avg_max: 1.94557808637619 - mean: -0.20282634049654008 - std: 0.37979417173710706 + min: -3.6024770736694336 + max: 3.939133644104004 + avg_min: -2.6036619424819945 + avg_max: 1.940392577648163 + mean: -0.2027350604534149 + std: 0.378426612016967 + b: 0.2810466945171356 shape: (256, 128, 28, 28) layer2.0.bn2: inputs: 0: - min: -3.704953908920288 - max: 3.9888672828674316 - avg_min: -2.6193546772003176 - avg_max: 1.94557808637619 - mean: -0.20282634049654008 - std: 0.37979417173710706 + min: -3.6024770736694336 + max: 3.939133644104004 + avg_min: -2.6036619424819945 + avg_max: 1.940392577648163 + mean: -0.2027350604534149 + std: 0.378426612016967 + b: 0.2810466945171356 shape: (256, 128, 28, 28) output: - min: -4.852682590484619 - max: 7.3824543952941895 - avg_min: -2.498345708847046 - avg_max: 3.199000906944275 - mean: -0.00949734039604664 - std: 0.3728519149946462 + min: -4.541533470153809 + max: 7.281155109405518 + avg_min: -2.47963981628418 + avg_max: 3.1967777013778687 + mean: -0.009329709596931935 + std: 0.3714423700405246 + b: 0.27521497607231143 shape: (256, 128, 28, 28) layer2.0.relu2: inputs: 0: - min: -7.15670919418335 - max: 8.679682731628418 - avg_min: -3.162109375 - avg_max: 3.5441043853759764 - mean: -0.01264746282249689 - std: 0.4912823877262578 + min: -6.721975803375244 + max: 7.887903690338135 + avg_min: -3.162062668800354 + avg_max: 3.5391958713531495 + mean: -0.012606612220406533 + std: 0.48953572677576745 + b: 0.37634200155735015 shape: (256, 128, 28, 28) output: min: 0.0 - max: 8.679682731628418 + max: 7.887903690338135 avg_min: 0.0 - avg_max: 3.5441043853759764 - mean: 0.18154233396053315 - std: 0.27297060478379487 + avg_max: 3.5391958713531495 + mean: 0.18090671449899676 + std: 0.2720096638291617 + b: 0.20716362893581391 shape: (256, 128, 28, 28) layer2.0.downsample.0: inputs: 0: min: 0.0 - max: 9.340755462646484 + max: 8.999561309814453 avg_min: 0.0 - avg_max: 5.094357872009278 - mean: 0.500373387336731 - std: 0.4991277746127741 + avg_max: 5.063360500335693 + mean: 0.4997546374797821 + std: 0.4977076703010359 + b: 0.3939255177974701 shape: (256, 64, 56, 56) output: - min: -5.13958740234375 - max: 4.892611503601074 - avg_min: -2.4796679258346552 - avg_max: 2.903812885284424 - mean: -0.06563309356570243 - std: 0.41438327815559967 + min: -4.91789436340332 + max: 4.578188896179199 + avg_min: -2.479439353942871 + avg_max: 2.8897837162017823 + mean: -0.06581298410892486 + std: 0.4136335202051727 + b: 0.30704599916934966 shape: (256, 128, 28, 28) layer2.0.downsample.1: inputs: 0: - min: -5.13958740234375 - max: 4.892611503601074 - avg_min: -2.4796679258346552 - avg_max: 2.903812885284424 - mean: -0.06563309356570243 - std: 0.41438327815559967 + min: -4.91789436340332 + max: 4.578188896179199 + avg_min: -2.479439353942871 + avg_max: 2.8897837162017823 + mean: -0.06581298410892486 + std: 0.4136335202051727 + b: 0.30704599916934966 shape: (256, 128, 28, 28) output: - min: -5.447699069976807 - max: 4.214577674865723 - avg_min: -2.267443895339966 - avg_max: 2.1093434810638425 - mean: -0.003150122403167188 - std: 0.2438290171437319 + min: -5.507220268249512 + max: 4.8110198974609375 + avg_min: -2.2652245998382567 + avg_max: 2.095703291893005 + mean: -0.003276902949437499 + std: 0.24279011847837823 + b: 0.17645430564880368 shape: (256, 128, 28, 28) layer2.0.add: inputs: 0: - min: -4.852682590484619 - max: 7.3824543952941895 - avg_min: -2.498345708847046 - avg_max: 3.199000906944275 - mean: -0.00949734039604664 - std: 0.3728519149946462 + min: -4.541533470153809 + max: 7.281155109405518 + avg_min: -2.47963981628418 + avg_max: 3.1967777013778687 + mean: -0.009329709596931935 + std: 0.3714423700405246 + b: 0.27521497607231143 shape: (256, 128, 28, 28) 1: - min: -5.447699069976807 - max: 4.214577674865723 - avg_min: -2.267443895339966 - avg_max: 2.1093434810638425 - mean: -0.003150122403167188 - std: 0.2438290171437319 + min: -5.507220268249512 + max: 4.8110198974609375 + avg_min: -2.2652245998382567 + avg_max: 2.095703291893005 + mean: -0.003276902949437499 + std: 0.24279011847837823 + b: 0.17645430564880368 shape: (256, 128, 28, 28) output: - min: -7.15670919418335 - max: 8.679682731628418 - avg_min: -3.162109375 - avg_max: 3.5441043853759764 - mean: -0.01264746282249689 - std: 0.4912823877262578 + min: -6.721975803375244 + max: 7.887903690338135 + avg_min: -3.162062668800354 + avg_max: 3.5391958713531495 + mean: -0.012606612220406533 + std: 0.48953572677576745 + b: 0.37634200155735015 shape: (256, 128, 28, 28) layer2.1.conv1: inputs: 0: min: 0.0 - max: 8.679682731628418 + max: 7.887903690338135 avg_min: 0.0 - avg_max: 3.5441043853759764 - mean: 0.18154233396053315 - std: 0.27297060478379487 + avg_max: 3.5391958713531495 + mean: 0.18090671449899676 + std: 0.2720096638291617 + b: 0.20716362893581391 shape: (256, 128, 28, 28) output: - min: -5.459676742553711 - max: 5.33770751953125 - avg_min: -3.635084438323975 - avg_max: 2.9290169239044186 - mean: -0.3135085433721542 - std: 0.5925199667467553 + min: -5.485912322998047 + max: 5.701521873474121 + avg_min: -3.62958562374115 + avg_max: 2.9352190732955936 + mean: -0.312002956867218 + std: 0.5907423992644697 + b: 0.45206252336502073 shape: (256, 128, 28, 28) layer2.1.bn1: inputs: 0: - min: -5.459676742553711 - max: 5.33770751953125 - avg_min: -3.635084438323975 - avg_max: 2.9290169239044186 - mean: -0.3135085433721542 - std: 0.5925199667467553 + min: -5.485912322998047 + max: 5.701521873474121 + avg_min: -3.62958562374115 + avg_max: 2.9352190732955936 + mean: -0.312002956867218 + std: 0.5907423992644697 + b: 0.45206252336502073 shape: (256, 128, 28, 28) output: - min: -3.8549625873565674 - max: 4.790047645568848 - avg_min: -2.359077382087708 - avg_max: 2.1424240112304687 - mean: -0.22242988049983978 - std: 0.3518888548195055 + min: -3.997326135635376 + max: 5.112695693969727 + avg_min: -2.349669742584229 + avg_max: 2.1320471286773683 + mean: -0.2213411748409271 + std: 0.35073046242263367 + b: 0.26966107189655303 shape: (256, 128, 28, 28) layer2.1.relu1: inputs: 0: - min: -3.8549625873565674 - max: 4.790047645568848 - avg_min: -2.359077382087708 - avg_max: 2.1424240112304687 - mean: -0.22242988049983978 - std: 0.3518888548195055 + min: -3.997326135635376 + max: 5.112695693969727 + avg_min: -2.349669742584229 + avg_max: 2.1320471286773683 + mean: -0.2213411748409271 + std: 0.35073046242263367 + b: 0.26966107189655303 shape: (256, 128, 28, 28) output: min: 0.0 - max: 4.790047645568848 + max: 5.112695693969727 avg_min: 0.0 - avg_max: 2.1424240112304687 - mean: 0.049409907683730124 - std: 0.12833041843699824 + avg_max: 2.1320471286773683 + mean: 0.049340829253196716 + std: 0.12802784917456683 + b: 0.07695193588733673 shape: (256, 128, 28, 28) layer2.1.conv2: inputs: 0: min: 0.0 - max: 4.790047645568848 + max: 5.112695693969727 avg_min: 0.0 - avg_max: 2.1424240112304687 - mean: 0.049409907683730124 - std: 0.12833041843699824 + avg_max: 2.1320471286773683 + mean: 0.049340829253196716 + std: 0.12802784917456683 + b: 0.07695193588733673 shape: (256, 128, 28, 28) output: - min: -2.9398884773254395 - max: 3.024933338165283 - avg_min: -1.6292295932769774 - avg_max: 1.5198234081268311 - mean: -0.06321807205677032 - std: 0.22956700018686632 + min: -2.8524694442749023 + max: 2.8498570919036865 + avg_min: -1.637015688419342 + avg_max: 1.5296302437782288 + mean: -0.06291018277406692 + std: 0.229274719766598 + b: 0.16916185617446902 shape: (256, 128, 28, 28) layer2.1.bn2: inputs: 0: - min: -2.9398884773254395 - max: 3.024933338165283 - avg_min: -1.6292295932769774 - avg_max: 1.5198234081268311 - mean: -0.06321807205677032 - std: 0.22956700018686632 + min: -2.8524694442749023 + max: 2.8498570919036865 + avg_min: -1.637015688419342 + avg_max: 1.5296302437782288 + mean: -0.06291018277406692 + std: 0.229274719766598 + b: 0.16916185617446902 shape: (256, 128, 28, 28) output: - min: -7.5086164474487305 - max: 6.0674519538879395 - avg_min: -3.238761234283447 - avg_max: 2.8940759420394895 - mean: -0.1567205160856247 - std: 0.3475644601239457 + min: -7.946273326873779 + max: 6.401525020599365 + avg_min: -3.253560042381287 + avg_max: 2.909646725654602 + mean: -0.1562561482191086 + std: 0.3469407401637125 + b: 0.2514873340725899 shape: (256, 128, 28, 28) layer2.1.relu2: inputs: 0: - min: -7.064488887786865 - max: 8.256424903869629 - avg_min: -3.16677827835083 - avg_max: 4.542451906204224 - mean: 0.024821811169385907 - std: 0.46294317470310387 + min: -7.946273326873779 + max: 7.8940324783325195 + avg_min: -3.174616074562073 + avg_max: 4.550387144088745 + mean: 0.02465056534856558 + std: 0.4619439823065871 + b: 0.34511422514915463 shape: (256, 128, 28, 28) output: min: 0.0 - max: 8.256424903869629 + max: 7.8940324783325195 avg_min: 0.0 - avg_max: 4.542451906204224 - mean: 0.18445102572441102 - std: 0.29705437461339534 + avg_max: 4.550387144088745 + mean: 0.18397492617368696 + std: 0.29634521294304816 + b: 0.2175905004143715 shape: (256, 128, 28, 28) layer2.1.add: inputs: 0: - min: -7.5086164474487305 - max: 6.0674519538879395 - avg_min: -3.238761234283447 - avg_max: 2.8940759420394895 - mean: -0.1567205160856247 - std: 0.3475644601239457 + min: -7.946273326873779 + max: 6.401525020599365 + avg_min: -3.253560042381287 + avg_max: 2.909646725654602 + mean: -0.1562561482191086 + std: 0.3469407401637125 + b: 0.2514873340725899 shape: (256, 128, 28, 28) 1: min: 0.0 - max: 8.679682731628418 + max: 7.887903690338135 avg_min: 0.0 - avg_max: 3.5441043853759764 - mean: 0.18154233396053315 - std: 0.27297060478379487 + avg_max: 3.5391958713531495 + mean: 0.18090671449899676 + std: 0.2720096638291617 + b: 0.20716362893581391 shape: (256, 128, 28, 28) output: - min: -7.064488887786865 - max: 8.256424903869629 - avg_min: -3.16677827835083 - avg_max: 4.542451906204224 - mean: 0.024821811169385907 - std: 0.46294317470310387 + min: -7.946273326873779 + max: 7.8940324783325195 + avg_min: -3.174616074562073 + avg_max: 4.550387144088745 + mean: 0.02465056534856558 + std: 0.4619439823065871 + b: 0.34511422514915463 shape: (256, 128, 28, 28) layer3.0.conv1: inputs: 0: min: 0.0 - max: 8.256424903869629 + max: 7.8940324783325195 avg_min: 0.0 - avg_max: 4.542451906204224 - mean: 0.18445102572441102 - std: 0.29705437461339534 + avg_max: 4.550387144088745 + mean: 0.18397492617368696 + std: 0.29634521294304816 + b: 0.2175905004143715 shape: (256, 128, 28, 28) output: - min: -6.438381195068359 - max: 6.13822603225708 - avg_min: -4.0202888488769535 - avg_max: 3.2266300678253175 - mean: -0.32309721112251283 - std: 0.6154106977384659 + min: -7.293699741363525 + max: 5.887290000915527 + avg_min: -4.006204152107238 + avg_max: 3.236294198036194 + mean: -0.321987584233284 + std: 0.6139758604628851 + b: 0.4753164947032929 shape: (256, 256, 14, 14) layer3.0.bn1: inputs: 0: - min: -6.438381195068359 - max: 6.13822603225708 - avg_min: -4.0202888488769535 - avg_max: 3.2266300678253175 - mean: -0.32309721112251283 - std: 0.6154106977384659 + min: -7.293699741363525 + max: 5.887290000915527 + avg_min: -4.006204152107238 + avg_max: 3.236294198036194 + mean: -0.321987584233284 + std: 0.6139758604628851 + b: 0.4753164947032929 shape: (256, 256, 14, 14) output: - min: -3.862990140914917 - max: 4.267152786254883 - avg_min: -2.0022686362266544 - avg_max: 2.3283541679382322 - mean: -0.11319322809576988 - std: 0.3376918494696188 + min: -4.050312042236328 + max: 3.9576447010040283 + avg_min: -2.0014328956604004 + avg_max: 2.3429682493209842 + mean: -0.1125125139951706 + std: 0.337134413601539 + b: 0.2615480303764343 shape: (256, 256, 14, 14) layer3.0.relu1: inputs: 0: - min: -3.862990140914917 - max: 4.267152786254883 - avg_min: -2.0022686362266544 - avg_max: 2.3283541679382322 - mean: -0.11319322809576988 - std: 0.3376918494696188 + min: -4.050312042236328 + max: 3.9576447010040283 + avg_min: -2.0014328956604004 + avg_max: 2.3429682493209842 + mean: -0.1125125139951706 + std: 0.337134413601539 + b: 0.2615480303764343 shape: (256, 256, 14, 14) output: min: 0.0 - max: 4.267152786254883 + max: 3.9576447010040283 avg_min: 0.0 - avg_max: 2.3283541679382322 - mean: 0.08251831382513046 - std: 0.16577934392575766 + avg_max: 2.3429682493209842 + mean: 0.08258631229400636 + std: 0.16571162945237508 + b: 0.11422481834888458 shape: (256, 256, 14, 14) layer3.0.conv2: inputs: 0: min: 0.0 - max: 4.267152786254883 + max: 3.9576447010040283 avg_min: 0.0 - avg_max: 2.3283541679382322 - mean: 0.08251831382513046 - std: 0.16577934392575766 + avg_max: 2.3429682493209842 + mean: 0.08258631229400636 + std: 0.16571162945237508 + b: 0.11422481834888458 shape: (256, 256, 14, 14) output: - min: -4.552898406982422 - max: 3.3713440895080566 - avg_min: -2.3444815635681153 - avg_max: 1.984291195869446 - mean: -0.12965155243873594 - std: 0.3721248356476338 + min: -4.257213592529297 + max: 3.6616592407226562 + avg_min: -2.352362465858459 + avg_max: 1.9918954730033875 + mean: -0.1290414616465569 + std: 0.37157258712256164 + b: 0.2852293998003006 shape: (256, 256, 14, 14) layer3.0.bn2: inputs: 0: - min: -4.552898406982422 - max: 3.3713440895080566 - avg_min: -2.3444815635681153 - avg_max: 1.984291195869446 - mean: -0.12965155243873594 - std: 0.3721248356476338 + min: -4.257213592529297 + max: 3.6616592407226562 + avg_min: -2.352362465858459 + avg_max: 1.9918954730033875 + mean: -0.1290414616465569 + std: 0.37157258712256164 + b: 0.2852293998003006 shape: (256, 256, 14, 14) output: - min: -3.7013936042785645 - max: 6.379889965057373 - avg_min: -2.267893671989441 - avg_max: 3.2245216369628906 - mean: -0.03604039661586284 - std: 0.3570086273772413 + min: -3.8997387886047363 + max: 6.5019426345825195 + avg_min: -2.251054048538208 + avg_max: 3.29326958656311 + mean: -0.035325663164258 + std: 0.3566388375612489 + b: 0.27053642868995664 shape: (256, 256, 14, 14) layer3.0.relu2: inputs: 0: - min: -4.1207146644592285 - max: 6.487631797790527 - avg_min: -2.684654211997986 - avg_max: 3.1363016128540044 - mean: -0.06760385036468507 - std: 0.4199482576820755 + min: -4.377436637878418 + max: 6.553792953491211 + avg_min: -2.652551221847534 + avg_max: 3.189970088005066 + mean: -0.06677803546190263 + std: 0.4192177835709973 + b: 0.322426176071167 shape: (256, 256, 14, 14) output: min: 0.0 - max: 6.487631797790527 + max: 6.553792953491211 avg_min: 0.0 - avg_max: 3.1363016128540044 - mean: 0.12786945104598998 - std: 0.21144506529506946 + avg_max: 3.189970088005066 + mean: 0.12804426848888398 + std: 0.21154974459479667 + b: 0.15678034126758575 shape: (256, 256, 14, 14) layer3.0.downsample.0: inputs: 0: min: 0.0 - max: 8.256424903869629 + max: 7.8940324783325195 avg_min: 0.0 - avg_max: 4.542451906204224 - mean: 0.18445102572441102 - std: 0.29705437461339534 + avg_max: 4.550387144088745 + mean: 0.18397492617368696 + std: 0.29634521294304816 + b: 0.2175905004143715 shape: (256, 128, 28, 28) output: - min: -2.1837708950042725 - max: 2.0840232372283936 - avg_min: -1.0446266651153564 - avg_max: 0.8377003133296967 - mean: -0.048206356912851335 - std: 0.15011371161838857 + min: -2.042365550994873 + max: 1.68002188205719 + avg_min: -1.0438877820968626 + avg_max: 0.8331947326660156 + mean: -0.04805891886353493 + std: 0.14977744425469866 + b: 0.11428540572524071 shape: (256, 256, 14, 14) layer3.0.downsample.1: inputs: 0: - min: -2.1837708950042725 - max: 2.0840232372283936 - avg_min: -1.0446266651153564 - avg_max: 0.8377003133296967 - mean: -0.048206356912851335 - std: 0.15011371161838857 + min: -2.042365550994873 + max: 1.68002188205719 + avg_min: -1.0438877820968626 + avg_max: 0.8331947326660156 + mean: -0.04805891886353493 + std: 0.14977744425469866 + b: 0.11428540572524071 shape: (256, 256, 14, 14) output: - min: -2.409719228744507 - max: 1.7153247594833374 - avg_min: -1.2518082499504086 - avg_max: 0.6969634890556335 - mean: -0.03156345393508673 - std: 0.12925449927364396 + min: -2.620955467224121 + max: 1.9505492448806763 + avg_min: -1.2414526343345644 + avg_max: 0.695954030752182 + mean: -0.03145237248390913 + std: 0.1289970627152763 + b: 0.09838261082768442 shape: (256, 256, 14, 14) layer3.0.add: inputs: 0: - min: -3.7013936042785645 - max: 6.379889965057373 - avg_min: -2.267893671989441 - avg_max: 3.2245216369628906 - mean: -0.03604039661586284 - std: 0.3570086273772413 + min: -3.8997387886047363 + max: 6.5019426345825195 + avg_min: -2.251054048538208 + avg_max: 3.29326958656311 + mean: -0.035325663164258 + std: 0.3566388375612489 + b: 0.27053642868995664 shape: (256, 256, 14, 14) 1: - min: -2.409719228744507 - max: 1.7153247594833374 - avg_min: -1.2518082499504086 - avg_max: 0.6969634890556335 - mean: -0.03156345393508673 - std: 0.12925449927364396 + min: -2.620955467224121 + max: 1.9505492448806763 + avg_min: -1.2414526343345644 + avg_max: 0.695954030752182 + mean: -0.03145237248390913 + std: 0.1289970627152763 + b: 0.09838261082768442 shape: (256, 256, 14, 14) output: - min: -4.1207146644592285 - max: 6.487631797790527 - avg_min: -2.684654211997986 - avg_max: 3.1363016128540044 - mean: -0.06760385036468507 - std: 0.4199482576820755 + min: -4.377436637878418 + max: 6.553792953491211 + avg_min: -2.652551221847534 + avg_max: 3.189970088005066 + mean: -0.06677803546190263 + std: 0.4192177835709973 + b: 0.322426176071167 shape: (256, 256, 14, 14) layer3.1.conv1: inputs: 0: min: 0.0 - max: 6.487631797790527 + max: 6.553792953491211 avg_min: 0.0 - avg_max: 3.1363016128540044 - mean: 0.12786945104598998 - std: 0.21144506529506946 + avg_max: 3.189970088005066 + mean: 0.12804426848888398 + std: 0.21154974459479667 + b: 0.15678034126758575 shape: (256, 256, 14, 14) output: - min: -5.105652809143066 - max: 4.03632926940918 - avg_min: -2.8411794662475587 - avg_max: 2.7561988115310667 - mean: -0.41444424390792844 - std: 0.5287273763772131 + min: -5.031698226928711 + max: 4.422638893127441 + avg_min: -2.864979887008667 + avg_max: 2.767142987251282 + mean: -0.41464142203330995 + std: 0.5293220148063538 + b: 0.41182717978954314 shape: (256, 256, 14, 14) layer3.1.bn1: inputs: 0: - min: -5.105652809143066 - max: 4.03632926940918 - avg_min: -2.8411794662475587 - avg_max: 2.7561988115310667 - mean: -0.41444424390792844 - std: 0.5287273763772131 + min: -5.031698226928711 + max: 4.422638893127441 + avg_min: -2.864979887008667 + avg_max: 2.767142987251282 + mean: -0.41464142203330995 + std: 0.5293220148063538 + b: 0.41182717978954314 shape: (256, 256, 14, 14) output: - min: -4.098175525665283 - max: 4.903048038482666 - avg_min: -2.149882984161377 - avg_max: 1.8125177145004272 - mean: -0.25484898984432225 - std: 0.32307304036500245 + min: -4.198080062866211 + max: 5.063868522644043 + avg_min: -2.168639850616455 + avg_max: 1.8469656229019165 + mean: -0.25500119626522066 + std: 0.32347946447612314 + b: 0.24928168803453446 shape: (256, 256, 14, 14) layer3.1.relu1: inputs: 0: - min: -4.098175525665283 - max: 4.903048038482666 - avg_min: -2.149882984161377 - avg_max: 1.8125177145004272 - mean: -0.25484898984432225 - std: 0.32307304036500245 + min: -4.198080062866211 + max: 5.063868522644043 + avg_min: -2.168639850616455 + avg_max: 1.8469656229019165 + mean: -0.25500119626522066 + std: 0.32347946447612314 + b: 0.24928168803453446 shape: (256, 256, 14, 14) output: min: 0.0 - max: 4.903048038482666 + max: 5.063868522644043 avg_min: 0.0 - avg_max: 1.8125177145004272 - mean: 0.032801129296422 - std: 0.09658125962893181 + avg_max: 1.8469656229019165 + mean: 0.032932214066386224 + std: 0.09702202845259125 + b: 0.053782285377383235 shape: (256, 256, 14, 14) layer3.1.conv2: inputs: 0: min: 0.0 - max: 4.903048038482666 + max: 5.063868522644043 avg_min: 0.0 - avg_max: 1.8125177145004272 - mean: 0.032801129296422 - std: 0.09658125962893181 + avg_max: 1.8469656229019165 + mean: 0.032932214066386224 + std: 0.09702202845259125 + b: 0.053782285377383235 shape: (256, 256, 14, 14) output: - min: -2.5119032859802246 - max: 2.0646729469299316 - avg_min: -1.3221241593360904 - avg_max: 1.1405210494995117 - mean: -0.09274044558405876 - std: 0.1825111203528907 + min: -2.715808391571045 + max: 2.0844011306762695 + avg_min: -1.328875982761383 + avg_max: 1.1498247623443603 + mean: -0.0931337259709835 + std: 0.18346629893115088 + b: 0.1342121735215187 shape: (256, 256, 14, 14) layer3.1.bn2: inputs: 0: - min: -2.5119032859802246 - max: 2.0646729469299316 - avg_min: -1.3221241593360904 - avg_max: 1.1405210494995117 - mean: -0.09274044558405876 - std: 0.1825111203528907 + min: -2.715808391571045 + max: 2.0844011306762695 + avg_min: -1.328875982761383 + avg_max: 1.1498247623443603 + mean: -0.0931337259709835 + std: 0.18346629893115088 + b: 0.1342121735215187 shape: (256, 256, 14, 14) output: - min: -8.134011268615723 - max: 5.190834999084473 - avg_min: -3.1968623399734493 - avg_max: 2.1643610477447512 - mean: -0.18219314515590668 - std: 0.33030993881964954 + min: -8.998992919921875 + max: 5.525249481201172 + avg_min: -3.2370118141174316 + avg_max: 2.205535817146301 + mean: -0.18305919617414473 + std: 0.3321392781164415 + b: 0.2382770329713821 shape: (256, 256, 14, 14) layer3.1.relu2: inputs: 0: - min: -8.134011268615723 - max: 8.119378089904785 - avg_min: -2.983672332763672 - avg_max: 3.2279526948928834 - mean: -0.05432369634509087 - std: 0.40386185761807114 + min: -8.202404975891113 + max: 9.872881889343262 + avg_min: -3.0143409967422485 + avg_max: 3.2831672906875613 + mean: -0.05501492619514465 + std: 0.40551403211757675 + b: 0.2989766478538513 shape: (256, 256, 14, 14) output: min: 0.0 - max: 8.119378089904785 + max: 9.872881889343262 avg_min: 0.0 - avg_max: 3.2279526948928834 - mean: 0.12238837555050848 - std: 0.2129835573395784 + avg_max: 3.2831672906875613 + mean: 0.12256589457392691 + std: 0.2133638127835183 + b: 0.15300007164478302 shape: (256, 256, 14, 14) layer3.1.add: inputs: 0: - min: -8.134011268615723 - max: 5.190834999084473 - avg_min: -3.1968623399734493 - avg_max: 2.1643610477447512 - mean: -0.18219314515590668 - std: 0.33030993881964954 + min: -8.998992919921875 + max: 5.525249481201172 + avg_min: -3.2370118141174316 + avg_max: 2.205535817146301 + mean: -0.18305919617414473 + std: 0.3321392781164415 + b: 0.2382770329713821 shape: (256, 256, 14, 14) 1: min: 0.0 - max: 6.487631797790527 + max: 6.553792953491211 avg_min: 0.0 - avg_max: 3.1363016128540044 - mean: 0.12786945104598998 - std: 0.21144506529506946 + avg_max: 3.189970088005066 + mean: 0.12804426848888398 + std: 0.21154974459479667 + b: 0.15678034126758575 shape: (256, 256, 14, 14) output: - min: -8.134011268615723 - max: 8.119378089904785 - avg_min: -2.983672332763672 - avg_max: 3.2279526948928834 - mean: -0.05432369634509087 - std: 0.40386185761807114 + min: -8.202404975891113 + max: 9.872881889343262 + avg_min: -3.0143409967422485 + avg_max: 3.2831672906875613 + mean: -0.05501492619514465 + std: 0.40551403211757675 + b: 0.2989766478538513 shape: (256, 256, 14, 14) layer4.0.conv1: inputs: 0: min: 0.0 - max: 8.119378089904785 + max: 9.872881889343262 avg_min: 0.0 - avg_max: 3.2279526948928834 - mean: 0.12238837555050848 - std: 0.2129835573395784 + avg_max: 3.2831672906875613 + mean: 0.12256589457392691 + std: 0.2133638127835183 + b: 0.15300007164478302 shape: (256, 256, 14, 14) output: - min: -4.76265287399292 - max: 3.892470121383667 - avg_min: -2.6342701673507687 - avg_max: 2.134967827796936 - mean: -0.4225346058607101 - std: 0.4489012217945443 + min: -4.950316905975342 + max: 3.6210927963256836 + avg_min: -2.652024030685425 + avg_max: 2.144003534317016 + mean: -0.42224429249763484 + std: 0.44938412814890194 + b: 0.3466774016618729 shape: (256, 512, 7, 7) layer4.0.bn1: inputs: 0: - min: -4.76265287399292 - max: 3.892470121383667 - avg_min: -2.6342701673507687 - avg_max: 2.134967827796936 - mean: -0.4225346058607101 - std: 0.4489012217945443 + min: -4.950316905975342 + max: 3.6210927963256836 + avg_min: -2.652024030685425 + avg_max: 2.144003534317016 + mean: -0.42224429249763484 + std: 0.44938412814890194 + b: 0.3466774016618729 shape: (256, 512, 7, 7) output: - min: -3.8005728721618652 - max: 3.7460832595825195 - avg_min: -1.7839953899383545 - avg_max: 1.5242199540138244 - mean: -0.23563460260629654 - std: 0.28798706168262217 + min: -3.8442420959472656 + max: 3.5031683444976807 + avg_min: -1.785099470615387 + avg_max: 1.5260862469673158 + mean: -0.23540744632482533 + std: 0.2883131004457901 + b: 0.22206227332353592 shape: (256, 512, 7, 7) layer4.0.relu1: inputs: 0: - min: -3.8005728721618652 - max: 3.7460832595825195 - avg_min: -1.7839953899383545 - avg_max: 1.5242199540138244 - mean: -0.23563460260629654 - std: 0.28798706168262217 + min: -3.8442420959472656 + max: 3.5031683444976807 + avg_min: -1.785099470615387 + avg_max: 1.5260862469673158 + mean: -0.23540744632482533 + std: 0.2883131004457901 + b: 0.22206227332353592 shape: (256, 512, 7, 7) output: min: 0.0 - max: 3.7460832595825195 + max: 3.5031683444976807 avg_min: 0.0 - avg_max: 1.5242199540138244 - mean: 0.029761600866913797 - std: 0.09121178273334185 + avg_max: 1.5260862469673158 + mean: 0.029885793291032317 + std: 0.0914273382379062 + b: 0.049454532191157335 shape: (256, 512, 7, 7) layer4.0.conv2: inputs: 0: min: 0.0 - max: 3.7460832595825195 + max: 3.5031683444976807 avg_min: 0.0 - avg_max: 1.5242199540138244 - mean: 0.029761600866913797 - std: 0.09121178273334185 + avg_max: 1.5260862469673158 + mean: 0.029885793291032317 + std: 0.0914273382379062 + b: 0.049454532191157335 shape: (256, 512, 7, 7) output: - min: -1.8688105344772339 - max: 2.0681681632995605 - avg_min: -1.0883776903152464 - avg_max: 1.1523980379104612 - mean: -0.14923772364854812 - std: 0.16972499161883345 + min: -1.8449223041534424 + max: 2.067958354949951 + avg_min: -1.0942276358604432 + avg_max: 1.1541351675987244 + mean: -0.14933057725429538 + std: 0.16971222231987543 + b: 0.12781685888767244 shape: (256, 512, 7, 7) layer4.0.bn2: inputs: 0: - min: -1.8688105344772339 - max: 2.0681681632995605 - avg_min: -1.0883776903152464 - avg_max: 1.1523980379104612 - mean: -0.14923772364854812 - std: 0.16972499161883345 + min: -1.8449223041534424 + max: 2.067958354949951 + avg_min: -1.0942276358604432 + avg_max: 1.1541351675987244 + mean: -0.14933057725429538 + std: 0.16971222231987543 + b: 0.12781685888767244 shape: (256, 512, 7, 7) output: - min: -5.792877674102783 - max: 7.841123104095459 - avg_min: -2.789129066467285 - avg_max: 2.627374529838562 - mean: -0.2150831580162048 - std: 0.45363315501783613 + min: -5.783980846405029 + max: 6.245330333709717 + avg_min: -2.800101137161255 + avg_max: 2.623097443580628 + mean: -0.21531924307346342 + std: 0.453539395756688 + b: 0.34523969888687134 shape: (256, 512, 7, 7) layer4.0.relu2: inputs: 0: - min: -6.891504764556885 - max: 8.46895980834961 - avg_min: -3.20503408908844 - avg_max: 3.330011248588562 - mean: -0.41423189938068394 - std: 0.5510562453718115 + min: -6.930498123168945 + max: 8.567574501037598 + avg_min: -3.1913995504379273 + avg_max: 3.315259170532226 + mean: -0.4142288058996201 + std: 0.5505862330408511 + b: 0.4232411742210388 shape: (256, 512, 7, 7) output: min: 0.0 - max: 8.46895980834961 + max: 8.567574501037598 avg_min: 0.0 - avg_max: 3.330011248588562 - mean: 0.06851729899644853 - std: 0.2003228502381722 + avg_max: 3.315259170532226 + mean: 0.06856812238693237 + std: 0.20035843135120962 + b: 0.11173125430941581 shape: (256, 512, 7, 7) layer4.0.downsample.0: inputs: 0: min: 0.0 - max: 8.119378089904785 + max: 9.872881889343262 avg_min: 0.0 - avg_max: 3.2279526948928834 - mean: 0.12238837555050848 - std: 0.2129835573395784 + avg_max: 3.2831672906875613 + mean: 0.12256589457392691 + std: 0.2133638127835183 + b: 0.15300007164478302 shape: (256, 256, 14, 14) output: - min: -1.9270222187042236 + min: -2.0376739501953125 max: 2.3532819747924805 - avg_min: -0.9864736735820769 - avg_max: 1.140747332572937 - mean: -0.04585805423557758 - std: 0.16336331221817668 + avg_min: -0.9992474794387818 + avg_max: 1.1578348278999329 + mean: -0.04574307352304459 + std: 0.1642893687178303 + b: 0.12143977582454682 shape: (256, 512, 7, 7) layer4.0.downsample.1: inputs: 0: - min: -1.9270222187042236 + min: -2.0376739501953125 max: 2.3532819747924805 - avg_min: -0.9864736735820769 - avg_max: 1.140747332572937 - mean: -0.04585805423557758 - std: 0.16336331221817668 + avg_min: -0.9992474794387818 + avg_max: 1.1578348278999329 + mean: -0.04574307352304459 + std: 0.1642893687178303 + b: 0.12143977582454682 shape: (256, 512, 7, 7) output: - min: -3.5343539714813232 + min: -3.7014033794403076 max: 4.346354007720947 - avg_min: -1.905341112613678 - avg_max: 1.7950459957122802 - mean: -0.19914873987436293 - std: 0.27221953386376296 + avg_min: -1.9194710731506348 + avg_max: 1.8273812174797057 + mean: -0.19890957176685334 + std: 0.2736153024520793 + b: 0.20122731775045397 shape: (256, 512, 7, 7) layer4.0.add: inputs: 0: - min: -5.792877674102783 - max: 7.841123104095459 - avg_min: -2.789129066467285 - avg_max: 2.627374529838562 - mean: -0.2150831580162048 - std: 0.45363315501783613 + min: -5.783980846405029 + max: 6.245330333709717 + avg_min: -2.800101137161255 + avg_max: 2.623097443580628 + mean: -0.21531924307346342 + std: 0.453539395756688 + b: 0.34523969888687134 shape: (256, 512, 7, 7) 1: - min: -3.5343539714813232 + min: -3.7014033794403076 max: 4.346354007720947 - avg_min: -1.905341112613678 - avg_max: 1.7950459957122802 - mean: -0.19914873987436293 - std: 0.27221953386376296 + avg_min: -1.9194710731506348 + avg_max: 1.8273812174797057 + mean: -0.19890957176685334 + std: 0.2736153024520793 + b: 0.20122731775045397 shape: (256, 512, 7, 7) output: - min: -6.891504764556885 - max: 8.46895980834961 - avg_min: -3.20503408908844 - avg_max: 3.330011248588562 - mean: -0.41423189938068394 - std: 0.5510562453718115 + min: -6.930498123168945 + max: 8.567574501037598 + avg_min: -3.1913995504379273 + avg_max: 3.315259170532226 + mean: -0.4142288058996201 + std: 0.5505862330408511 + b: 0.4232411742210388 shape: (256, 512, 7, 7) layer4.1.conv1: inputs: 0: min: 0.0 - max: 8.46895980834961 + max: 8.567574501037598 avg_min: 0.0 - avg_max: 3.330011248588562 - mean: 0.06851729899644853 - std: 0.2003228502381722 + avg_max: 3.315259170532226 + mean: 0.06856812238693237 + std: 0.20035843135120962 + b: 0.11173125430941581 shape: (256, 512, 7, 7) output: min: -5.210203170776367 - max: 3.5200774669647217 - avg_min: -2.7268222093582155 - avg_max: 2.039318561553955 - mean: -0.6206760883331299 - std: 0.41510913930456855 + max: 3.741835594177246 + avg_min: -2.727949595451355 + avg_max: 2.022892165184021 + mean: -0.6183191597461701 + std: 0.41441253046239257 + b: 0.3147238880395889 shape: (256, 512, 7, 7) layer4.1.bn1: inputs: 0: min: -5.210203170776367 - max: 3.5200774669647217 - avg_min: -2.7268222093582155 - avg_max: 2.039318561553955 - mean: -0.6206760883331299 - std: 0.41510913930456855 + max: 3.741835594177246 + avg_min: -2.727949595451355 + avg_max: 2.022892165184021 + mean: -0.6183191597461701 + std: 0.41441253046239257 + b: 0.3147238880395889 shape: (256, 512, 7, 7) output: min: -4.808124542236328 - max: 4.104608535766602 - avg_min: -2.1864486694335934 - avg_max: 1.4413557529449463 - mean: -0.2617767214775086 - std: 0.32745514342278503 + max: 4.1657257080078125 + avg_min: -2.1843703031539916 + avg_max: 1.4314042687416078 + mean: -0.25993406772613525 + std: 0.32693443700689745 + b: 0.25053864270448684 shape: (256, 512, 7, 7) layer4.1.relu1: inputs: 0: min: -4.808124542236328 - max: 4.104608535766602 - avg_min: -2.1864486694335934 - avg_max: 1.4413557529449463 - mean: -0.2617767214775086 - std: 0.32745514342278503 + max: 4.1657257080078125 + avg_min: -2.1843703031539916 + avg_max: 1.4314042687416078 + mean: -0.25993406772613525 + std: 0.32693443700689745 + b: 0.25053864270448684 shape: (256, 512, 7, 7) output: min: 0.0 - max: 4.104608535766602 + max: 4.1657257080078125 avg_min: 0.0 - avg_max: 1.4413557529449463 - mean: 0.030183648318052293 - std: 0.0890167884469397 + avg_max: 1.4314042687416078 + mean: 0.030445635877549646 + std: 0.08933091998969779 + b: 0.049756981804966925 shape: (256, 512, 7, 7) layer4.1.conv2: inputs: 0: min: 0.0 - max: 4.104608535766602 + max: 4.1657257080078125 avg_min: 0.0 - avg_max: 1.4413557529449463 - mean: 0.030183648318052293 - std: 0.0890167884469397 + avg_max: 1.4314042687416078 + mean: 0.030445635877549646 + std: 0.08933091998969779 + b: 0.049756981804966925 shape: (256, 512, 7, 7) output: - min: -1.083118200302124 - max: 2.9936976432800293 - avg_min: -0.5540908932685852 - avg_max: 0.8956171870231628 - mean: -0.027465152740478515 - std: 0.11994073669763537 + min: -1.1300753355026245 + max: 4.191241264343262 + avg_min: -0.5563786149024963 + avg_max: 0.9013789415359497 + mean: -0.027124672755599023 + std: 0.1204256230341855 + b: 0.08786393702030182 shape: (256, 512, 7, 7) layer4.1.bn2: inputs: 0: - min: -1.083118200302124 - max: 2.9936976432800293 - avg_min: -0.5540908932685852 - avg_max: 0.8956171870231628 - mean: -0.027465152740478515 - std: 0.11994073669763537 + min: -1.1300753355026245 + max: 4.191241264343262 + avg_min: -0.5563786149024963 + avg_max: 0.9013789415359497 + mean: -0.027124672755599023 + std: 0.1204256230341855 + b: 0.08786393702030182 shape: (256, 512, 7, 7) output: - min: -17.7739200592041 - max: 49.293739318847656 - avg_min: -8.384725379943847 - avg_max: 15.652357387542724 - mean: 0.3391309440135956 - std: 1.9559910002542347 + min: -19.004796981811523 + max: 68.5389175415039 + avg_min: -8.409132289886475 + avg_max: 15.7423565864563 + mean: 0.34465126097202303 + std: 1.9625875514236744 + b: 1.4261910796165467 shape: (256, 512, 7, 7) layer4.1.relu2: inputs: 0: - min: -17.7739200592041 - max: 53.34544372558594 - avg_min: -8.348113536834717 - avg_max: 16.909835433959962 - mean: 0.4076482564210892 - std: 2.0075340226308156 + min: -19.004796981811523 + max: 73.84921264648438 + avg_min: -8.37563362121582 + avg_max: 17.005590820312502 + mean: 0.41321938037872313 + std: 2.0140747496097013 + b: 1.4604507446289061 shape: (256, 512, 7, 7) output: min: 0.0 - max: 53.34544372558594 + max: 73.84921264648438 avg_min: 0.0 - avg_max: 16.909835433959962 - mean: 0.9270834982395172 - std: 1.5093241017607464 + avg_max: 17.005590820312502 + mean: 0.9329111337661743 + std: 1.5150135025832752 + b: 1.068066442012787 shape: (256, 512, 7, 7) layer4.1.add: inputs: 0: - min: -17.7739200592041 - max: 49.293739318847656 - avg_min: -8.384725379943847 - avg_max: 15.652357387542724 - mean: 0.3391309440135956 - std: 1.9559910002542347 + min: -19.004796981811523 + max: 68.5389175415039 + avg_min: -8.409132289886475 + avg_max: 15.7423565864563 + mean: 0.34465126097202303 + std: 1.9625875514236744 + b: 1.4261910796165467 shape: (256, 512, 7, 7) 1: min: 0.0 - max: 8.46895980834961 + max: 8.567574501037598 avg_min: 0.0 - avg_max: 3.330011248588562 - mean: 0.06851729899644853 - std: 0.2003228502381722 + avg_max: 3.315259170532226 + mean: 0.06856812238693237 + std: 0.20035843135120962 + b: 0.11173125430941581 shape: (256, 512, 7, 7) output: - min: -17.7739200592041 - max: 53.34544372558594 - avg_min: -8.348113536834717 - avg_max: 16.909835433959962 - mean: 0.4076482564210892 - std: 2.0075340226308156 + min: -19.004796981811523 + max: 73.84921264648438 + avg_min: -8.37563362121582 + avg_max: 17.005590820312502 + mean: 0.41321938037872313 + std: 2.0140747496097013 + b: 1.4604507446289061 shape: (256, 512, 7, 7) avgpool: inputs: 0: min: 0.0 - max: 53.34544372558594 + max: 73.84921264648438 avg_min: 0.0 - avg_max: 16.909835433959962 - mean: 0.9270834982395172 - std: 1.5093241017607464 + avg_max: 17.005590820312502 + mean: 0.9329111337661743 + std: 1.5150135025832752 + b: 1.068066442012787 shape: (256, 512, 7, 7) output: min: 0.0 - max: 17.51531410217285 - avg_min: 0.00017440698211430573 - avg_max: 6.207659435272217 - mean: 0.9270835041999818 - std: 0.9303102411121627 + max: 23.313302993774414 + avg_min: 0.000172000216844026 + avg_max: 6.189624261856079 + mean: 0.9329111397266387 + std: 0.9293646051355287 + b: 0.68059321641922 shape: (256, 512, 1, 1) fc: inputs: 0: min: 0.0 - max: 17.51531410217285 - avg_min: 0.00017440698211430573 - avg_max: 6.207659435272217 - mean: 0.9270835041999818 - std: 0.9303102411121627 + max: 23.313302993774414 + avg_min: 0.000172000216844026 + avg_max: 6.189624261856079 + mean: 0.9329111397266387 + std: 0.9293646051355287 + b: 0.68059321641922 shape: (256, 512) output: - min: -12.437793731689453 - max: 40.4469108581543 - avg_min: -6.941068887710571 - avg_max: 16.39320945739746 - mean: 2.7895814673684066e-05 - std: 2.8083362700072496 + min: -12.27712631225586 + max: 37.946144104003906 + avg_min: -6.967176866531372 + avg_max: 16.258214187622066 + mean: 2.813304145092843e-05 + std: 2.8061255378564596 + b: 2.0943870067596433 shape: (256, 1000) diff --git a/examples/quantization/post_train_quant/stats/resnet50_quant_stats.yaml b/examples/quantization/post_train_quant/stats/resnet50_quant_stats.yaml index e59ae7b..5a0a5c0 100644 --- a/examples/quantization/post_train_quant/stats/resnet50_quant_stats.yaml +++ b/examples/quantization/post_train_quant/stats/resnet50_quant_stats.yaml @@ -1,7 +1,7 @@ # ResNet-50 activation statistics for post-training quantization # Generated by running: # -# python compress_classifier.py -a resnet18 -p 10 -j 22 <path_to_imagenet_dataset> --pretrained --qe-calibration 0.05 +# python compress_classifier.py -a resnet18 -p 10 -j 22 <path_to_imagenet_dataset> --pretrained --qe-calibration 0.05 --seed 0 # # Notes: # * Stats collection is triggered by the '--qe-calibration' flag. It will run evaluation on the specified portion of @@ -9,185 +9,206 @@ # * Once completed, a file named 'quantization_stats.yaml' is dumped in the log directory # * In this example we collect stats for the pre-trained ResNet-18 model from torchvision. If you trained the FP32 # model yourself, you'll need to load the checkpoint using the '--resume' flag. + conv1: inputs: 0: min: -2.1179039478302 max: 2.640000104904175 - avg_min: -2.0194480657577514 - avg_max: 2.4895985126495357 - mean: -0.04953605402261019 - std: 1.1911271065308935 + avg_min: -2.014737010002136 + avg_max: 2.4884546041488647 + mean: -0.033971998607739806 + std: 1.201734408022518 + b: 1.010804271697998 shape: (256, 3, 224, 224) output: - min: -29.021743774414062 - max: 27.613426208496094 - avg_min: -17.249443244934085 - avg_max: 17.603945541381833 - mean: 0.0037155995145440102 - std: 1.6641648668493714 + min: -29.77520751953125 + max: 27.7259464263916 + avg_min: -17.287668418884277 + avg_max: 17.605259132385253 + mean: 0.003127608919749036 + std: 1.6707808577493286 + b: 0.9622739136219025 shape: (256, 64, 112, 112) bn1: inputs: 0: - min: -29.021743774414062 - max: 27.613426208496094 - avg_min: -17.249443244934085 - avg_max: 17.603945541381833 - mean: 0.0037155995145440102 - std: 1.6641648668493714 + min: -29.77520751953125 + max: 27.7259464263916 + avg_min: -17.287668418884277 + avg_max: 17.605259132385253 + mean: 0.003127608919749036 + std: 1.6707808577493286 + b: 0.9622739136219025 shape: (256, 64, 112, 112) output: - min: -8.01382064819336 - max: 9.588595390319824 - avg_min: -2.8591087579727175 - avg_max: 3.2792069911956787 - mean: 0.2111692249774933 - std: 0.39293307299795177 + min: -6.802585124969482 + max: 8.709970474243164 + avg_min: -2.875292038917541 + avg_max: 3.292344069480896 + mean: 0.21110961586236954 + std: 0.39392244937427096 + b: 0.2580239772796631 shape: (256, 64, 112, 112) relu: inputs: 0: - min: -8.01382064819336 - max: 9.588595390319824 - avg_min: -2.8591087579727175 - avg_max: 3.2792069911956787 - mean: 0.2111692249774933 - std: 0.39293307299795177 + min: -6.802585124969482 + max: 8.709970474243164 + avg_min: -2.875292038917541 + avg_max: 3.292344069480896 + mean: 0.21110961586236954 + std: 0.39392244937427096 + b: 0.2580239772796631 shape: (256, 64, 112, 112) output: min: 0.0 - max: 9.588595390319824 + max: 8.709970474243164 avg_min: 0.0 - avg_max: 3.2792069911956787 - mean: 0.27234929502010347 - std: 0.2906493627939896 + avg_max: 3.292344069480896 + mean: 0.27247288525104524 + std: 0.29089813933159364 + b: 0.2078553184866905 shape: (256, 64, 112, 112) maxpool: inputs: 0: min: 0.0 - max: 9.588595390319824 + max: 8.709970474243164 avg_min: 0.0 - avg_max: 3.2792069911956787 - mean: 0.27234929502010347 - std: 0.2906493627939896 + avg_max: 3.292344069480896 + mean: 0.27247288525104524 + std: 0.29089813933159364 + b: 0.2078553184866905 shape: (256, 64, 112, 112) output: min: 0.0 - max: 9.588595390319824 + max: 8.709970474243164 avg_min: 0.0 - avg_max: 3.2792069911956787 - mean: 0.41020182669162747 - std: 0.34590466330561787 + avg_max: 3.292344069480896 + mean: 0.40832236111164094 + std: 0.3473619222413323 + b: 0.2558086723089218 shape: (256, 64, 56, 56) layer1.0.conv1: inputs: 0: min: 0.0 - max: 9.588595390319824 + max: 8.709970474243164 avg_min: 0.0 - avg_max: 3.2792069911956787 - mean: 0.41020182669162747 - std: 0.34590466330561787 + avg_max: 3.292344069480896 + mean: 0.40832236111164094 + std: 0.3473619222413323 + b: 0.2558086723089218 shape: (256, 64, 56, 56) output: - min: -6.134335994720459 - max: 5.119430065155029 - avg_min: -2.87510347366333 - avg_max: 3.2264750003814697 - mean: -0.16020772010087964 - std: 0.4356245989366653 + min: -6.828606605529785 + max: 5.236318111419678 + avg_min: -2.8953623533248902 + avg_max: 3.21773624420166 + mean: -0.15903166681528091 + std: 0.4356199981478919 + b: 0.2817686200141907 shape: (256, 64, 56, 56) layer1.0.bn1: inputs: 0: - min: -6.134335994720459 - max: 5.119430065155029 - avg_min: -2.87510347366333 - avg_max: 3.2264750003814697 - mean: -0.16020772010087964 - std: 0.4356245989366653 + min: -6.828606605529785 + max: 5.236318111419678 + avg_min: -2.8953623533248902 + avg_max: 3.21773624420166 + mean: -0.15903166681528091 + std: 0.4356199981478919 + b: 0.2817686200141907 shape: (256, 64, 56, 56) output: - min: -5.676072597503662 - max: 2.838289737701416 - avg_min: -2.651957130432129 - avg_max: 1.2408627033233643 - mean: 0.018273601215332752 - std: 0.27017834978407007 + min: -6.346645832061768 + max: 2.856245517730713 + avg_min: -2.6718324422836304 + avg_max: 1.2453311443328858 + mean: 0.019558261148631573 + std: 0.271801838403236 + b: 0.1766661003232002 shape: (256, 64, 56, 56) layer1.0.relu1: inputs: 0: - min: -5.676072597503662 - max: 2.838289737701416 - avg_min: -2.651957130432129 - avg_max: 1.2408627033233643 - mean: 0.018273601215332752 - std: 0.27017834978407007 + min: -6.346645832061768 + max: 2.856245517730713 + avg_min: -2.6718324422836304 + avg_max: 1.2453311443328858 + mean: 0.019558261148631573 + std: 0.271801838403236 + b: 0.1766661003232002 shape: (256, 64, 56, 56) output: min: 0.0 - max: 2.838289737701416 + max: 2.856245517730713 avg_min: 0.0 - avg_max: 1.2408627033233643 - mean: 0.09888825193047523 - std: 0.14426185012443266 + avg_max: 1.2453311443328858 + mean: 0.09977039471268653 + std: 0.1446119031886064 + b: 0.10097708702087402 shape: (256, 64, 56, 56) layer1.0.conv2: inputs: 0: min: 0.0 - max: 2.838289737701416 + max: 2.856245517730713 avg_min: 0.0 - avg_max: 1.2408627033233643 - mean: 0.09888825193047523 - std: 0.14426185012443266 + avg_max: 1.2453311443328858 + mean: 0.09977039471268653 + std: 0.1446119031886064 + b: 0.10097708702087402 shape: (256, 64, 56, 56) output: - min: -2.8670847415924072 - max: 2.428457260131836 - avg_min: -1.5226194500923158 - avg_max: 1.462186813354492 - mean: 0.025130289234220983 - std: 0.24702317462922718 + min: -2.8630306720733643 + max: 2.4237983226776123 + avg_min: -1.5336567759513855 + avg_max: 1.4681915879249572 + mean: 0.026247738488018514 + std: 0.24856335642971397 + b: 0.18177948594093324 shape: (256, 64, 56, 56) layer1.0.bn2: inputs: 0: - min: -2.8670847415924072 - max: 2.428457260131836 - avg_min: -1.5226194500923158 - avg_max: 1.462186813354492 - mean: 0.025130289234220983 - std: 0.24702317462922718 + min: -2.8630306720733643 + max: 2.4237983226776123 + avg_min: -1.5336567759513855 + avg_max: 1.4681915879249572 + mean: 0.026247738488018514 + std: 0.24856335642971397 + b: 0.18177948594093324 shape: (256, 64, 56, 56) output: - min: -2.47900390625 + min: -2.4756059646606445 max: 2.4024081230163574 - avg_min: -1.3767139077186583 - avg_max: 1.685540783405304 - mean: 0.09658345282077789 - std: 0.2475966625550267 + avg_min: -1.3867925524711608 + avg_max: 1.6982261180877687 + mean: 0.09799071922898292 + std: 0.2478434186338471 + b: 0.1907553628087044 shape: (256, 64, 56, 56) layer1.0.relu2: inputs: 0: - min: -2.47900390625 + min: -2.4756059646606445 max: 2.4024081230163574 - avg_min: -1.3767139077186583 - avg_max: 1.685540783405304 - mean: 0.09658345282077789 - std: 0.2475966625550267 + avg_min: -1.3867925524711608 + avg_max: 1.6982261180877687 + mean: 0.09799071922898292 + std: 0.2478434186338471 + b: 0.1907553628087044 shape: (256, 64, 56, 56) output: min: 0.0 max: 2.4024081230163574 avg_min: 0.0 - avg_max: 1.685540783405304 - mean: 0.15067598968744278 - std: 0.17923840086609663 + avg_max: 1.6982261180877687 + mean: 0.1515715852379799 + std: 0.1797079613687139 + b: 0.14260999858379364 shape: (256, 64, 56, 56) layer1.0.conv3: inputs: @@ -195,411 +216,457 @@ layer1.0.conv3: min: 0.0 max: 2.4024081230163574 avg_min: 0.0 - avg_max: 1.685540783405304 - mean: 0.15067598968744278 - std: 0.17923840086609663 + avg_max: 1.6982261180877687 + mean: 0.1515715852379799 + std: 0.1797079613687139 + b: 0.14260999858379364 shape: (256, 64, 56, 56) output: - min: -0.9372764229774475 - max: 1.0535180568695068 - avg_min: -0.5658745408058167 - avg_max: 0.531978303194046 - mean: 0.001976134371943772 - std: 0.09642191440462164 + min: -1.0363574028015137 + max: 1.0866605043411255 + avg_min: -0.5689234554767608 + avg_max: 0.5344017207622529 + mean: 0.0019158420152962207 + std: 0.09695745312469202 + b: 0.06490625068545341 shape: (256, 256, 56, 56) layer1.0.bn3: inputs: 0: - min: -0.9372764229774475 - max: 1.0535180568695068 - avg_min: -0.5658745408058167 - avg_max: 0.531978303194046 - mean: 0.001976134371943772 - std: 0.09642191440462164 + min: -1.0363574028015137 + max: 1.0866605043411255 + avg_min: -0.5689234554767608 + avg_max: 0.5344017207622529 + mean: 0.0019158420152962207 + std: 0.09695745312469202 + b: 0.06490625068545341 shape: (256, 256, 56, 56) output: - min: -2.1237709522247314 - max: 2.804506540298462 - avg_min: -1.224911904335022 - avg_max: 1.4734266877174378 - mean: 0.03012052457779646 - std: 0.17642889981452323 + min: -2.2552833557128906 + max: 2.891174077987671 + avg_min: -1.228823399543762 + avg_max: 1.482080030441284 + mean: 0.030082797259092332 + std: 0.17757162041085733 + b: 0.12617160230875016 shape: (256, 256, 56, 56) layer1.0.relu3: inputs: 0: - min: -6.5921950340271 - max: 5.349836349487305 - avg_min: -2.7074877262115478 - avg_max: 2.225037121772766 - mean: 0.05088358409702778 - std: 0.2737192745689316 + min: -5.723519802093506 + max: 5.408143520355225 + avg_min: -2.714110994338989 + avg_max: 2.2517192363739014 + mean: 0.05181790217757225 + std: 0.2748294279651139 + b: 0.19356327503919601 shape: (256, 256, 56, 56) output: min: 0.0 - max: 5.349836349487305 + max: 5.408143520355225 avg_min: 0.0 - avg_max: 2.225037121772766 - mean: 0.12471431791782378 - std: 0.15946307436766427 + avg_max: 2.2517192363739014 + mean: 0.12560559958219525 + std: 0.15995877582360993 + b: 0.12565144300460815 shape: (256, 256, 56, 56) layer1.0.downsample.0: inputs: 0: min: 0.0 - max: 9.588595390319824 + max: 8.709970474243164 avg_min: 0.0 - avg_max: 3.2792069911956787 - mean: 0.41020182669162747 - std: 0.34590466330561787 + avg_max: 3.292344069480896 + mean: 0.40832236111164094 + std: 0.3473619222413323 + b: 0.2558086723089218 shape: (256, 64, 56, 56) output: - min: -4.4379401206970215 - max: 6.524487018585205 - avg_min: -2.33790602684021 - avg_max: 4.168910694122315 - mean: -0.11462006196379662 - std: 0.3653068470578705 + min: -4.000418663024902 + max: 6.921199321746826 + avg_min: -2.3480519533157347 + avg_max: 4.156716012954713 + mean: -0.11391679793596267 + std: 0.3654536032993443 + b: 0.26149922609329224 shape: (256, 256, 56, 56) layer1.0.downsample.1: inputs: 0: - min: -4.4379401206970215 - max: 6.524487018585205 - avg_min: -2.33790602684021 - avg_max: 4.168910694122315 - mean: -0.11462006196379662 - std: 0.3653068470578705 + min: -4.000418663024902 + max: 6.921199321746826 + avg_min: -2.3480519533157347 + avg_max: 4.156716012954713 + mean: -0.11391679793596267 + std: 0.3654536032993443 + b: 0.26149922609329224 shape: (256, 256, 56, 56) output: - min: -7.008085250854492 - max: 5.45076322555542 - avg_min: -2.6306499719619754 - avg_max: 1.9708283662796018 - mean: 0.020763059332966804 - std: 0.25631280571324705 + min: -5.729030609130859 + max: 5.4052205085754395 + avg_min: -2.6320664167404173 + avg_max: 1.9875982880592344 + mean: 0.021735104732215405 + std: 0.25822147529250633 + b: 0.17771269083023067 shape: (256, 256, 56, 56) layer1.0.add: inputs: 0: - min: -2.1237709522247314 - max: 2.804506540298462 - avg_min: -1.224911904335022 - avg_max: 1.4734266877174378 - mean: 0.03012052457779646 - std: 0.17642889981452323 + min: -2.2552833557128906 + max: 2.891174077987671 + avg_min: -1.228823399543762 + avg_max: 1.482080030441284 + mean: 0.030082797259092332 + std: 0.17757162041085733 + b: 0.12617160230875016 shape: (256, 256, 56, 56) 1: - min: -7.008085250854492 - max: 5.45076322555542 - avg_min: -2.6306499719619754 - avg_max: 1.9708283662796018 - mean: 0.020763059332966804 - std: 0.25631280571324705 + min: -5.729030609130859 + max: 5.4052205085754395 + avg_min: -2.6320664167404173 + avg_max: 1.9875982880592344 + mean: 0.021735104732215405 + std: 0.25822147529250633 + b: 0.17771269083023067 shape: (256, 256, 56, 56) output: - min: -6.5921950340271 - max: 5.349836349487305 - avg_min: -2.7074877262115478 - avg_max: 2.225037121772766 - mean: 0.05088358409702778 - std: 0.2737192745689316 + min: -5.723519802093506 + max: 5.408143520355225 + avg_min: -2.714110994338989 + avg_max: 2.2517192363739014 + mean: 0.05181790217757225 + std: 0.2748294279651139 + b: 0.19356327503919601 shape: (256, 256, 56, 56) layer1.1.conv1: inputs: 0: min: 0.0 - max: 5.349836349487305 + max: 5.408143520355225 avg_min: 0.0 - avg_max: 2.225037121772766 - mean: 0.12471431791782378 - std: 0.15946307436766427 + avg_max: 2.2517192363739014 + mean: 0.12560559958219525 + std: 0.15995877582360993 + b: 0.12565144300460815 shape: (256, 256, 56, 56) output: - min: -1.9313349723815918 - max: 2.2554514408111572 - avg_min: -1.1201776385307312 - avg_max: 1.2206068515777586 - mean: 0.012862533424049617 - std: 0.19780537441792345 + min: -1.9468796253204346 + max: 2.4118616580963135 + avg_min: -1.1247573018074035 + avg_max: 1.2325500845909119 + mean: 0.014543743710964918 + std: 0.19930191734990388 + b: 0.1495312362909317 shape: (256, 64, 56, 56) layer1.1.bn1: inputs: 0: - min: -1.9313349723815918 - max: 2.2554514408111572 - avg_min: -1.1201776385307312 - avg_max: 1.2206068515777586 - mean: 0.012862533424049617 - std: 0.19780537441792345 + min: -1.9468796253204346 + max: 2.4118616580963135 + avg_min: -1.1247573018074035 + avg_max: 1.2325500845909119 + mean: 0.014543743710964918 + std: 0.19930191734990388 + b: 0.1495312362909317 shape: (256, 64, 56, 56) output: - min: -2.740361452102661 - max: 2.745940685272217 - avg_min: -1.7288200378417968 - avg_max: 1.3055826187133788 - mean: -0.03281154725700617 - std: 0.2574544790456561 + min: -3.153421640396118 + max: 2.6203081607818604 + avg_min: -1.731451725959778 + avg_max: 1.3174136161804197 + mean: -0.03057380821555853 + std: 0.25705858740320436 + b: 0.19142480790615082 shape: (256, 64, 56, 56) layer1.1.relu1: inputs: 0: - min: -2.740361452102661 - max: 2.745940685272217 - avg_min: -1.7288200378417968 - avg_max: 1.3055826187133788 - mean: -0.03281154725700617 - std: 0.2574544790456561 + min: -3.153421640396118 + max: 2.6203081607818604 + avg_min: -1.731451725959778 + avg_max: 1.3174136161804197 + mean: -0.03057380821555853 + std: 0.25705858740320436 + b: 0.19142480790615082 shape: (256, 64, 56, 56) output: min: 0.0 - max: 2.745940685272217 + max: 2.6203081607818604 avg_min: 0.0 - avg_max: 1.3055826187133788 - mean: 0.07788005843758583 - std: 0.12464164985578752 + avg_max: 1.3174136161804197 + mean: 0.07859571650624275 + std: 0.12505600836775924 + b: 0.09380149841308594 shape: (256, 64, 56, 56) layer1.1.conv2: inputs: 0: min: 0.0 - max: 2.745940685272217 + max: 2.6203081607818604 avg_min: 0.0 - avg_max: 1.3055826187133788 - mean: 0.07788005843758583 - std: 0.12464164985578752 + avg_max: 1.3174136161804197 + mean: 0.07859571650624275 + std: 0.12505600836775924 + b: 0.09380149841308594 shape: (256, 64, 56, 56) output: - min: -1.5275675058364868 - max: 1.6332422494888306 - avg_min: -0.8235357999801636 - avg_max: 0.8191621780395507 - mean: -0.03984254710376262 - std: 0.14252681331424472 + min: -1.4992557764053345 + max: 1.7087785005569458 + avg_min: -0.827894115447998 + avg_max: 0.826089608669281 + mean: -0.039308606088161474 + std: 0.14387128911630817 + b: 0.11145214289426804 shape: (256, 64, 56, 56) layer1.1.bn2: inputs: 0: - min: -1.5275675058364868 - max: 1.6332422494888306 - avg_min: -0.8235357999801636 - avg_max: 0.8191621780395507 - mean: -0.03984254710376262 - std: 0.14252681331424472 + min: -1.4992557764053345 + max: 1.7087785005569458 + avg_min: -0.827894115447998 + avg_max: 0.826089608669281 + mean: -0.039308606088161474 + std: 0.14387128911630817 + b: 0.11145214289426804 shape: (256, 64, 56, 56) output: - min: -2.8751518726348877 - max: 2.8472483158111572 - avg_min: -1.3708854317665098 - avg_max: 1.8832740783691406 - mean: -0.0040543241892009975 - std: 0.2357891889237935 + min: -2.712982177734375 + max: 2.96404767036438 + avg_min: -1.3832260131835936 + avg_max: 1.894889509677887 + mean: -0.0028795487887691706 + std: 0.2367397066162646 + b: 0.18719465434551238 shape: (256, 64, 56, 56) layer1.1.relu2: inputs: 0: - min: -2.8751518726348877 - max: 2.8472483158111572 - avg_min: -1.3708854317665098 - avg_max: 1.8832740783691406 - mean: -0.0040543241892009975 - std: 0.2357891889237935 + min: -2.712982177734375 + max: 2.96404767036438 + avg_min: -1.3832260131835936 + avg_max: 1.894889509677887 + mean: -0.0028795487887691706 + std: 0.2367397066162646 + b: 0.18719465434551238 shape: (256, 64, 56, 56) output: min: 0.0 - max: 2.8472483158111572 + max: 2.96404767036438 avg_min: 0.0 - avg_max: 1.8832740783691406 - mean: 0.09149510115385055 - std: 0.13550245260688218 + avg_max: 1.894889509677887 + mean: 0.09235606417059898 + std: 0.13614528139168378 + b: 0.1060811698436737 shape: (256, 64, 56, 56) layer1.1.conv3: inputs: 0: min: 0.0 - max: 2.8472483158111572 + max: 2.96404767036438 avg_min: 0.0 - avg_max: 1.8832740783691406 - mean: 0.09149510115385055 - std: 0.13550245260688218 + avg_max: 1.894889509677887 + mean: 0.09235606417059898 + std: 0.13614528139168378 + b: 0.1060811698436737 shape: (256, 64, 56, 56) output: - min: -0.8538176417350769 - max: 0.7335529923439026 - avg_min: -0.4299289405345917 - avg_max: 0.41846013665199283 - mean: 0.0008781348238699138 - std: 0.050629324330970844 + min: -0.9220203161239624 + max: 0.7350702881813049 + avg_min: -0.43349442780017855 + avg_max: 0.4201738059520721 + mean: 0.0008345403708517552 + std: 0.05098989611936597 + b: 0.032644493505358696 shape: (256, 256, 56, 56) layer1.1.bn3: inputs: 0: - min: -0.8538176417350769 - max: 0.7335529923439026 - avg_min: -0.4299289405345917 - avg_max: 0.41846013665199283 - mean: 0.0008781348238699138 - std: 0.050629324330970844 + min: -0.9220203161239624 + max: 0.7350702881813049 + avg_min: -0.43349442780017855 + avg_max: 0.4201738059520721 + mean: 0.0008345403708517552 + std: 0.05098989611936597 + b: 0.032644493505358696 shape: (256, 256, 56, 56) output: - min: -2.427877426147461 - max: 2.1374871730804443 - avg_min: -1.201740324497223 - avg_max: 1.2318211555480958 - mean: 0.0007946550496853887 - std: 0.11612635828400251 + min: -2.632857084274292 + max: 1.931094765663147 + avg_min: -1.2159965276718139 + avg_max: 1.233963096141815 + mean: 0.0007505259418394417 + std: 0.11703629275307093 + b: 0.07123817652463912 shape: (256, 256, 56, 56) layer1.1.relu3: inputs: 0: - min: -2.427877426147461 - max: 5.353028297424316 - avg_min: -1.1876824855804444 - avg_max: 2.676138973236084 - mean: 0.1255089685320854 - std: 0.20238215991402594 + min: -2.448188304901123 + max: 4.483600616455078 + avg_min: -1.200249695777893 + avg_max: 2.704547882080078 + mean: 0.1263561263680458 + std: 0.20295799248888058 + b: 0.15624594837427136 shape: (256, 256, 56, 56) output: min: 0.0 - max: 5.353028297424316 + max: 4.483600616455078 avg_min: 0.0 - avg_max: 2.676138973236084 - mean: 0.14902197271585463 - std: 0.17286750482866345 + avg_max: 2.704547882080078 + mean: 0.1498764231801033 + std: 0.173297613668067 + b: 0.13614595532417295 shape: (256, 256, 56, 56) layer1.1.add: inputs: 0: - min: -2.427877426147461 - max: 2.1374871730804443 - avg_min: -1.201740324497223 - avg_max: 1.2318211555480958 - mean: 0.0007946550496853887 - std: 0.11612635828400251 + min: -2.632857084274292 + max: 1.931094765663147 + avg_min: -1.2159965276718139 + avg_max: 1.233963096141815 + mean: 0.0007505259418394417 + std: 0.11703629275307093 + b: 0.07123817652463912 shape: (256, 256, 56, 56) 1: min: 0.0 - max: 5.349836349487305 + max: 5.408143520355225 avg_min: 0.0 - avg_max: 2.225037121772766 - mean: 0.12471431791782378 - std: 0.15946307436766427 + avg_max: 2.2517192363739014 + mean: 0.12560559958219525 + std: 0.15995877582360993 + b: 0.12565144300460815 shape: (256, 256, 56, 56) output: - min: -2.427877426147461 - max: 5.353028297424316 - avg_min: -1.1876824855804444 - avg_max: 2.676138973236084 - mean: 0.1255089685320854 - std: 0.20238215991402594 + min: -2.448188304901123 + max: 4.483600616455078 + avg_min: -1.200249695777893 + avg_max: 2.704547882080078 + mean: 0.1263561263680458 + std: 0.20295799248888058 + b: 0.15624594837427136 shape: (256, 256, 56, 56) layer1.2.conv1: inputs: 0: min: 0.0 - max: 5.353028297424316 + max: 4.483600616455078 avg_min: 0.0 - avg_max: 2.676138973236084 - mean: 0.14902197271585463 - std: 0.17286750482866345 + avg_max: 2.704547882080078 + mean: 0.1498764231801033 + std: 0.173297613668067 + b: 0.13614595532417295 shape: (256, 256, 56, 56) output: - min: -1.7616757154464722 - max: 1.8686389923095703 - avg_min: -1.1013933777809142 - avg_max: 1.0224858760833737 - mean: -0.00525319161824882 - std: 0.19059361957783888 + min: -1.8167027235031128 + max: 1.7228443622589111 + avg_min: -1.1022038578987121 + avg_max: 1.0339230298995974 + mean: -0.004812098923139274 + std: 0.19139740397973323 + b: 0.14415460526943208 shape: (256, 64, 56, 56) layer1.2.bn1: inputs: 0: - min: -1.7616757154464722 - max: 1.8686389923095703 - avg_min: -1.1013933777809142 - avg_max: 1.0224858760833737 - mean: -0.00525319161824882 - std: 0.19059361957783888 + min: -1.8167027235031128 + max: 1.7228443622589111 + avg_min: -1.1022038578987121 + avg_max: 1.0339230298995974 + mean: -0.004812098923139274 + std: 0.19139740397973323 + b: 0.14415460526943208 shape: (256, 64, 56, 56) output: - min: -2.7506232261657715 - max: 2.1235201358795166 - avg_min: -1.327807295322418 - avg_max: 1.3330841302871705 - mean: -0.023820190504193303 - std: 0.21698271029400948 + min: -2.452049493789673 + max: 2.3626809120178223 + avg_min: -1.3316667556762696 + avg_max: 1.337543511390686 + mean: -0.02338049728423357 + std: 0.21757246588807308 + b: 0.16897730380296705 shape: (256, 64, 56, 56) layer1.2.relu1: inputs: 0: - min: -2.7506232261657715 - max: 2.1235201358795166 - avg_min: -1.327807295322418 - avg_max: 1.3330841302871705 - mean: -0.023820190504193303 - std: 0.21698271029400948 + min: -2.452049493789673 + max: 2.3626809120178223 + avg_min: -1.3316667556762696 + avg_max: 1.337543511390686 + mean: -0.02338049728423357 + std: 0.21757246588807308 + b: 0.16897730380296705 shape: (256, 64, 56, 56) output: min: 0.0 - max: 2.1235201358795166 + max: 2.3626809120178223 avg_min: 0.0 - avg_max: 1.3330841302871705 - mean: 0.0725968673825264 - std: 0.11419613714155921 + avg_max: 1.337543511390686 + mean: 0.07288650646805764 + std: 0.11454655768761988 + b: 0.08717432022094726 shape: (256, 64, 56, 56) layer1.2.conv2: inputs: 0: min: 0.0 - max: 2.1235201358795166 + max: 2.3626809120178223 avg_min: 0.0 - avg_max: 1.3330841302871705 - mean: 0.0725968673825264 - std: 0.11419613714155921 + avg_max: 1.337543511390686 + mean: 0.07288650646805764 + std: 0.11454655768761988 + b: 0.08717432022094726 shape: (256, 64, 56, 56) output: - min: -1.6971313953399658 - max: 1.8872549533843994 - avg_min: -0.9967679262161254 - avg_max: 0.9692558109760284 - mean: -0.03579312190413475 - std: 0.15317762623712008 + min: -1.6655040979385376 + max: 1.8041901588439941 + avg_min: -0.9947495043277741 + avg_max: 0.9727156639099122 + mean: -0.03543716296553612 + std: 0.1532093424024214 + b: 0.11598385646939277 shape: (256, 64, 56, 56) layer1.2.bn2: inputs: 0: - min: -1.6971313953399658 - max: 1.8872549533843994 - avg_min: -0.9967679262161254 - avg_max: 0.9692558109760284 - mean: -0.03579312190413475 - std: 0.15317762623712008 + min: -1.6655040979385376 + max: 1.8041901588439941 + avg_min: -0.9947495043277741 + avg_max: 0.9727156639099122 + mean: -0.03543716296553612 + std: 0.1532093424024214 + b: 0.11598385646939277 shape: (256, 64, 56, 56) output: - min: -2.867137908935547 + min: -2.9388957023620605 max: 3.6316139698028564 - avg_min: -1.6317484259605406 - avg_max: 2.225333738327027 - mean: -0.052389902994036674 - std: 0.24594319748974067 + avg_min: -1.6321346282958986 + avg_max: 2.260721516609192 + mean: -0.05179072357714176 + std: 0.24605891571554359 + b: 0.18591513037681578 shape: (256, 64, 56, 56) layer1.2.relu2: inputs: 0: - min: -2.867137908935547 + min: -2.9388957023620605 max: 3.6316139698028564 - avg_min: -1.6317484259605406 - avg_max: 2.225333738327027 - mean: -0.052389902994036674 - std: 0.24594319748974067 + avg_min: -1.6321346282958986 + avg_max: 2.260721516609192 + mean: -0.05179072357714176 + std: 0.24605891571554359 + b: 0.18591513037681578 shape: (256, 64, 56, 56) output: min: 0.0 max: 3.6316139698028564 avg_min: 0.0 - avg_max: 2.225333738327027 - mean: 0.06840542927384377 - std: 0.12509801121586178 + avg_max: 2.260721516609192 + mean: 0.06845682263374328 + std: 0.1254442338043625 + b: 0.08867856264114381 shape: (256, 64, 56, 56) layer1.2.conv3: inputs: @@ -607,2665 +674,2963 @@ layer1.2.conv3: min: 0.0 max: 3.6316139698028564 avg_min: 0.0 - avg_max: 2.225333738327027 - mean: 0.06840542927384377 - std: 0.12509801121586178 + avg_max: 2.260721516609192 + mean: 0.06845682263374328 + std: 0.1254442338043625 + b: 0.08867856264114381 shape: (256, 64, 56, 56) output: - min: -0.8806965947151184 - max: 0.9206370115280151 - avg_min: -0.5347535908222198 - avg_max: 0.45239402949810026 - mean: -0.009428445808589458 - std: 0.04224741520095739 + min: -0.8854748606681824 + max: 0.8420921564102173 + avg_min: -0.540524697303772 + avg_max: 0.4540196806192398 + mean: -0.009436824824661016 + std: 0.042373290453578 + b: 0.026608585938811304 shape: (256, 256, 56, 56) layer1.2.bn3: inputs: 0: - min: -0.8806965947151184 - max: 0.9206370115280151 - avg_min: -0.5347535908222198 - avg_max: 0.45239402949810026 - mean: -0.009428445808589458 - std: 0.04224741520095739 + min: -0.8854748606681824 + max: 0.8420921564102173 + avg_min: -0.540524697303772 + avg_max: 0.4540196806192398 + mean: -0.009436824824661016 + std: 0.042373290453578 + b: 0.026608585938811304 shape: (256, 256, 56, 56) output: - min: -3.56653094291687 - max: 3.2357234954833984 - avg_min: -1.9623473525047301 - avg_max: 1.6716772675514222 - mean: -0.0139082214795053 - std: 0.13373639817461858 + min: -3.6308648586273193 + max: 3.573558807373047 + avg_min: -1.9782023072242736 + avg_max: 1.6808546781539917 + mean: -0.01391248032450676 + std: 0.13409984300834987 + b: 0.07730407193303107 shape: (256, 256, 56, 56) layer1.2.relu3: inputs: 0: - min: -3.56653094291687 - max: 5.357458591461182 - avg_min: -1.9435741305351257 - avg_max: 2.65454523563385 - mean: 0.1351137563586235 - std: 0.22185765487409212 + min: -3.6308648586273193 + max: 4.356468677520752 + avg_min: -1.9601846933364866 + avg_max: 2.668972539901733 + mean: 0.13596393913030624 + std: 0.22232956930205194 + b: 0.16796152144670487 shape: (256, 256, 56, 56) output: min: 0.0 - max: 5.357458591461182 + max: 4.356468677520752 avg_min: 0.0 - avg_max: 2.65454523563385 - mean: 0.1635646849870682 - std: 0.18104150882563352 + avg_max: 2.668972539901733 + mean: 0.16436316967010497 + std: 0.18141619856281485 + b: 0.142694553732872 shape: (256, 256, 56, 56) layer1.2.add: inputs: 0: - min: -3.56653094291687 - max: 3.2357234954833984 - avg_min: -1.9623473525047301 - avg_max: 1.6716772675514222 - mean: -0.0139082214795053 - std: 0.13373639817461858 + min: -3.6308648586273193 + max: 3.573558807373047 + avg_min: -1.9782023072242736 + avg_max: 1.6808546781539917 + mean: -0.01391248032450676 + std: 0.13409984300834987 + b: 0.07730407193303107 shape: (256, 256, 56, 56) 1: min: 0.0 - max: 5.353028297424316 + max: 4.483600616455078 avg_min: 0.0 - avg_max: 2.676138973236084 - mean: 0.14902197271585463 - std: 0.17286750482866345 + avg_max: 2.704547882080078 + mean: 0.1498764231801033 + std: 0.173297613668067 + b: 0.13614595532417295 shape: (256, 256, 56, 56) output: - min: -3.56653094291687 - max: 5.357458591461182 - avg_min: -1.9435741305351257 - avg_max: 2.65454523563385 - mean: 0.1351137563586235 - std: 0.22185765487409212 + min: -3.6308648586273193 + max: 4.356468677520752 + avg_min: -1.9601846933364866 + avg_max: 2.668972539901733 + mean: 0.13596393913030624 + std: 0.22232956930205194 + b: 0.16796152144670487 shape: (256, 256, 56, 56) layer2.0.conv1: inputs: 0: min: 0.0 - max: 5.357458591461182 + max: 4.356468677520752 avg_min: 0.0 - avg_max: 2.65454523563385 - mean: 0.1635646849870682 - std: 0.18104150882563352 + avg_max: 2.668972539901733 + mean: 0.16436316967010497 + std: 0.18141619856281485 + b: 0.142694553732872 shape: (256, 256, 56, 56) output: - min: -3.7851288318634033 - max: 3.678927421569824 - avg_min: -1.8964955091476443 - avg_max: 1.8101095080375673 - mean: -0.07384323924779893 - std: 0.20913271229609134 + min: -3.520413875579834 + max: 3.360445976257324 + avg_min: -1.899469256401062 + avg_max: 1.820480215549469 + mean: -0.07436543479561805 + std: 0.2099182706551138 + b: 0.1648312672972679 shape: (256, 128, 56, 56) layer2.0.bn1: inputs: 0: - min: -3.7851288318634033 - max: 3.678927421569824 - avg_min: -1.8964955091476443 - avg_max: 1.8101095080375673 - mean: -0.07384323924779893 - std: 0.20913271229609134 + min: -3.520413875579834 + max: 3.360445976257324 + avg_min: -1.899469256401062 + avg_max: 1.820480215549469 + mean: -0.07436543479561805 + std: 0.2099182706551138 + b: 0.1648312672972679 shape: (256, 128, 56, 56) output: - min: -3.7101635932922363 - max: 5.031552314758301 - avg_min: -1.8947327494621278 - avg_max: 2.176897025108337 - mean: -0.06824869513511655 - std: 0.23658398893458527 + min: -3.668393135070801 + max: 4.035939693450928 + avg_min: -1.9002321958541872 + avg_max: 2.1884294748306274 + mean: -0.06902376189827919 + std: 0.23721024317508332 + b: 0.18370728492736815 shape: (256, 128, 56, 56) layer2.0.relu1: inputs: 0: - min: -3.7101635932922363 - max: 5.031552314758301 - avg_min: -1.8947327494621278 - avg_max: 2.176897025108337 - mean: -0.06824869513511655 - std: 0.23658398893458527 + min: -3.668393135070801 + max: 4.035939693450928 + avg_min: -1.9002321958541872 + avg_max: 2.1884294748306274 + mean: -0.06902376189827919 + std: 0.23721024317508332 + b: 0.18370728492736815 shape: (256, 128, 56, 56) output: min: 0.0 - max: 5.031552314758301 + max: 4.035939693450928 avg_min: 0.0 - avg_max: 2.176897025108337 - mean: 0.061215569078922276 - std: 0.11362871779653372 + avg_max: 2.1884294748306274 + mean: 0.061090839654207224 + std: 0.11381593666460275 + b: 0.08104241266846658 shape: (256, 128, 56, 56) layer2.0.conv2: inputs: 0: min: 0.0 - max: 5.031552314758301 + max: 4.035939693450928 avg_min: 0.0 - avg_max: 2.176897025108337 - mean: 0.061215569078922276 - std: 0.11362871779653372 + avg_max: 2.1884294748306274 + mean: 0.061090839654207224 + std: 0.11381593666460275 + b: 0.08104241266846658 shape: (256, 128, 56, 56) output: - min: -3.1401312351226807 - max: 2.5816173553466797 - avg_min: -1.5692914128303528 - avg_max: 1.1475389122962953 - mean: -0.051120304688811305 - std: 0.2045280253897083 + min: -2.8927805423736572 + max: 2.533378839492798 + avg_min: -1.569937014579773 + avg_max: 1.1564969182014466 + mean: -0.050718259438872336 + std: 0.2047934963872852 + b: 0.15267796516418458 shape: (256, 128, 28, 28) layer2.0.bn2: inputs: 0: - min: -3.1401312351226807 - max: 2.5816173553466797 - avg_min: -1.5692914128303528 - avg_max: 1.1475389122962953 - mean: -0.051120304688811305 - std: 0.2045280253897083 + min: -2.8927805423736572 + max: 2.533378839492798 + avg_min: -1.569937014579773 + avg_max: 1.1564969182014466 + mean: -0.050718259438872336 + std: 0.2047934963872852 + b: 0.15267796516418458 shape: (256, 128, 28, 28) output: - min: -3.471578359603882 - max: 2.7841460704803467 - avg_min: -1.5314314007759093 - avg_max: 1.4789586186408996 - mean: 0.01678768452256918 - std: 0.23481432747554928 + min: -3.0661566257476807 + max: 3.2075929641723633 + avg_min: -1.532412433624268 + avg_max: 1.4946197271347046 + mean: 0.017315308935940268 + std: 0.2350567676962975 + b: 0.18010506331920623 shape: (256, 128, 28, 28) layer2.0.relu2: inputs: 0: - min: -3.471578359603882 - max: 2.7841460704803467 - avg_min: -1.5314314007759093 - avg_max: 1.4789586186408996 - mean: 0.01678768452256918 - std: 0.23481432747554928 + min: -3.0661566257476807 + max: 3.2075929641723633 + avg_min: -1.532412433624268 + avg_max: 1.4946197271347046 + mean: 0.017315308935940268 + std: 0.2350567676962975 + b: 0.18010506331920623 shape: (256, 128, 28, 28) output: min: 0.0 - max: 2.7841460704803467 + max: 3.2075929641723633 avg_min: 0.0 - avg_max: 1.4789586186408996 - mean: 0.09887485131621361 - std: 0.13920928355612663 + avg_max: 1.4946197271347046 + mean: 0.09910958036780357 + std: 0.13962639454620748 + b: 0.10902709886431694 shape: (256, 128, 28, 28) layer2.0.conv3: inputs: 0: min: 0.0 - max: 2.7841460704803467 + max: 3.2075929641723633 avg_min: 0.0 - avg_max: 1.4789586186408996 - mean: 0.09887485131621361 - std: 0.13920928355612663 + avg_max: 1.4946197271347046 + mean: 0.09910958036780357 + std: 0.13962639454620748 + b: 0.10902709886431694 shape: (256, 128, 28, 28) output: - min: -1.177610993385315 - max: 1.2421445846557617 - avg_min: -0.6588662683963776 - avg_max: 0.6638830184936523 - mean: -0.000365710657206364 - std: 0.06887803523464228 + min: -1.336847186088562 + max: 1.2912614345550537 + avg_min: -0.6678435862064361 + avg_max: 0.6716985106468201 + mean: -0.00044355815334711223 + std: 0.06916794775849786 + b: 0.04514490850269794 shape: (256, 512, 28, 28) layer2.0.bn3: inputs: 0: - min: -1.177610993385315 - max: 1.2421445846557617 - avg_min: -0.6588662683963776 - avg_max: 0.6638830184936523 - mean: -0.000365710657206364 - std: 0.06887803523464228 + min: -1.336847186088562 + max: 1.2912614345550537 + avg_min: -0.6678435862064361 + avg_max: 0.6716985106468201 + mean: -0.00044355815334711223 + std: 0.06916794775849786 + b: 0.04514490850269794 shape: (256, 512, 28, 28) output: - min: -3.119234800338745 - max: 4.322819709777832 - avg_min: -1.6770319581031798 - avg_max: 2.107779622077942 - mean: 0.016614787094295022 - std: 0.15110225873459038 + min: -3.3697004318237305 + max: 4.609816074371338 + avg_min: -1.6967235922813417 + avg_max: 2.1274492263793947 + mean: 0.01649497915059328 + std: 0.15168535572182057 + b: 0.10336219519376755 shape: (256, 512, 28, 28) layer2.0.relu3: inputs: 0: - min: -3.2353434562683105 - max: 4.374317646026611 - avg_min: -1.908308207988739 - avg_max: 2.2220622539520263 - mean: 0.033156701177358625 - std: 0.2508053622433816 + min: -4.002346515655518 + max: 4.612466812133789 + avg_min: -1.9188102960586546 + avg_max: 2.237949848175049 + mean: 0.03293768838047981 + std: 0.2514020230238431 + b: 0.1826665148139 shape: (256, 512, 28, 28) output: min: 0.0 - max: 4.374317646026611 + max: 4.612466812133789 avg_min: 0.0 - avg_max: 2.2220622539520263 - mean: 0.1062185786664486 - std: 0.17017215077356235 + avg_max: 2.237949848175049 + mean: 0.10627989619970321 + std: 0.17048933927566284 + b: 0.12701487839221956 shape: (256, 512, 28, 28) layer2.0.downsample.0: inputs: 0: min: 0.0 - max: 5.357458591461182 + max: 4.356468677520752 avg_min: 0.0 - avg_max: 2.65454523563385 - mean: 0.1635646849870682 - std: 0.18104150882563352 + avg_max: 2.668972539901733 + mean: 0.16436316967010497 + std: 0.18141619856281485 + b: 0.142694553732872 shape: (256, 256, 56, 56) output: - min: -2.483874797821045 - max: 1.9766814708709717 - avg_min: -1.0712705016136168 - avg_max: 1.0125551342964172 - mean: -0.02215038575232029 - std: 0.14656524968770543 + min: -2.0867905616760254 + max: 1.7732237577438354 + avg_min: -1.0784248232841491 + avg_max: 1.0184241473674776 + mean: -0.022250166162848473 + std: 0.14750309524682922 + b: 0.10231632143259048 shape: (256, 512, 28, 28) layer2.0.downsample.1: inputs: 0: - min: -2.483874797821045 - max: 1.9766814708709717 - avg_min: -1.0712705016136168 - avg_max: 1.0125551342964172 - mean: -0.02215038575232029 - std: 0.14656524968770543 + min: -2.0867905616760254 + max: 1.7732237577438354 + avg_min: -1.0784248232841491 + avg_max: 1.0184241473674776 + mean: -0.022250166162848473 + std: 0.14750309524682922 + b: 0.10231632143259048 shape: (256, 512, 28, 28) output: - min: -2.91910457611084 - max: 3.5744688510894775 - avg_min: -1.2576271295547483 - avg_max: 1.5933478951454163 - mean: 0.016541913338005542 - std: 0.1656089514028626 + min: -3.608018398284912 + max: 3.6187610626220703 + avg_min: -1.2669601321220398 + avg_max: 1.5968916058540343 + mean: 0.016442709229886533 + std: 0.1659821925439484 + b: 0.11021537482738494 shape: (256, 512, 28, 28) layer2.0.add: inputs: 0: - min: -3.119234800338745 - max: 4.322819709777832 - avg_min: -1.6770319581031798 - avg_max: 2.107779622077942 - mean: 0.016614787094295022 - std: 0.15110225873459038 + min: -3.3697004318237305 + max: 4.609816074371338 + avg_min: -1.6967235922813417 + avg_max: 2.1274492263793947 + mean: 0.01649497915059328 + std: 0.15168535572182057 + b: 0.10336219519376755 shape: (256, 512, 28, 28) 1: - min: -2.91910457611084 - max: 3.5744688510894775 - avg_min: -1.2576271295547483 - avg_max: 1.5933478951454163 - mean: 0.016541913338005542 - std: 0.1656089514028626 + min: -3.608018398284912 + max: 3.6187610626220703 + avg_min: -1.2669601321220398 + avg_max: 1.5968916058540343 + mean: 0.016442709229886533 + std: 0.1659821925439484 + b: 0.11021537482738494 shape: (256, 512, 28, 28) output: - min: -3.2353434562683105 - max: 4.374317646026611 - avg_min: -1.908308207988739 - avg_max: 2.2220622539520263 - mean: 0.033156701177358625 - std: 0.2508053622433816 + min: -4.002346515655518 + max: 4.612466812133789 + avg_min: -1.9188102960586546 + avg_max: 2.237949848175049 + mean: 0.03293768838047981 + std: 0.2514020230238431 + b: 0.1826665148139 shape: (256, 512, 28, 28) layer2.1.conv1: inputs: 0: min: 0.0 - max: 4.374317646026611 + max: 4.612466812133789 avg_min: 0.0 - avg_max: 2.2220622539520263 - mean: 0.1062185786664486 - std: 0.17017215077356235 + avg_max: 2.237949848175049 + mean: 0.10627989619970321 + std: 0.17048933927566284 + b: 0.12701487839221956 shape: (256, 512, 28, 28) output: - min: -2.484671115875244 - max: 2.7997260093688965 - avg_min: -1.3521671891212463 - avg_max: 1.5311004757881166 - mean: -0.0025881242472678423 - std: 0.23978565922897443 + min: -2.4400198459625244 + max: 2.6591992378234863 + avg_min: -1.3422257900238037 + avg_max: 1.5224306106567382 + mean: -0.0021878383588045834 + std: 0.24022873042228596 + b: 0.172952701151371 shape: (256, 128, 28, 28) layer2.1.bn1: inputs: 0: - min: -2.484671115875244 - max: 2.7997260093688965 - avg_min: -1.3521671891212463 - avg_max: 1.5311004757881166 - mean: -0.0025881242472678423 - std: 0.23978565922897443 + min: -2.4400198459625244 + max: 2.6591992378234863 + avg_min: -1.3422257900238037 + avg_max: 1.5224306106567382 + mean: -0.0021878383588045834 + std: 0.24022873042228596 + b: 0.172952701151371 shape: (256, 128, 28, 28) output: - min: -1.3751497268676758 - max: 1.5372964143753052 - avg_min: -0.7502778589725494 - avg_max: 0.7773641705513001 - mean: 0.041915016993880276 - std: 0.15943058110607905 + min: -1.1313437223434448 + max: 1.4384175539016724 + avg_min: -0.7489587724208832 + avg_max: 0.777692049741745 + mean: 0.04226628541946412 + std: 0.15941362801090433 + b: 0.12470946162939071 shape: (256, 128, 28, 28) layer2.1.relu1: inputs: 0: - min: -1.3751497268676758 - max: 1.5372964143753052 - avg_min: -0.7502778589725494 - avg_max: 0.7773641705513001 - mean: 0.041915016993880276 - std: 0.15943058110607905 + min: -1.1313437223434448 + max: 1.4384175539016724 + avg_min: -0.7489587724208832 + avg_max: 0.777692049741745 + mean: 0.04226628541946412 + std: 0.15941362801090433 + b: 0.12470946162939071 shape: (256, 128, 28, 28) output: min: 0.0 - max: 1.5372964143753052 + max: 1.4384175539016724 avg_min: 0.0 - avg_max: 0.7773641705513001 - mean: 0.08515402749180793 - std: 0.10953445816919516 + avg_max: 0.777692049741745 + mean: 0.08539647758007049 + std: 0.10947066193804979 + b: 0.08678584843873978 shape: (256, 128, 28, 28) layer2.1.conv2: inputs: 0: min: 0.0 - max: 1.5372964143753052 + max: 1.4384175539016724 avg_min: 0.0 - avg_max: 0.7773641705513001 - mean: 0.08515402749180793 - std: 0.10953445816919516 + avg_max: 0.777692049741745 + mean: 0.08539647758007049 + std: 0.10947066193804979 + b: 0.08678584843873978 shape: (256, 128, 28, 28) output: - min: -2.827047348022461 - max: 2.8728909492492676 - avg_min: -1.2218317389488218 - avg_max: 1.3744016766548157 - mean: 0.017694156244397165 - std: 0.23401971750704556 + min: -2.740072250366211 + max: 2.835724115371704 + avg_min: -1.227071726322174 + avg_max: 1.3707884073257446 + mean: 0.01752042714506388 + std: 0.23383963953249542 + b: 0.17713934779167176 shape: (256, 128, 28, 28) layer2.1.bn2: inputs: 0: - min: -2.827047348022461 - max: 2.8728909492492676 - avg_min: -1.2218317389488218 - avg_max: 1.3744016766548157 - mean: 0.017694156244397165 - std: 0.23401971750704556 + min: -2.740072250366211 + max: 2.835724115371704 + avg_min: -1.227071726322174 + avg_max: 1.3707884073257446 + mean: 0.01752042714506388 + std: 0.23383963953249542 + b: 0.17713934779167176 shape: (256, 128, 28, 28) output: - min: -2.3404579162597656 - max: 2.1188790798187256 - avg_min: -1.2032366633415221 - avg_max: 1.3397652268409728 - mean: 0.005192126682959497 - std: 0.18923953886359324 + min: -2.307988166809082 + max: 2.1593756675720215 + avg_min: -1.2076387405395508 + avg_max: 1.337574517726898 + mean: 0.004941523261368274 + std: 0.18913877107325366 + b: 0.1417484015226364 shape: (256, 128, 28, 28) layer2.1.relu2: inputs: 0: - min: -2.3404579162597656 - max: 2.1188790798187256 - avg_min: -1.2032366633415221 - avg_max: 1.3397652268409728 - mean: 0.005192126682959497 - std: 0.18923953886359324 + min: -2.307988166809082 + max: 2.1593756675720215 + avg_min: -1.2076387405395508 + avg_max: 1.337574517726898 + mean: 0.004941523261368274 + std: 0.18913877107325366 + b: 0.1417484015226364 shape: (256, 128, 28, 28) output: min: 0.0 - max: 2.1188790798187256 + max: 2.1593756675720215 avg_min: 0.0 - avg_max: 1.3397652268409728 - mean: 0.07319239377975464 - std: 0.10555491195196327 + avg_max: 1.337574517726898 + mean: 0.07305778563022614 + std: 0.10527022981445514 + b: 0.07830324694514275 shape: (256, 128, 28, 28) layer2.1.conv3: inputs: 0: min: 0.0 - max: 2.1188790798187256 + max: 2.1593756675720215 avg_min: 0.0 - avg_max: 1.3397652268409728 - mean: 0.07319239377975464 - std: 0.10555491195196327 + avg_max: 1.337574517726898 + mean: 0.07305778563022614 + std: 0.10527022981445514 + b: 0.07830324694514275 shape: (256, 128, 28, 28) output: - min: -1.448373556137085 - max: 0.9460731744766235 - avg_min: -0.6985628366470337 - avg_max: 0.5914552569389344 - mean: -0.011455058120191097 - std: 0.05202940095588713 + min: -1.4937077760696411 + max: 0.8379456996917725 + avg_min: -0.7004943609237672 + avg_max: 0.5934368073940277 + mean: -0.011473645269870759 + std: 0.0519348436831393 + b: 0.03241924196481705 shape: (256, 512, 28, 28) layer2.1.bn3: inputs: 0: - min: -1.448373556137085 - max: 0.9460731744766235 - avg_min: -0.6985628366470337 - avg_max: 0.5914552569389344 - mean: -0.011455058120191097 - std: 0.05202940095588713 + min: -1.4937077760696411 + max: 0.8379456996917725 + avg_min: -0.7004943609237672 + avg_max: 0.5934368073940277 + mean: -0.011473645269870759 + std: 0.0519348436831393 + b: 0.03241924196481705 shape: (256, 512, 28, 28) output: - min: -3.6870174407958984 - max: 3.9316952228546143 - avg_min: -1.8213672041893005 - avg_max: 2.1549792528152465 - mean: -0.019266553781926633 - std: 0.1389225386712158 + min: -4.5032243728637695 + max: 3.3484385013580322 + avg_min: -1.8234599351882934 + avg_max: 2.1647878408432004 + mean: -0.019318597018718717 + std: 0.13870813674698926 + b: 0.07733476758003234 shape: (256, 512, 28, 28) layer2.1.relu3: inputs: 0: - min: -3.6870174407958984 - max: 4.515761852264404 - avg_min: -1.8172029733657837 - avg_max: 2.910082507133484 - mean: 0.08695202469825745 - std: 0.19958436365067356 + min: -4.5032243728637695 + max: 4.583000659942627 + avg_min: -1.8184925198554993 + avg_max: 2.932859635353088 + mean: 0.08696129843592644 + std: 0.19960317732713073 + b: 0.14523570090532303 shape: (256, 512, 28, 28) output: min: 0.0 - max: 4.515761852264404 + max: 4.583000659942627 avg_min: 0.0 - avg_max: 2.910082507133484 - mean: 0.11452547088265419 - std: 0.16402842531117684 + avg_max: 2.932859635353088 + mean: 0.1144759252667427 + std: 0.1642182382998493 + b: 0.12441516667604446 shape: (256, 512, 28, 28) layer2.1.add: inputs: 0: - min: -3.6870174407958984 - max: 3.9316952228546143 - avg_min: -1.8213672041893005 - avg_max: 2.1549792528152465 - mean: -0.019266553781926633 - std: 0.1389225386712158 + min: -4.5032243728637695 + max: 3.3484385013580322 + avg_min: -1.8234599351882934 + avg_max: 2.1647878408432004 + mean: -0.019318597018718717 + std: 0.13870813674698926 + b: 0.07733476758003234 shape: (256, 512, 28, 28) 1: min: 0.0 - max: 4.374317646026611 + max: 4.612466812133789 avg_min: 0.0 - avg_max: 2.2220622539520263 - mean: 0.1062185786664486 - std: 0.17017215077356235 + avg_max: 2.237949848175049 + mean: 0.10627989619970321 + std: 0.17048933927566284 + b: 0.12701487839221956 shape: (256, 512, 28, 28) output: - min: -3.6870174407958984 - max: 4.515761852264404 - avg_min: -1.8172029733657837 - avg_max: 2.910082507133484 - mean: 0.08695202469825745 - std: 0.19958436365067356 + min: -4.5032243728637695 + max: 4.583000659942627 + avg_min: -1.8184925198554993 + avg_max: 2.932859635353088 + mean: 0.08696129843592644 + std: 0.19960317732713073 + b: 0.14523570090532303 shape: (256, 512, 28, 28) layer2.2.conv1: inputs: 0: min: 0.0 - max: 4.515761852264404 + max: 4.583000659942627 avg_min: 0.0 - avg_max: 2.910082507133484 - mean: 0.11452547088265419 - std: 0.16402842531117684 + avg_max: 2.932859635353088 + mean: 0.1144759252667427 + std: 0.1642182382998493 + b: 0.12441516667604446 shape: (256, 512, 28, 28) output: - min: -2.153200387954712 - max: 1.75680673122406 - avg_min: -1.2409226655960082 - avg_max: 1.0585805296897888 - mean: -0.038408808410167694 - std: 0.20395210488608664 + min: -1.9516273736953735 + max: 2.2689409255981445 + avg_min: -1.2415160059928894 + avg_max: 1.0637833237648011 + mean: -0.03815238773822784 + std: 0.2045086537957461 + b: 0.15627698600292209 shape: (256, 128, 28, 28) layer2.2.bn1: inputs: 0: - min: -2.153200387954712 - max: 1.75680673122406 - avg_min: -1.2409226655960082 - avg_max: 1.0585805296897888 - mean: -0.038408808410167694 - std: 0.20395210488608664 + min: -1.9516273736953735 + max: 2.2689409255981445 + avg_min: -1.2415160059928894 + avg_max: 1.0637833237648011 + mean: -0.03815238773822784 + std: 0.2045086537957461 + b: 0.15627698600292209 shape: (256, 128, 28, 28) output: - min: -2.4399466514587402 - max: 2.2425434589385986 - avg_min: -1.2377371907234191 - avg_max: 1.2034958720207214 - mean: -0.0005848078521012212 - std: 0.19490097560721573 + min: -2.157986879348755 + max: 2.8421895503997803 + avg_min: -1.2439522862434387 + avg_max: 1.2011296272277834 + mean: -0.00019802693641395307 + std: 0.19490813357856066 + b: 0.15075489580631257 shape: (256, 128, 28, 28) layer2.2.relu1: inputs: 0: - min: -2.4399466514587402 - max: 2.2425434589385986 - avg_min: -1.2377371907234191 - avg_max: 1.2034958720207214 - mean: -0.0005848078521012212 - std: 0.19490097560721573 + min: -2.157986879348755 + max: 2.8421895503997803 + avg_min: -1.2439522862434387 + avg_max: 1.2011296272277834 + mean: -0.00019802693641395307 + std: 0.19490813357856066 + b: 0.15075489580631257 shape: (256, 128, 28, 28) output: min: 0.0 - max: 2.2425434589385986 + max: 2.8421895503997803 avg_min: 0.0 - avg_max: 1.2034958720207214 - mean: 0.0750021368265152 - std: 0.11006324372373343 + avg_max: 1.2011296272277834 + mean: 0.0751592367887497 + std: 0.11025385201979081 + b: 0.08499016761779786 shape: (256, 128, 28, 28) layer2.2.conv2: inputs: 0: min: 0.0 - max: 2.2425434589385986 + max: 2.8421895503997803 avg_min: 0.0 - avg_max: 1.2034958720207214 - mean: 0.0750021368265152 - std: 0.11006324372373343 + avg_max: 1.2011296272277834 + mean: 0.0751592367887497 + std: 0.11025385201979081 + b: 0.08499016761779786 shape: (256, 128, 28, 28) output: - min: -1.8205151557922363 - max: 1.5001658201217651 - avg_min: -0.9985635817050934 - avg_max: 0.9279613077640534 - mean: -0.015130505803972483 - std: 0.18792135855709322 + min: -1.613122582435608 + max: 1.7418856620788574 + avg_min: -0.997245329618454 + avg_max: 0.9316056132316589 + mean: -0.015266321320086717 + std: 0.1882662118153367 + b: 0.14754093587398528 shape: (256, 128, 28, 28) layer2.2.bn2: inputs: 0: - min: -1.8205151557922363 - max: 1.5001658201217651 - avg_min: -0.9985635817050934 - avg_max: 0.9279613077640534 - mean: -0.015130505803972483 - std: 0.18792135855709322 + min: -1.613122582435608 + max: 1.7418856620788574 + avg_min: -0.997245329618454 + avg_max: 0.9316056132316589 + mean: -0.015266321320086717 + std: 0.1882662118153367 + b: 0.14754093587398528 shape: (256, 128, 28, 28) output: - min: -2.2865307331085205 - max: 2.1559152603149414 - avg_min: -1.3099663496017457 - avg_max: 1.1049108147621154 - mean: -0.007854383857920765 - std: 0.20782821136970694 + min: -2.217957019805908 + max: 2.0694851875305176 + avg_min: -1.30502005815506 + avg_max: 1.1007319211959838 + mean: -0.00797271546907723 + std: 0.20828596510418615 + b: 0.16165626496076585 shape: (256, 128, 28, 28) layer2.2.relu2: inputs: 0: - min: -2.2865307331085205 - max: 2.1559152603149414 - avg_min: -1.3099663496017457 - avg_max: 1.1049108147621154 - mean: -0.007854383857920765 - std: 0.20782821136970694 + min: -2.217957019805908 + max: 2.0694851875305176 + avg_min: -1.30502005815506 + avg_max: 1.1007319211959838 + mean: -0.00797271546907723 + std: 0.20828596510418615 + b: 0.16165626496076585 shape: (256, 128, 28, 28) output: min: 0.0 - max: 2.1559152603149414 + max: 2.0694851875305176 avg_min: 0.0 - avg_max: 1.1049108147621154 - mean: 0.07665593400597573 - std: 0.10978674447865834 + avg_max: 1.1007319211959838 + mean: 0.07674569487571717 + std: 0.10991849995103835 + b: 0.08658588826656341 shape: (256, 128, 28, 28) layer2.2.conv3: inputs: 0: min: 0.0 - max: 2.1559152603149414 + max: 2.0694851875305176 avg_min: 0.0 - avg_max: 1.1049108147621154 - mean: 0.07665593400597573 - std: 0.10978674447865834 + avg_max: 1.1007319211959838 + mean: 0.07674569487571717 + std: 0.10991849995103835 + b: 0.08658588826656341 shape: (256, 128, 28, 28) output: - min: -0.6205488443374634 - max: 0.7466901540756226 - avg_min: -0.3820457428693771 - avg_max: 0.41976919770240784 - mean: -0.0012505927705205977 - std: 0.04769707820585745 + min: -0.6760220527648926 + max: 0.7367088198661804 + avg_min: -0.3851747691631317 + avg_max: 0.4237609177827835 + mean: -0.001252472586929798 + std: 0.047811372091509256 + b: 0.035700369253754624 shape: (256, 512, 28, 28) layer2.2.bn3: inputs: 0: - min: -0.6205488443374634 - max: 0.7466901540756226 - avg_min: -0.3820457428693771 - avg_max: 0.41976919770240784 - mean: -0.0012505927705205977 - std: 0.04769707820585745 + min: -0.6760220527648926 + max: 0.7367088198661804 + avg_min: -0.3851747691631317 + avg_max: 0.4237609177827835 + mean: -0.001252472586929798 + std: 0.047811372091509256 + b: 0.035700369253754624 shape: (256, 512, 28, 28) output: - min: -2.7473044395446777 - max: 2.2267816066741943 - avg_min: -1.414629876613617 - avg_max: 1.3613874316215515 - mean: -0.05611210577189922 - std: 0.13365981548674036 + min: -2.7290027141571045 + max: 2.5251433849334717 + avg_min: -1.422510039806366 + avg_max: 1.3682208776474 + mean: -0.05611655451357365 + std: 0.1337799709600208 + b: 0.09517002776265145 shape: (256, 512, 28, 28) layer2.2.relu3: inputs: 0: - min: -2.7473044395446777 - max: 5.291001319885254 - avg_min: -1.4068810582160947 - avg_max: 3.0675222635269166 - mean: 0.058413364738225934 - std: 0.21902014876676296 + min: -2.7290027141571045 + max: 5.150259017944336 + avg_min: -1.4164042115211486 + avg_max: 3.101294159889221 + mean: 0.05835936814546585 + std: 0.21917365126183394 + b: 0.16403476893901825 shape: (256, 512, 28, 28) output: min: 0.0 - max: 5.291001319885254 + max: 5.150259017944336 avg_min: 0.0 - avg_max: 3.0675222635269166 - mean: 0.11004115790128707 - std: 0.16809938030844945 + avg_max: 3.101294159889221 + mean: 0.10999598503112795 + std: 0.16825759249436043 + b: 0.12563510090112687 shape: (256, 512, 28, 28) layer2.2.add: inputs: 0: - min: -2.7473044395446777 - max: 2.2267816066741943 - avg_min: -1.414629876613617 - avg_max: 1.3613874316215515 - mean: -0.05611210577189922 - std: 0.13365981548674036 + min: -2.7290027141571045 + max: 2.5251433849334717 + avg_min: -1.422510039806366 + avg_max: 1.3682208776474 + mean: -0.05611655451357365 + std: 0.1337799709600208 + b: 0.09517002776265145 shape: (256, 512, 28, 28) 1: min: 0.0 - max: 4.515761852264404 + max: 4.583000659942627 avg_min: 0.0 - avg_max: 2.910082507133484 - mean: 0.11452547088265419 - std: 0.16402842531117684 + avg_max: 2.932859635353088 + mean: 0.1144759252667427 + std: 0.1642182382998493 + b: 0.12441516667604446 shape: (256, 512, 28, 28) output: - min: -2.7473044395446777 - max: 5.291001319885254 - avg_min: -1.4068810582160947 - avg_max: 3.0675222635269166 - mean: 0.058413364738225934 - std: 0.21902014876676296 + min: -2.7290027141571045 + max: 5.150259017944336 + avg_min: -1.4164042115211486 + avg_max: 3.101294159889221 + mean: 0.05835936814546585 + std: 0.21917365126183394 + b: 0.16403476893901825 shape: (256, 512, 28, 28) layer2.3.conv1: inputs: 0: min: 0.0 - max: 5.291001319885254 + max: 5.150259017944336 avg_min: 0.0 - avg_max: 3.0675222635269166 - mean: 0.11004115790128707 - std: 0.16809938030844945 + avg_max: 3.101294159889221 + mean: 0.10999598503112795 + std: 0.16825759249436043 + b: 0.12563510090112687 shape: (256, 512, 28, 28) output: - min: -1.7123287916183472 - max: 1.9983665943145752 - avg_min: -1.120976448059082 - avg_max: 1.0327415943145752 - mean: -0.059147972241044046 - std: 0.18666290142279535 + min: -1.6946911811828613 + max: 1.8168659210205078 + avg_min: -1.122910237312317 + avg_max: 1.042614507675171 + mean: -0.05916286520659924 + std: 0.18714882826918586 + b: 0.1445247873663902 shape: (256, 128, 28, 28) layer2.3.bn1: inputs: 0: - min: -1.7123287916183472 - max: 1.9983665943145752 - avg_min: -1.120976448059082 - avg_max: 1.0327415943145752 - mean: -0.059147972241044046 - std: 0.18666290142279535 + min: -1.6946911811828613 + max: 1.8168659210205078 + avg_min: -1.122910237312317 + avg_max: 1.042614507675171 + mean: -0.05916286520659924 + std: 0.18714882826918586 + b: 0.1445247873663902 shape: (256, 128, 28, 28) output: - min: -1.6963084936141968 - max: 2.527071952819824 - avg_min: -1.0431524395942688 - avg_max: 1.3032521963119508 - mean: -0.030146764405071736 - std: 0.18950357453641167 + min: -1.74959135055542 + max: 2.4608726501464844 + avg_min: -1.0435778141021728 + avg_max: 1.3169567346572875 + mean: -0.0302131736651063 + std: 0.18998673591931972 + b: 0.1487326830625534 shape: (256, 128, 28, 28) layer2.3.relu1: inputs: 0: - min: -1.6963084936141968 - max: 2.527071952819824 - avg_min: -1.0431524395942688 - avg_max: 1.3032521963119508 - mean: -0.030146764405071736 - std: 0.18950357453641167 + min: -1.74959135055542 + max: 2.4608726501464844 + avg_min: -1.0435778141021728 + avg_max: 1.3169567346572875 + mean: -0.0302131736651063 + std: 0.18998673591931972 + b: 0.1487326830625534 shape: (256, 128, 28, 28) output: min: 0.0 - max: 2.527071952819824 + max: 2.4608726501464844 avg_min: 0.0 - avg_max: 1.3032521963119508 - mean: 0.059723248705267906 - std: 0.09843752668017071 + avg_max: 1.3169567346572875 + mean: 0.05982810482382774 + std: 0.09869781089850858 + b: 0.07376753836870194 shape: (256, 128, 28, 28) layer2.3.conv2: inputs: 0: min: 0.0 - max: 2.527071952819824 + max: 2.4608726501464844 avg_min: 0.0 - avg_max: 1.3032521963119508 - mean: 0.059723248705267906 - std: 0.09843752668017071 + avg_max: 1.3169567346572875 + mean: 0.05982810482382774 + std: 0.09869781089850858 + b: 0.07376753836870194 shape: (256, 128, 28, 28) output: - min: -1.4047236442565918 - max: 1.8705781698226929 - avg_min: -0.9120763659477233 - avg_max: 0.9649409115314485 - mean: -0.04703802764415741 - std: 0.1452560294569206 + min: -1.47450852394104 + max: 1.983972191810608 + avg_min: -0.9125005841255188 + avg_max: 0.9747460901737213 + mean: -0.04691337496042251 + std: 0.145616465203834 + b: 0.1094528965651989 shape: (256, 128, 28, 28) layer2.3.bn2: inputs: 0: - min: -1.4047236442565918 - max: 1.8705781698226929 - avg_min: -0.9120763659477233 - avg_max: 0.9649409115314485 - mean: -0.04703802764415741 - std: 0.1452560294569206 + min: -1.47450852394104 + max: 1.983972191810608 + avg_min: -0.9125005841255188 + avg_max: 0.9747460901737213 + mean: -0.04691337496042251 + std: 0.145616465203834 + b: 0.1094528965651989 shape: (256, 128, 28, 28) output: - min: -2.177183151245117 - max: 2.612137794494629 - avg_min: -1.3594414472579959 - avg_max: 1.2957953453063966 - mean: -0.0665459305047989 - std: 0.22336803403483615 + min: -2.3200039863586426 + max: 2.768589496612549 + avg_min: -1.3618900656700135 + avg_max: 1.3013875365257261 + mean: -0.0663405105471611 + std: 0.2236149709989044 + b: 0.17334737926721572 shape: (256, 128, 28, 28) layer2.3.relu2: inputs: 0: - min: -2.177183151245117 - max: 2.612137794494629 - avg_min: -1.3594414472579959 - avg_max: 1.2957953453063966 - mean: -0.0665459305047989 - std: 0.22336803403483615 + min: -2.3200039863586426 + max: 2.768589496612549 + avg_min: -1.3618900656700135 + avg_max: 1.3013875365257261 + mean: -0.0663405105471611 + std: 0.2236149709989044 + b: 0.17334737926721572 shape: (256, 128, 28, 28) output: min: 0.0 - max: 2.612137794494629 + max: 2.768589496612549 avg_min: 0.0 - avg_max: 1.2957953453063966 - mean: 0.05710479207336902 - std: 0.10722036534868426 + avg_max: 1.3013875365257261 + mean: 0.05718408972024917 + std: 0.10739224632179319 + b: 0.07686744779348374 shape: (256, 128, 28, 28) layer2.3.conv3: inputs: 0: min: 0.0 - max: 2.612137794494629 + max: 2.768589496612549 avg_min: 0.0 - avg_max: 1.2957953453063966 - mean: 0.05710479207336902 - std: 0.10722036534868426 + avg_max: 1.3013875365257261 + mean: 0.05718408972024917 + std: 0.10739224632179319 + b: 0.07686744779348374 shape: (256, 128, 28, 28) output: - min: -0.6665023565292358 - max: 0.5828335881233215 - avg_min: -0.3686159819364548 - avg_max: 0.3431969553232193 - mean: -0.004355491697788238 - std: 0.04156735423026709 + min: -0.7218047976493835 + max: 0.6276307702064514 + avg_min: -0.3698687642812729 + avg_max: 0.34429562389850615 + mean: -0.004402077058330178 + std: 0.04163040210321516 + b: 0.029539859481155874 shape: (256, 512, 28, 28) layer2.3.bn3: inputs: 0: - min: -0.6665023565292358 - max: 0.5828335881233215 - avg_min: -0.3686159819364548 - avg_max: 0.3431969553232193 - mean: -0.004355491697788238 - std: 0.04156735423026709 + min: -0.7218047976493835 + max: 0.6276307702064514 + avg_min: -0.3698687642812729 + avg_max: 0.34429562389850615 + mean: -0.004402077058330178 + std: 0.04163040210321516 + b: 0.029539859481155874 shape: (256, 512, 28, 28) output: - min: -2.387338161468506 - max: 2.7404048442840576 - avg_min: -1.3669693470001223 - avg_max: 1.3927722096443176 - mean: -0.05514179095625877 - std: 0.12834098451995893 + min: -2.48640775680542 + max: 2.4848639965057373 + avg_min: -1.368903923034668 + avg_max: 1.3881210088729858 + mean: -0.05529118962585926 + std: 0.12865004944424174 + b: 0.09264691695570945 shape: (256, 512, 28, 28) layer2.3.relu3: inputs: 0: - min: -2.387338161468506 - max: 5.610428810119629 - avg_min: -1.3479251980781555 - avg_max: 3.1082249164581297 - mean: 0.054899365082383154 - std: 0.22030707920791434 + min: -2.46871018409729 + max: 5.543685436248779 + avg_min: -1.3520355224609375 + avg_max: 3.1425770998001092 + mean: 0.054704793542623524 + std: 0.22058291241824587 + b: 0.16288088411092758 shape: (256, 512, 28, 28) output: min: 0.0 - max: 5.610428810119629 + max: 5.543685436248779 avg_min: 0.0 - avg_max: 3.1082249164581297 - mean: 0.10747552290558815 - std: 0.16886901235024618 + avg_max: 3.1425770998001092 + mean: 0.10741138309240343 + std: 0.16899958053161548 + b: 0.12438909709453583 shape: (256, 512, 28, 28) layer2.3.add: inputs: 0: - min: -2.387338161468506 - max: 2.7404048442840576 - avg_min: -1.3669693470001223 - avg_max: 1.3927722096443176 - mean: -0.05514179095625877 - std: 0.12834098451995893 + min: -2.48640775680542 + max: 2.4848639965057373 + avg_min: -1.368903923034668 + avg_max: 1.3881210088729858 + mean: -0.05529118962585926 + std: 0.12865004944424174 + b: 0.09264691695570945 shape: (256, 512, 28, 28) 1: min: 0.0 - max: 5.291001319885254 + max: 5.150259017944336 avg_min: 0.0 - avg_max: 3.0675222635269166 - mean: 0.11004115790128707 - std: 0.16809938030844945 + avg_max: 3.101294159889221 + mean: 0.10999598503112795 + std: 0.16825759249436043 + b: 0.12563510090112687 shape: (256, 512, 28, 28) output: - min: -2.387338161468506 - max: 5.610428810119629 - avg_min: -1.3479251980781555 - avg_max: 3.1082249164581297 - mean: 0.054899365082383154 - std: 0.22030707920791434 + min: -2.46871018409729 + max: 5.543685436248779 + avg_min: -1.3520355224609375 + avg_max: 3.1425770998001092 + mean: 0.054704793542623524 + std: 0.22058291241824587 + b: 0.16288088411092758 shape: (256, 512, 28, 28) layer3.0.conv1: inputs: 0: min: 0.0 - max: 5.610428810119629 + max: 5.543685436248779 avg_min: 0.0 - avg_max: 3.1082249164581297 - mean: 0.10747552290558815 - std: 0.16886901235024618 + avg_max: 3.1425770998001092 + mean: 0.10741138309240343 + std: 0.16899958053161548 + b: 0.12438909709453583 shape: (256, 512, 28, 28) output: - min: -2.1506705284118652 - max: 2.752180576324463 - avg_min: -1.2847834944725036 - avg_max: 1.5333833694458008 - mean: -0.08525406792759894 - std: 0.20382244244012782 + min: -2.3964364528656006 + max: 2.5774424076080322 + avg_min: -1.291263794898987 + avg_max: 1.5445761322975158 + mean: -0.08530144765973091 + std: 0.204145910382236 + b: 0.1565650463104248 shape: (256, 256, 28, 28) layer3.0.bn1: inputs: 0: - min: -2.1506705284118652 - max: 2.752180576324463 - avg_min: -1.2847834944725036 - avg_max: 1.5333833694458008 - mean: -0.08525406792759894 - std: 0.20382244244012782 + min: -2.3964364528656006 + max: 2.5774424076080322 + avg_min: -1.291263794898987 + avg_max: 1.5445761322975158 + mean: -0.08530144765973091 + std: 0.204145910382236 + b: 0.1565650463104248 shape: (256, 256, 28, 28) output: - min: -4.201587200164795 - max: 4.142081260681152 - avg_min: -1.745651137828827 - avg_max: 2.2761670112609864 - mean: -0.12949516624212265 - std: 0.259143600883797 + min: -3.280705690383911 + max: 4.302323818206787 + avg_min: -1.7556286811828614 + avg_max: 2.299310994148254 + mean: -0.12949758619070054 + std: 0.2590938141261067 + b: 0.19883236587047576 shape: (256, 256, 28, 28) layer3.0.relu1: inputs: 0: - min: -4.201587200164795 - max: 4.142081260681152 - avg_min: -1.745651137828827 - avg_max: 2.2761670112609864 - mean: -0.12949516624212265 - std: 0.259143600883797 + min: -3.280705690383911 + max: 4.302323818206787 + avg_min: -1.7556286811828614 + avg_max: 2.299310994148254 + mean: -0.12949758619070054 + std: 0.2590938141261067 + b: 0.19883236587047576 shape: (256, 256, 28, 28) output: min: 0.0 - max: 4.142081260681152 + max: 4.302323818206787 avg_min: 0.0 - avg_max: 2.2761670112609864 - mean: 0.048614009469747546 - std: 0.11409251980730875 + avg_max: 2.299310994148254 + mean: 0.0485449068248272 + std: 0.11422170981578672 + b: 0.0723893404006958 shape: (256, 256, 28, 28) layer3.0.conv2: inputs: 0: min: 0.0 - max: 4.142081260681152 + max: 4.302323818206787 avg_min: 0.0 - avg_max: 2.2761670112609864 - mean: 0.048614009469747546 - std: 0.11409251980730875 + avg_max: 2.299310994148254 + mean: 0.0485449068248272 + std: 0.11422170981578672 + b: 0.0723893404006958 shape: (256, 256, 28, 28) output: - min: -3.3741939067840576 - max: 2.1655614376068115 - avg_min: -1.5039724230766296 - avg_max: 1.1369040489196778 - mean: -0.04351833909749985 - std: 0.20419841275450595 + min: -3.4686124324798584 + max: 2.1959798336029053 + avg_min: -1.5169257402420044 + avg_max: 1.1435431241989136 + mean: -0.04374343790113926 + std: 0.20486769097657673 + b: 0.15326781272888185 shape: (256, 256, 14, 14) layer3.0.bn2: inputs: 0: - min: -3.3741939067840576 - max: 2.1655614376068115 - avg_min: -1.5039724230766296 - avg_max: 1.1369040489196778 - mean: -0.04351833909749985 - std: 0.20419841275450595 + min: -3.4686124324798584 + max: 2.1959798336029053 + avg_min: -1.5169257402420044 + avg_max: 1.1435431241989136 + mean: -0.04374343790113926 + std: 0.20486769097657673 + b: 0.15326781272888185 shape: (256, 256, 14, 14) output: - min: -2.7692513465881348 - max: 2.373121976852417 - avg_min: -1.3073265314102172 - avg_max: 1.3381234407424927 - mean: 0.030853643640875818 - std: 0.20999412274367454 + min: -2.8512134552001953 + max: 2.8404500484466553 + avg_min: -1.3086579084396361 + avg_max: 1.3467670917510985 + mean: 0.030665602162480356 + std: 0.21051672186997883 + b: 0.1630087062716484 shape: (256, 256, 14, 14) layer3.0.relu2: inputs: 0: - min: -2.7692513465881348 - max: 2.373121976852417 - avg_min: -1.3073265314102172 - avg_max: 1.3381234407424927 - mean: 0.030853643640875818 - std: 0.20999412274367454 + min: -2.8512134552001953 + max: 2.8404500484466553 + avg_min: -1.3086579084396361 + avg_max: 1.3467670917510985 + mean: 0.030665602162480356 + std: 0.21051672186997883 + b: 0.1630087062716484 shape: (256, 256, 14, 14) output: min: 0.0 - max: 2.373121976852417 + max: 2.8404500484466553 avg_min: 0.0 - avg_max: 1.3381234407424927 - mean: 0.09833981543779374 - std: 0.127535416286626 + avg_max: 1.3467670917510985 + mean: 0.09837658926844596 + std: 0.12764854697398997 + b: 0.10166800022125244 shape: (256, 256, 14, 14) layer3.0.conv3: inputs: 0: min: 0.0 - max: 2.373121976852417 + max: 2.8404500484466553 avg_min: 0.0 - avg_max: 1.3381234407424927 - mean: 0.09833981543779374 - std: 0.127535416286626 + avg_max: 1.3467670917510985 + mean: 0.09837658926844596 + std: 0.12764854697398997 + b: 0.10166800022125244 shape: (256, 256, 14, 14) output: - min: -0.9004225134849548 - max: 1.0383435487747192 - avg_min: -0.5600936472415924 - avg_max: 0.5488162934780121 - mean: -0.01155988536775112 - std: 0.08055408556971053 + min: -0.8636473417282104 + max: 0.9298957586288452 + avg_min: -0.5607096254825592 + avg_max: 0.551286804676056 + mean: -0.011694833915680648 + std: 0.08071751728401433 + b: 0.060358358174562456 shape: (256, 1024, 14, 14) layer3.0.bn3: inputs: 0: - min: -0.9004225134849548 - max: 1.0383435487747192 - avg_min: -0.5600936472415924 - avg_max: 0.5488162934780121 - mean: -0.01155988536775112 - std: 0.08055408556971053 + min: -0.8636473417282104 + max: 0.9298957586288452 + avg_min: -0.5607096254825592 + avg_max: 0.551286804676056 + mean: -0.011694833915680648 + std: 0.08071751728401433 + b: 0.060358358174562456 shape: (256, 1024, 14, 14) output: - min: -2.856438398361206 - max: 4.004288196563721 - avg_min: -1.373575758934021 - avg_max: 1.7947681903839112 - mean: -0.008522651623934509 - std: 0.16116935431228463 + min: -2.9403719902038574 + max: 3.599351167678833 + avg_min: -1.370452868938446 + avg_max: 1.798511266708374 + mean: -0.008863335102796554 + std: 0.16145241570139246 + b: 0.11582729294896127 shape: (256, 1024, 14, 14) layer3.0.relu3: inputs: 0: - min: -3.152515172958374 - max: 4.966125011444092 - avg_min: -1.7205133795738219 - avg_max: 2.0686687946319577 - mean: -0.018004749529063703 - std: 0.23591557268223448 + min: -3.2695698738098145 + max: 3.885859251022339 + avg_min: -1.7176255106925964 + avg_max: 2.07050096988678 + mean: -0.018386876024305818 + std: 0.2362749970043466 + b: 0.17508144527673722 shape: (256, 1024, 14, 14) output: min: 0.0 - max: 4.966125011444092 + max: 3.885859251022339 avg_min: 0.0 - avg_max: 2.0686687946319577 - mean: 0.07857876121997834 - std: 0.14036395427253853 + avg_max: 2.07050096988678 + mean: 0.0785293348133564 + std: 0.1405307533428432 + b: 0.1004234530031681 shape: (256, 1024, 14, 14) layer3.0.downsample.0: inputs: 0: min: 0.0 - max: 5.610428810119629 + max: 5.543685436248779 avg_min: 0.0 - avg_max: 3.1082249164581297 - mean: 0.10747552290558815 - std: 0.16886901235024618 + avg_max: 3.1425770998001092 + mean: 0.10741138309240343 + std: 0.16899958053161548 + b: 0.12438909709453583 shape: (256, 512, 28, 28) output: - min: -1.3851948976516724 - max: 1.4554047584533691 - avg_min: -0.8382481336593628 - avg_max: 0.8391178846359253 - mean: 0.0025203160010278227 - std: 0.11824097770422358 + min: -1.4215424060821533 + max: 1.33884596824646 + avg_min: -0.838221824169159 + avg_max: 0.8429729878902434 + mean: 0.002461075526662171 + std: 0.1181533193827643 + b: 0.08602300807833671 shape: (256, 1024, 14, 14) layer3.0.downsample.1: inputs: 0: - min: -1.3851948976516724 - max: 1.4554047584533691 - avg_min: -0.8382481336593628 - avg_max: 0.8391178846359253 - mean: 0.0025203160010278227 - std: 0.11824097770422358 + min: -1.4215424060821533 + max: 1.33884596824646 + avg_min: -0.838221824169159 + avg_max: 0.8429729878902434 + mean: 0.002461075526662171 + std: 0.1181533193827643 + b: 0.08602300807833671 shape: (256, 1024, 14, 14) output: - min: -2.4001338481903076 - max: 2.3011090755462646 - avg_min: -1.0339784502983094 - avg_max: 1.1814965248107911 - mean: -0.009482097718864678 - std: 0.13144392435097568 + min: -2.206541061401367 + max: 2.0164079666137695 + avg_min: -1.0341671466827393 + avg_max: 1.1840182304382325 + mean: -0.009523541014641524 + std: 0.1316129211003301 + b: 0.09400165900588035 shape: (256, 1024, 14, 14) layer3.0.add: inputs: 0: - min: -2.856438398361206 - max: 4.004288196563721 - avg_min: -1.373575758934021 - avg_max: 1.7947681903839112 - mean: -0.008522651623934509 - std: 0.16116935431228463 + min: -2.9403719902038574 + max: 3.599351167678833 + avg_min: -1.370452868938446 + avg_max: 1.798511266708374 + mean: -0.008863335102796554 + std: 0.16145241570139246 + b: 0.11582729294896127 shape: (256, 1024, 14, 14) 1: - min: -2.4001338481903076 - max: 2.3011090755462646 - avg_min: -1.0339784502983094 - avg_max: 1.1814965248107911 - mean: -0.009482097718864678 - std: 0.13144392435097568 + min: -2.206541061401367 + max: 2.0164079666137695 + avg_min: -1.0341671466827393 + avg_max: 1.1840182304382325 + mean: -0.009523541014641524 + std: 0.1316129211003301 + b: 0.09400165900588035 shape: (256, 1024, 14, 14) output: - min: -3.152515172958374 - max: 4.966125011444092 - avg_min: -1.7205133795738219 - avg_max: 2.0686687946319577 - mean: -0.018004749529063703 - std: 0.23591557268223448 + min: -3.2695698738098145 + max: 3.885859251022339 + avg_min: -1.7176255106925964 + avg_max: 2.07050096988678 + mean: -0.018386876024305818 + std: 0.2362749970043466 + b: 0.17508144527673722 shape: (256, 1024, 14, 14) layer3.1.conv1: inputs: 0: min: 0.0 - max: 4.966125011444092 + max: 3.885859251022339 avg_min: 0.0 - avg_max: 2.0686687946319577 - mean: 0.07857876121997834 - std: 0.14036395427253853 + avg_max: 2.07050096988678 + mean: 0.0785293348133564 + std: 0.1405307533428432 + b: 0.1004234530031681 shape: (256, 1024, 14, 14) output: - min: -2.573533535003662 - max: 2.3799889087677 - avg_min: -1.7555355191230775 - avg_max: 1.3433432459831238 - mean: -0.04870695397257805 - std: 0.2029741442303472 + min: -2.544332265853882 + max: 2.204393148422241 + avg_min: -1.767021894454956 + avg_max: 1.350142776966095 + mean: -0.04852357394993306 + std: 0.20349916512378985 + b: 0.15100980401039124 shape: (256, 256, 14, 14) layer3.1.bn1: inputs: 0: - min: -2.573533535003662 - max: 2.3799889087677 - avg_min: -1.7555355191230775 - avg_max: 1.3433432459831238 - mean: -0.04870695397257805 - std: 0.2029741442303472 + min: -2.544332265853882 + max: 2.204393148422241 + avg_min: -1.767021894454956 + avg_max: 1.350142776966095 + mean: -0.04852357394993306 + std: 0.20349916512378985 + b: 0.15100980401039124 shape: (256, 256, 14, 14) output: - min: -1.5699790716171265 - max: 3.5420637130737305 - avg_min: -0.9634433090686798 - avg_max: 1.5214613676071165 - mean: -0.015885374043136835 - std: 0.17602129017449333 + min: -1.6161019802093506 + max: 2.983110189437866 + avg_min: -0.9667601943016051 + avg_max: 1.5406762599945067 + mean: -0.01569236721843481 + std: 0.17601199370260534 + b: 0.13754853010177615 shape: (256, 256, 14, 14) layer3.1.relu1: inputs: 0: - min: -1.5699790716171265 - max: 3.5420637130737305 - avg_min: -0.9634433090686798 - avg_max: 1.5214613676071165 - mean: -0.015885374043136835 - std: 0.17602129017449333 + min: -1.6161019802093506 + max: 2.983110189437866 + avg_min: -0.9667601943016051 + avg_max: 1.5406762599945067 + mean: -0.01569236721843481 + std: 0.17601199370260534 + b: 0.13754853010177615 shape: (256, 256, 14, 14) output: min: 0.0 - max: 3.5420637130737305 + max: 2.983110189437866 avg_min: 0.0 - avg_max: 1.5214613676071165 - mean: 0.061081795766949644 - std: 0.09911060277733746 + avg_max: 1.5406762599945067 + mean: 0.06115706749260426 + std: 0.09923994990512984 + b: 0.07437251433730126 shape: (256, 256, 14, 14) layer3.1.conv2: inputs: 0: min: 0.0 - max: 3.5420637130737305 + max: 2.983110189437866 avg_min: 0.0 - avg_max: 1.5214613676071165 - mean: 0.061081795766949644 - std: 0.09911060277733746 + avg_max: 1.5406762599945067 + mean: 0.06115706749260426 + std: 0.09923994990512984 + b: 0.07437251433730126 shape: (256, 256, 14, 14) output: - min: -1.8370589017868042 - max: 1.7697947025299072 - avg_min: -1.2735301136970518 - avg_max: 1.0772642254829405 - mean: -0.03541758507490158 - std: 0.20633945403652537 + min: -1.798546552658081 + max: 1.7840861082077026 + avg_min: -1.2717079281806947 + avg_max: 1.0835587620735168 + mean: -0.03531114533543586 + std: 0.20681588649369226 + b: 0.15196347385644915 shape: (256, 256, 14, 14) layer3.1.bn2: inputs: 0: - min: -1.8370589017868042 - max: 1.7697947025299072 - avg_min: -1.2735301136970518 - avg_max: 1.0772642254829405 - mean: -0.03541758507490158 - std: 0.20633945403652537 + min: -1.798546552658081 + max: 1.7840861082077026 + avg_min: -1.2717079281806947 + avg_max: 1.0835587620735168 + mean: -0.03531114533543586 + std: 0.20681588649369226 + b: 0.15196347385644915 shape: (256, 256, 14, 14) output: - min: -2.284364700317383 - max: 2.185650587081909 - avg_min: -1.3686025261878967 - avg_max: 1.1445939898490904 - mean: -0.05900828167796135 - std: 0.2121280258015733 + min: -2.22202730178833 + max: 2.0688633918762207 + avg_min: -1.3674750208854678 + avg_max: 1.1406042933464051 + mean: -0.058935262635350226 + std: 0.21238500590101247 + b: 0.1633559986948967 shape: (256, 256, 14, 14) layer3.1.relu2: inputs: 0: - min: -2.284364700317383 - max: 2.185650587081909 - avg_min: -1.3686025261878967 - avg_max: 1.1445939898490904 - mean: -0.05900828167796135 - std: 0.2121280258015733 + min: -2.22202730178833 + max: 2.0688633918762207 + avg_min: -1.3674750208854678 + avg_max: 1.1406042933464051 + mean: -0.058935262635350226 + std: 0.21238500590101247 + b: 0.1633559986948967 shape: (256, 256, 14, 14) output: min: 0.0 - max: 2.185650587081909 + max: 2.0688633918762207 avg_min: 0.0 - avg_max: 1.1445939898490904 - mean: 0.054092993214726444 - std: 0.09642952525979674 + avg_max: 1.1406042933464051 + mean: 0.0542198222130537 + std: 0.09659185176404667 + b: 0.07039967179298401 shape: (256, 256, 14, 14) layer3.1.conv3: inputs: 0: min: 0.0 - max: 2.185650587081909 + max: 2.0688633918762207 avg_min: 0.0 - avg_max: 1.1445939898490904 - mean: 0.054092993214726444 - std: 0.09642952525979674 + avg_max: 1.1406042933464051 + mean: 0.0542198222130537 + std: 0.09659185176404667 + b: 0.07039967179298401 shape: (256, 256, 14, 14) output: - min: -1.34781813621521 - max: 0.7786300778388977 - avg_min: -0.6242852985858917 - avg_max: 0.4462780714035034 - mean: -0.013363566249608994 - std: 0.04846282929293715 + min: -1.3832844495773315 + max: 0.8828577399253845 + avg_min: -0.634152603149414 + avg_max: 0.4512269586324692 + mean: -0.013461796008050442 + std: 0.04860209601875486 + b: 0.03585576899349689 shape: (256, 1024, 14, 14) layer3.1.bn3: inputs: 0: - min: -1.34781813621521 - max: 0.7786300778388977 - avg_min: -0.6242852985858917 - avg_max: 0.4462780714035034 - mean: -0.013363566249608994 - std: 0.04846282929293715 + min: -1.3832844495773315 + max: 0.8828577399253845 + avg_min: -0.634152603149414 + avg_max: 0.4512269586324692 + mean: -0.013461796008050442 + std: 0.04860209601875486 + b: 0.03585576899349689 shape: (256, 1024, 14, 14) output: - min: -3.294891834259033 - max: 3.723362684249878 - avg_min: -1.6095285058021545 - avg_max: 1.6560726761817932 - mean: -0.05646139085292816 - std: 0.12761106196736757 + min: -3.381093978881836 + max: 3.740654468536377 + avg_min: -1.6280961871147155 + avg_max: 1.6817717552185059 + mean: -0.05673395991325378 + std: 0.128007741223229 + b: 0.0918328732252121 shape: (256, 1024, 14, 14) layer3.1.relu3: inputs: 0: - min: -3.1985933780670166 - max: 5.164384365081787 - avg_min: -1.4450559258460998 - avg_max: 2.5544893026351927 - mean: 0.022117372043430807 - std: 0.188348746567498 + min: -3.1117358207702637 + max: 4.73187780380249 + avg_min: -1.4645264506340028 + avg_max: 2.5773601055145257 + mean: 0.02179537620395422 + std: 0.18858668218483263 + b: 0.137426121532917 shape: (256, 1024, 14, 14) output: min: 0.0 - max: 5.164384365081787 + max: 4.73187780380249 avg_min: 0.0 - avg_max: 2.5544893026351927 - mean: 0.07852560207247734 - std: 0.13740038568745888 + avg_max: 2.5773601055145257 + mean: 0.0784379482269287 + std: 0.13747982993440178 + b: 0.09709081798791885 shape: (256, 1024, 14, 14) layer3.1.add: inputs: 0: - min: -3.294891834259033 - max: 3.723362684249878 - avg_min: -1.6095285058021545 - avg_max: 1.6560726761817932 - mean: -0.05646139085292816 - std: 0.12761106196736757 + min: -3.381093978881836 + max: 3.740654468536377 + avg_min: -1.6280961871147155 + avg_max: 1.6817717552185059 + mean: -0.05673395991325378 + std: 0.128007741223229 + b: 0.0918328732252121 shape: (256, 1024, 14, 14) 1: min: 0.0 - max: 4.966125011444092 + max: 3.885859251022339 avg_min: 0.0 - avg_max: 2.0686687946319577 - mean: 0.07857876121997834 - std: 0.14036395427253853 + avg_max: 2.07050096988678 + mean: 0.0785293348133564 + std: 0.1405307533428432 + b: 0.1004234530031681 shape: (256, 1024, 14, 14) output: - min: -3.1985933780670166 - max: 5.164384365081787 - avg_min: -1.4450559258460998 - avg_max: 2.5544893026351927 - mean: 0.022117372043430807 - std: 0.188348746567498 + min: -3.1117358207702637 + max: 4.73187780380249 + avg_min: -1.4645264506340028 + avg_max: 2.5773601055145257 + mean: 0.02179537620395422 + std: 0.18858668218483263 + b: 0.137426121532917 shape: (256, 1024, 14, 14) layer3.2.conv1: inputs: 0: min: 0.0 - max: 5.164384365081787 + max: 4.73187780380249 avg_min: 0.0 - avg_max: 2.5544893026351927 - mean: 0.07852560207247734 - std: 0.13740038568745888 + avg_max: 2.5773601055145257 + mean: 0.0784379482269287 + std: 0.13747982993440178 + b: 0.09709081798791885 shape: (256, 1024, 14, 14) output: - min: -1.2739536762237549 - max: 1.4812618494033813 - avg_min: -0.8040408909320831 - avg_max: 0.897527688741684 - mean: -0.05355839878320694 - std: 0.1558172790545742 + min: -1.2255059480667114 + max: 1.4404200315475464 + avg_min: -0.8069432020187378 + avg_max: 0.8993860423564911 + mean: -0.0536116048693657 + std: 0.15604660982464846 + b: 0.12109908014535906 shape: (256, 256, 14, 14) layer3.2.bn1: inputs: 0: - min: -1.2739536762237549 - max: 1.4812618494033813 - avg_min: -0.8040408909320831 - avg_max: 0.897527688741684 - mean: -0.05355839878320694 - std: 0.1558172790545742 + min: -1.2255059480667114 + max: 1.4404200315475464 + avg_min: -0.8069432020187378 + avg_max: 0.8993860423564911 + mean: -0.0536116048693657 + std: 0.15604660982464846 + b: 0.12109908014535906 shape: (256, 256, 14, 14) output: - min: -1.6091384887695312 - max: 2.1613590717315674 - avg_min: -0.974888825416565 - avg_max: 1.1463863968849184 - mean: -0.04899360761046409 - std: 0.17298899321911881 + min: -1.8467423915863037 + max: 2.2698769569396973 + avg_min: -0.984872955083847 + avg_max: 1.148739492893219 + mean: -0.049125467985868455 + std: 0.17332222002728023 + b: 0.1354315713047981 shape: (256, 256, 14, 14) layer3.2.relu1: inputs: 0: - min: -1.6091384887695312 - max: 2.1613590717315674 - avg_min: -0.974888825416565 - avg_max: 1.1463863968849184 - mean: -0.04899360761046409 - std: 0.17298899321911881 + min: -1.8467423915863037 + max: 2.2698769569396973 + avg_min: -0.984872955083847 + avg_max: 1.148739492893219 + mean: -0.049125467985868455 + std: 0.17332222002728023 + b: 0.1354315713047981 shape: (256, 256, 14, 14) output: min: 0.0 - max: 2.1613590717315674 + max: 2.2698769569396973 avg_min: 0.0 - avg_max: 1.1463863968849184 - mean: 0.04594111070036888 - std: 0.08596560170466168 + avg_max: 1.148739492893219 + mean: 0.04598236232995987 + std: 0.0860365410692216 + b: 0.06129458211362362 shape: (256, 256, 14, 14) layer3.2.conv2: inputs: 0: min: 0.0 - max: 2.1613590717315674 + max: 2.2698769569396973 avg_min: 0.0 - avg_max: 1.1463863968849184 - mean: 0.04594111070036888 - std: 0.08596560170466168 + avg_max: 1.148739492893219 + mean: 0.04598236232995987 + std: 0.0860365410692216 + b: 0.06129458211362362 shape: (256, 256, 14, 14) output: - min: -1.7100857496261597 - max: 1.2296204566955566 - avg_min: -0.9203199565410615 - avg_max: 0.7516951560974121 - mean: -0.060491649061441416 - std: 0.14446424529132146 + min: -1.794222354888916 + max: 1.2121577262878418 + avg_min: -0.9345794081687927 + avg_max: 0.7509669005870818 + mean: -0.06053247414529324 + std: 0.14489036484835555 + b: 0.11009075939655304 shape: (256, 256, 14, 14) layer3.2.bn2: inputs: 0: - min: -1.7100857496261597 - max: 1.2296204566955566 - avg_min: -0.9203199565410615 - avg_max: 0.7516951560974121 - mean: -0.060491649061441416 - std: 0.14446424529132146 + min: -1.794222354888916 + max: 1.2121577262878418 + avg_min: -0.9345794081687927 + avg_max: 0.7509669005870818 + mean: -0.06053247414529324 + std: 0.14489036484835555 + b: 0.11009075939655304 shape: (256, 256, 14, 14) output: - min: -1.9307109117507935 - max: 1.9227837324142456 - avg_min: -1.1561131119728087 - avg_max: 0.9304027497768402 - mean: -0.07359198182821274 - std: 0.20287761846310984 + min: -1.9024134874343872 + max: 1.9195441007614136 + avg_min: -1.1631374835968018 + avg_max: 0.9291424274444579 + mean: -0.07363725379109383 + std: 0.20335560326553556 + b: 0.15889842957258224 shape: (256, 256, 14, 14) layer3.2.relu2: inputs: 0: - min: -1.9307109117507935 - max: 1.9227837324142456 - avg_min: -1.1561131119728087 - avg_max: 0.9304027497768402 - mean: -0.07359198182821274 - std: 0.20287761846310984 + min: -1.9024134874343872 + max: 1.9195441007614136 + avg_min: -1.1631374835968018 + avg_max: 0.9291424274444579 + mean: -0.07363725379109383 + std: 0.20335560326553556 + b: 0.15889842957258224 shape: (256, 256, 14, 14) output: min: 0.0 - max: 1.9227837324142456 + max: 1.9195441007614136 avg_min: 0.0 - avg_max: 0.9304027497768402 - mean: 0.046708225086331365 - std: 0.08785573478754449 + avg_max: 0.9291424274444579 + mean: 0.04677422530949116 + std: 0.08788993623251712 + b: 0.06332858055830001 shape: (256, 256, 14, 14) layer3.2.conv3: inputs: 0: min: 0.0 - max: 1.9227837324142456 + max: 1.9195441007614136 avg_min: 0.0 - avg_max: 0.9304027497768402 - mean: 0.046708225086331365 - std: 0.08785573478754449 + avg_max: 0.9291424274444579 + mean: 0.04677422530949116 + std: 0.08788993623251712 + b: 0.06332858055830001 shape: (256, 256, 14, 14) output: - min: -0.5223075151443481 - max: 0.4661237299442291 - avg_min: -0.28980413973331454 - avg_max: 0.2777348279953003 - mean: -0.01015338534489274 - std: 0.03769439630679751 + min: -0.47167831659317017 + max: 0.4768223762512207 + avg_min: -0.2897565901279449 + avg_max: 0.27852504253387445 + mean: -0.010115890670567751 + std: 0.03771922503141036 + b: 0.028730955161154273 shape: (256, 1024, 14, 14) layer3.2.bn3: inputs: 0: - min: -0.5223075151443481 - max: 0.4661237299442291 - avg_min: -0.28980413973331454 - avg_max: 0.2777348279953003 - mean: -0.01015338534489274 - std: 0.03769439630679751 + min: -0.47167831659317017 + max: 0.4768223762512207 + avg_min: -0.2897565901279449 + avg_max: 0.27852504253387445 + mean: -0.010115890670567751 + std: 0.03771922503141036 + b: 0.028730955161154273 shape: (256, 1024, 14, 14) output: - min: -1.6972358226776123 - max: 2.3993289470672607 - avg_min: -1.0052876293659212 - avg_max: 0.990718525648117 - mean: -0.05901466868817807 - std: 0.10956712860948606 + min: -1.8715596199035645 + max: 1.7016105651855469 + avg_min: -1.007363897562027 + avg_max: 0.9949472427368165 + mean: -0.05890159755945206 + std: 0.10968252783425551 + b: 0.07940443232655524 shape: (256, 1024, 14, 14) layer3.2.relu3: inputs: 0: - min: -1.6363203525543213 - max: 5.327512264251709 - avg_min: -0.9630495011806489 - avg_max: 2.45657742023468 - mean: 0.019510931707918643 - std: 0.17988520609270667 + min: -1.6510663032531738 + max: 4.400269985198975 + avg_min: -0.9679112792015075 + avg_max: 2.471791648864746 + mean: 0.01953635085374117 + std: 0.17995644221188434 + b: 0.1306268095970154 shape: (256, 1024, 14, 14) output: min: 0.0 - max: 5.327512264251709 + max: 4.400269985198975 avg_min: 0.0 - avg_max: 2.45657742023468 - mean: 0.0736074797809124 - std: 0.135348297399026 + avg_max: 2.471791648864746 + mean: 0.07360321879386901 + std: 0.13545314285325727 + b: 0.09394648149609566 shape: (256, 1024, 14, 14) layer3.2.add: inputs: 0: - min: -1.6972358226776123 - max: 2.3993289470672607 - avg_min: -1.0052876293659212 - avg_max: 0.990718525648117 - mean: -0.05901466868817807 - std: 0.10956712860948606 + min: -1.8715596199035645 + max: 1.7016105651855469 + avg_min: -1.007363897562027 + avg_max: 0.9949472427368165 + mean: -0.05890159755945206 + std: 0.10968252783425551 + b: 0.07940443232655524 shape: (256, 1024, 14, 14) 1: min: 0.0 - max: 5.164384365081787 + max: 4.73187780380249 avg_min: 0.0 - avg_max: 2.5544893026351927 - mean: 0.07852560207247734 - std: 0.13740038568745888 + avg_max: 2.5773601055145257 + mean: 0.0784379482269287 + std: 0.13747982993440178 + b: 0.09709081798791885 shape: (256, 1024, 14, 14) output: - min: -1.6363203525543213 - max: 5.327512264251709 - avg_min: -0.9630495011806489 - avg_max: 2.45657742023468 - mean: 0.019510931707918643 - std: 0.17988520609270667 + min: -1.6510663032531738 + max: 4.400269985198975 + avg_min: -0.9679112792015075 + avg_max: 2.471791648864746 + mean: 0.01953635085374117 + std: 0.17995644221188434 + b: 0.1306268095970154 shape: (256, 1024, 14, 14) layer3.3.conv1: inputs: 0: min: 0.0 - max: 5.327512264251709 + max: 4.400269985198975 avg_min: 0.0 - avg_max: 2.45657742023468 - mean: 0.0736074797809124 - std: 0.135348297399026 + avg_max: 2.471791648864746 + mean: 0.07360321879386901 + std: 0.13545314285325727 + b: 0.09394648149609566 shape: (256, 1024, 14, 14) output: - min: -1.3141155242919922 - max: 1.7013614177703857 - avg_min: -0.8733409106731416 - avg_max: 0.9241234064102173 - mean: -0.06390224620699882 - std: 0.1473729016075356 + min: -1.4107123613357544 + max: 1.4724128246307373 + avg_min: -0.8722572386264801 + avg_max: 0.9246708631515502 + mean: -0.06400578320026397 + std: 0.14765933250560168 + b: 0.11368035450577735 shape: (256, 256, 14, 14) layer3.3.bn1: inputs: 0: - min: -1.3141155242919922 - max: 1.7013614177703857 - avg_min: -0.8733409106731416 - avg_max: 0.9241234064102173 - mean: -0.06390224620699882 - std: 0.1473729016075356 + min: -1.4107123613357544 + max: 1.4724128246307373 + avg_min: -0.8722572386264801 + avg_max: 0.9246708631515502 + mean: -0.06400578320026397 + std: 0.14765933250560168 + b: 0.11368035450577735 shape: (256, 256, 14, 14) output: - min: -1.820160984992981 - max: 3.5110983848571777 - avg_min: -1.074443531036377 - avg_max: 1.26715726852417 - mean: -0.08310422375798224 - std: 0.1866364461272101 + min: -1.835134744644165 + max: 2.820369005203247 + avg_min: -1.080615472793579 + avg_max: 1.2621156215667724 + mean: -0.08339516818523407 + std: 0.1871334705486934 + b: 0.14537983685731887 shape: (256, 256, 14, 14) layer3.3.relu1: inputs: 0: - min: -1.820160984992981 - max: 3.5110983848571777 - avg_min: -1.074443531036377 - avg_max: 1.26715726852417 - mean: -0.08310422375798224 - std: 0.1866364461272101 + min: -1.835134744644165 + max: 2.820369005203247 + avg_min: -1.080615472793579 + avg_max: 1.2621156215667724 + mean: -0.08339516818523407 + std: 0.1871334705486934 + b: 0.14537983685731887 shape: (256, 256, 14, 14) output: min: 0.0 - max: 3.5110983848571777 + max: 2.820369005203247 avg_min: 0.0 - avg_max: 1.26715726852417 - mean: 0.03824471198022366 - std: 0.08215332314659896 + avg_max: 1.2621156215667724 + mean: 0.03830158524215222 + std: 0.08225821137419886 + b: 0.05480455048382282 shape: (256, 256, 14, 14) layer3.3.conv2: inputs: 0: min: 0.0 - max: 3.5110983848571777 + max: 2.820369005203247 avg_min: 0.0 - avg_max: 1.26715726852417 - mean: 0.03824471198022366 - std: 0.08215332314659896 + avg_max: 1.2621156215667724 + mean: 0.03830158524215222 + std: 0.08225821137419886 + b: 0.05480455048382282 shape: (256, 256, 14, 14) output: - min: -1.9625822305679321 - max: 1.4796524047851562 - avg_min: -0.8453774690628051 - avg_max: 0.7829941272735595 - mean: -0.05455365739762783 - std: 0.12259960248373775 + min: -2.286611557006836 + max: 1.4300570487976074 + avg_min: -0.8553887069225312 + avg_max: 0.7814723491668701 + mean: -0.054597464576363566 + std: 0.1227312809161389 + b: 0.09269454330205919 shape: (256, 256, 14, 14) layer3.3.bn2: inputs: 0: - min: -1.9625822305679321 - max: 1.4796524047851562 - avg_min: -0.8453774690628051 - avg_max: 0.7829941272735595 - mean: -0.05455365739762783 - std: 0.12259960248373775 + min: -2.286611557006836 + max: 1.4300570487976074 + avg_min: -0.8553887069225312 + avg_max: 0.7814723491668701 + mean: -0.054597464576363566 + std: 0.1227312809161389 + b: 0.09269454330205919 shape: (256, 256, 14, 14) output: - min: -2.5048694610595703 - max: 2.1857171058654785 - avg_min: -1.197688341140747 - avg_max: 1.0186122715473174 - mean: -0.07380441427230836 - std: 0.19102371682344027 + min: -2.693354606628418 + max: 2.3429768085479736 + avg_min: -1.201731312274933 + avg_max: 1.00928692817688 + mean: -0.07395727038383484 + std: 0.19134458210184954 + b: 0.1484989792108536 shape: (256, 256, 14, 14) layer3.3.relu2: inputs: 0: - min: -2.5048694610595703 - max: 2.1857171058654785 - avg_min: -1.197688341140747 - avg_max: 1.0186122715473174 - mean: -0.07380441427230836 - std: 0.19102371682344027 + min: -2.693354606628418 + max: 2.3429768085479736 + avg_min: -1.201731312274933 + avg_max: 1.00928692817688 + mean: -0.07395727038383484 + std: 0.19134458210184954 + b: 0.1484989792108536 shape: (256, 256, 14, 14) output: min: 0.0 - max: 2.1857171058654785 + max: 2.3429768085479736 avg_min: 0.0 - avg_max: 1.0186122715473174 - mean: 0.04190520346164703 - std: 0.08191135989157138 + avg_max: 1.00928692817688 + mean: 0.04196812137961387 + std: 0.0819769037830909 + b: 0.05776412300765514 shape: (256, 256, 14, 14) layer3.3.conv3: inputs: 0: min: 0.0 - max: 2.1857171058654785 + max: 2.3429768085479736 avg_min: 0.0 - avg_max: 1.0186122715473174 - mean: 0.04190520346164703 - std: 0.08191135989157138 + avg_max: 1.00928692817688 + mean: 0.04196812137961387 + std: 0.0819769037830909 + b: 0.05776412300765514 shape: (256, 256, 14, 14) output: - min: -0.8744244575500488 - max: 0.6701964735984802 - avg_min: -0.4116904616355896 - avg_max: 0.30033474564552304 - mean: -0.013642842136323451 - std: 0.03284520891780353 + min: -0.8529643416404724 + max: 0.5916772484779358 + avg_min: -0.4155533730983734 + avg_max: 0.29963394105434416 + mean: -0.01357287410646677 + std: 0.03285487120054015 + b: 0.024781853519380094 shape: (256, 1024, 14, 14) layer3.3.bn3: inputs: 0: - min: -0.8744244575500488 - max: 0.6701964735984802 - avg_min: -0.4116904616355896 - avg_max: 0.30033474564552304 - mean: -0.013642842136323451 - std: 0.03284520891780353 + min: -0.8529643416404724 + max: 0.5916772484779358 + avg_min: -0.4155533730983734 + avg_max: 0.29963394105434416 + mean: -0.01357287410646677 + std: 0.03285487120054015 + b: 0.024781853519380094 shape: (256, 1024, 14, 14) output: - min: -2.780369281768799 - max: 5.047985553741455 - avg_min: -1.3500766515731815 - avg_max: 1.3014169096946715 - mean: -0.06484036147594452 - std: 0.1106017955255637 + min: -2.7871150970458984 + max: 4.472135066986084 + avg_min: -1.3642309188842772 + avg_max: 1.2945337533950807 + mean: -0.0646173596382141 + std: 0.11064792183430848 + b: 0.08059151545166969 shape: (256, 1024, 14, 14) layer3.3.relu3: inputs: 0: - min: -2.4268336296081543 - max: 6.842432498931885 - avg_min: -1.2578607439994811 - avg_max: 2.773927688598633 - mean: 0.008767120074480772 - std: 0.18065239121137047 + min: -2.4470155239105225 + max: 5.5454607009887695 + avg_min: -1.2687544226646423 + avg_max: 2.776830315589905 + mean: 0.008985858596861362 + std: 0.1807051431499482 + b: 0.12704886943101884 shape: (256, 1024, 14, 14) output: min: 0.0 - max: 6.842432498931885 + max: 5.5454607009887695 avg_min: 0.0 - avg_max: 2.773927688598633 - mean: 0.06711363941431045 - std: 0.13257718978893668 + avg_max: 2.776830315589905 + mean: 0.0671969495713711 + std: 0.1327272239563941 + b: 0.08904388174414635 shape: (256, 1024, 14, 14) layer3.3.add: inputs: 0: - min: -2.780369281768799 - max: 5.047985553741455 - avg_min: -1.3500766515731815 - avg_max: 1.3014169096946715 - mean: -0.06484036147594452 - std: 0.1106017955255637 + min: -2.7871150970458984 + max: 4.472135066986084 + avg_min: -1.3642309188842772 + avg_max: 1.2945337533950807 + mean: -0.0646173596382141 + std: 0.11064792183430848 + b: 0.08059151545166969 shape: (256, 1024, 14, 14) 1: min: 0.0 - max: 5.327512264251709 + max: 4.400269985198975 avg_min: 0.0 - avg_max: 2.45657742023468 - mean: 0.0736074797809124 - std: 0.135348297399026 + avg_max: 2.471791648864746 + mean: 0.07360321879386901 + std: 0.13545314285325727 + b: 0.09394648149609566 shape: (256, 1024, 14, 14) output: - min: -2.4268336296081543 - max: 6.842432498931885 - avg_min: -1.2578607439994811 - avg_max: 2.773927688598633 - mean: 0.008767120074480772 - std: 0.18065239121137047 + min: -2.4470155239105225 + max: 5.5454607009887695 + avg_min: -1.2687544226646423 + avg_max: 2.776830315589905 + mean: 0.008985858596861362 + std: 0.1807051431499482 + b: 0.12704886943101884 shape: (256, 1024, 14, 14) layer3.4.conv1: inputs: 0: min: 0.0 - max: 6.842432498931885 + max: 5.5454607009887695 avg_min: 0.0 - avg_max: 2.773927688598633 - mean: 0.06711363941431045 - std: 0.13257718978893668 + avg_max: 2.776830315589905 + mean: 0.0671969495713711 + std: 0.1327272239563941 + b: 0.08904388174414635 shape: (256, 1024, 14, 14) output: - min: -1.4036506414413452 - max: 1.4978818893432617 - avg_min: -0.8180736482143403 - avg_max: 0.9027495622634889 - mean: -0.07035565003752708 - std: 0.14141915510101635 + min: -1.4321876764297485 + max: 1.4811002016067505 + avg_min: -0.8182755529880523 + avg_max: 0.9019500613212587 + mean: -0.07049371376633644 + std: 0.14159163078468326 + b: 0.10927761346101761 shape: (256, 256, 14, 14) layer3.4.bn1: inputs: 0: - min: -1.4036506414413452 - max: 1.4978818893432617 - avg_min: -0.8180736482143403 - avg_max: 0.9027495622634889 - mean: -0.07035565003752708 - std: 0.14141915510101635 + min: -1.4321876764297485 + max: 1.4811002016067505 + avg_min: -0.8182755529880523 + avg_max: 0.9019500613212587 + mean: -0.07049371376633644 + std: 0.14159163078468326 + b: 0.10927761346101761 shape: (256, 256, 14, 14) output: - min: -2.287900686264038 - max: 3.120579957962036 - avg_min: -1.2428925752639772 - avg_max: 1.3030256152153015 - mean: -0.09182318076491355 - std: 0.19056795431409293 + min: -2.1923842430114746 + max: 2.9939489364624023 + avg_min: -1.2474177479743955 + avg_max: 1.2880850553512573 + mean: -0.09210593849420548 + std: 0.1908010822551101 + b: 0.14730767905712128 shape: (256, 256, 14, 14) layer3.4.relu1: inputs: 0: - min: -2.287900686264038 - max: 3.120579957962036 - avg_min: -1.2428925752639772 - avg_max: 1.3030256152153015 - mean: -0.09182318076491355 - std: 0.19056795431409293 + min: -2.1923842430114746 + max: 2.9939489364624023 + avg_min: -1.2474177479743955 + avg_max: 1.2880850553512573 + mean: -0.09210593849420548 + std: 0.1908010822551101 + b: 0.14730767905712128 shape: (256, 256, 14, 14) output: min: 0.0 - max: 3.120579957962036 + max: 2.9939489364624023 avg_min: 0.0 - avg_max: 1.3030256152153015 - mean: 0.036129880324006075 - std: 0.08013136187320138 + avg_max: 1.2880850553512573 + mean: 0.0361121691763401 + std: 0.0800226152899751 + b: 0.052542395517230035 shape: (256, 256, 14, 14) layer3.4.conv2: inputs: 0: min: 0.0 - max: 3.120579957962036 + max: 2.9939489364624023 avg_min: 0.0 - avg_max: 1.3030256152153015 - mean: 0.036129880324006075 - std: 0.08013136187320138 + avg_max: 1.2880850553512573 + mean: 0.0361121691763401 + std: 0.0800226152899751 + b: 0.052542395517230035 shape: (256, 256, 14, 14) output: - min: -1.2296303510665894 - max: 1.360468864440918 - avg_min: -0.6864560902118683 - avg_max: 0.6652375042438508 - mean: -0.06385108977556228 - std: 0.1197144650046181 + min: -1.3785531520843506 + max: 1.1173038482666016 + avg_min: -0.6841362714767456 + avg_max: 0.6594028234481811 + mean: -0.0635660532861948 + std: 0.11917848063795294 + b: 0.09063096791505815 shape: (256, 256, 14, 14) layer3.4.bn2: inputs: 0: - min: -1.2296303510665894 - max: 1.360468864440918 - avg_min: -0.6864560902118683 - avg_max: 0.6652375042438508 - mean: -0.06385108977556228 - std: 0.1197144650046181 + min: -1.3785531520843506 + max: 1.1173038482666016 + avg_min: -0.6841362714767456 + avg_max: 0.6594028234481811 + mean: -0.0635660532861948 + std: 0.11917848063795294 + b: 0.09063096791505815 shape: (256, 256, 14, 14) output: - min: -2.5258262157440186 - max: 2.5762646198272705 - avg_min: -1.202998912334442 - avg_max: 1.060443115234375 - mean: -0.0941622532904148 - std: 0.19918728561258164 + min: -2.5578463077545166 + max: 2.6030020713806152 + avg_min: -1.1932874560356141 + avg_max: 1.0532284140586852 + mean: -0.09362928867340088 + std: 0.19828422927421832 + b: 0.15405910462141037 shape: (256, 256, 14, 14) layer3.4.relu2: inputs: 0: - min: -2.5258262157440186 - max: 2.5762646198272705 - avg_min: -1.202998912334442 - avg_max: 1.060443115234375 - mean: -0.0941622532904148 - std: 0.19918728561258164 + min: -2.5578463077545166 + max: 2.6030020713806152 + avg_min: -1.1932874560356141 + avg_max: 1.0532284140586852 + mean: -0.09362928867340088 + std: 0.19828422927421832 + b: 0.15405910462141037 shape: (256, 256, 14, 14) output: min: 0.0 - max: 2.5762646198272705 + max: 2.6030020713806152 avg_min: 0.0 - avg_max: 1.060443115234375 - mean: 0.0378439262509346 - std: 0.08109124921698624 + avg_max: 1.0532284140586852 + mean: 0.03780082538723946 + std: 0.08083680466761649 + b: 0.054279979318380356 shape: (256, 256, 14, 14) layer3.4.conv3: inputs: 0: min: 0.0 - max: 2.5762646198272705 + max: 2.6030020713806152 avg_min: 0.0 - avg_max: 1.060443115234375 - mean: 0.0378439262509346 - std: 0.08109124921698624 + avg_max: 1.0532284140586852 + mean: 0.03780082538723946 + std: 0.08083680466761649 + b: 0.054279979318380356 shape: (256, 256, 14, 14) output: - min: -0.6274950504302979 - max: 0.5474128127098083 - avg_min: -0.31079573035240177 - avg_max: 0.31312489509582514 - mean: -0.018573758937418458 - std: 0.03237467743002246 + min: -0.617553174495697 + max: 0.5405022501945496 + avg_min: -0.31024474799633023 + avg_max: 0.30949910879135134 + mean: -0.01831467431038618 + std: 0.03220125309911986 + b: 0.02396907676011324 shape: (256, 1024, 14, 14) layer3.4.bn3: inputs: 0: - min: -0.6274950504302979 - max: 0.5474128127098083 - avg_min: -0.31079573035240177 - avg_max: 0.31312489509582514 - mean: -0.018573758937418458 - std: 0.03237467743002246 + min: -0.617553174495697 + max: 0.5405022501945496 + avg_min: -0.31024474799633023 + avg_max: 0.30949910879135134 + mean: -0.01831467431038618 + std: 0.03220125309911986 + b: 0.02396907676011324 shape: (256, 1024, 14, 14) output: - min: -3.0660805702209473 - max: 2.9988577365875244 - avg_min: -1.2700673937797546 - avg_max: 1.0780652999877929 - mean: -0.08978047668933868 - std: 0.12112411379834422 + min: -2.7760021686553955 + max: 3.0912625789642334 + avg_min: -1.2608299374580383 + avg_max: 1.0748429894447327 + mean: -0.08889898136258126 + std: 0.12065517312522482 + b: 0.0887866385281086 shape: (256, 1024, 14, 14) layer3.4.relu3: inputs: 0: - min: -2.9198529720306396 - max: 5.9765801429748535 - avg_min: -1.2321366190910341 - avg_max: 2.8483860015869147 - mean: -0.0226668369024992 - std: 0.1857150470146882 + min: -2.7760021686553955 + max: 5.285286903381348 + avg_min: -1.2248466730117797 + avg_max: 2.8475504875183106 + mean: -0.021702030487358567 + std: 0.18543194674812571 + b: 0.1282407984137535 shape: (256, 1024, 14, 14) output: min: 0.0 - max: 5.9765801429748535 + max: 5.285286903381348 avg_min: 0.0 - avg_max: 2.8483860015869147 - mean: 0.055139701813459396 - std: 0.12426296892592821 + avg_max: 2.8475504875183106 + mean: 0.05537210628390312 + std: 0.12453756625097041 + b: 0.07891639769077301 shape: (256, 1024, 14, 14) layer3.4.add: inputs: 0: - min: -3.0660805702209473 - max: 2.9988577365875244 - avg_min: -1.2700673937797546 - avg_max: 1.0780652999877929 - mean: -0.08978047668933868 - std: 0.12112411379834422 + min: -2.7760021686553955 + max: 3.0912625789642334 + avg_min: -1.2608299374580383 + avg_max: 1.0748429894447327 + mean: -0.08889898136258126 + std: 0.12065517312522482 + b: 0.0887866385281086 shape: (256, 1024, 14, 14) 1: min: 0.0 - max: 6.842432498931885 + max: 5.5454607009887695 avg_min: 0.0 - avg_max: 2.773927688598633 - mean: 0.06711363941431045 - std: 0.13257718978893668 + avg_max: 2.776830315589905 + mean: 0.0671969495713711 + std: 0.1327272239563941 + b: 0.08904388174414635 shape: (256, 1024, 14, 14) output: - min: -2.9198529720306396 - max: 5.9765801429748535 - avg_min: -1.2321366190910341 - avg_max: 2.8483860015869147 - mean: -0.0226668369024992 - std: 0.1857150470146882 + min: -2.7760021686553955 + max: 5.285286903381348 + avg_min: -1.2248466730117797 + avg_max: 2.8475504875183106 + mean: -0.021702030487358567 + std: 0.18543194674812571 + b: 0.1282407984137535 shape: (256, 1024, 14, 14) layer3.5.conv1: inputs: 0: min: 0.0 - max: 5.9765801429748535 + max: 5.285286903381348 avg_min: 0.0 - avg_max: 2.8483860015869147 - mean: 0.055139701813459396 - std: 0.12426296892592821 + avg_max: 2.8475504875183106 + mean: 0.05537210628390312 + std: 0.12453756625097041 + b: 0.07891639769077301 shape: (256, 1024, 14, 14) output: - min: -1.2228301763534546 - max: 1.7884830236434937 - avg_min: -0.7673625111579895 - avg_max: 1.0236753463745116 - mean: -0.058728481829166415 - std: 0.1335905788558348 + min: -1.2114547491073608 + max: 1.8547759056091309 + avg_min: -0.7687224447727204 + avg_max: 1.0366832494735716 + mean: -0.05898677967488766 + std: 0.1339720497912883 + b: 0.10209123492240905 shape: (256, 256, 14, 14) layer3.5.bn1: inputs: 0: - min: -1.2228301763534546 - max: 1.7884830236434937 - avg_min: -0.7673625111579895 - avg_max: 1.0236753463745116 - mean: -0.058728481829166415 - std: 0.1335905788558348 + min: -1.2114547491073608 + max: 1.8547759056091309 + avg_min: -0.7687224447727204 + avg_max: 1.0366832494735716 + mean: -0.05898677967488766 + std: 0.1339720497912883 + b: 0.10209123492240905 shape: (256, 256, 14, 14) output: - min: -2.146045684814453 - max: 3.04902720451355 - avg_min: -1.3436482310295104 - avg_max: 1.538545846939087 - mean: -0.11112343668937684 - std: 0.20606540814755064 + min: -2.405616521835327 + max: 2.9770092964172363 + avg_min: -1.345890736579895 + avg_max: 1.5401015281677246 + mean: -0.11162762120366096 + std: 0.2067524814549052 + b: 0.158324958384037 shape: (256, 256, 14, 14) layer3.5.relu1: inputs: 0: - min: -2.146045684814453 - max: 3.04902720451355 - avg_min: -1.3436482310295104 - avg_max: 1.538545846939087 - mean: -0.11112343668937684 - std: 0.20606540814755064 + min: -2.405616521835327 + max: 2.9770092964172363 + avg_min: -1.345890736579895 + avg_max: 1.5401015281677246 + mean: -0.11162762120366096 + std: 0.2067524814549052 + b: 0.158324958384037 shape: (256, 256, 14, 14) output: min: 0.0 - max: 3.04902720451355 + max: 2.9770092964172363 avg_min: 0.0 - avg_max: 1.538545846939087 - mean: 0.035909949243068694 - std: 0.08706416070683066 + avg_max: 1.5401015281677246 + mean: 0.03598667941987514 + std: 0.08728598462606063 + b: 0.054116987437009816 shape: (256, 256, 14, 14) layer3.5.conv2: inputs: 0: min: 0.0 - max: 3.04902720451355 + max: 2.9770092964172363 avg_min: 0.0 - avg_max: 1.538545846939087 - mean: 0.035909949243068694 - std: 0.08706416070683066 + avg_max: 1.5401015281677246 + mean: 0.03598667941987514 + std: 0.08728598462606063 + b: 0.054116987437009816 shape: (256, 256, 14, 14) output: - min: -2.057424306869507 - max: 1.784161925315857 - avg_min: -0.9600347816944121 - avg_max: 0.8400526225566863 - mean: -0.05844097547233105 - std: 0.13002081401800156 + min: -2.1120169162750244 + max: 1.774125337600708 + avg_min: -0.9561347246170043 + avg_max: 0.8397526204586028 + mean: -0.058581435680389406 + std: 0.1299289392006273 + b: 0.09731543958187104 shape: (256, 256, 14, 14) layer3.5.bn2: inputs: 0: - min: -2.057424306869507 - max: 1.784161925315857 - avg_min: -0.9600347816944121 - avg_max: 0.8400526225566863 - mean: -0.05844097547233105 - std: 0.13002081401800156 + min: -2.1120169162750244 + max: 1.774125337600708 + avg_min: -0.9561347246170043 + avg_max: 0.8397526204586028 + mean: -0.058581435680389406 + std: 0.1299289392006273 + b: 0.09731543958187104 shape: (256, 256, 14, 14) output: - min: -4.574428558349609 - max: 3.455890417098999 - avg_min: -1.8004912614822388 - avg_max: 1.494127357006073 - mean: -0.08998745903372765 - std: 0.21385513341368986 + min: -4.698740482330322 + max: 3.3609368801116943 + avg_min: -1.7777138948440552 + avg_max: 1.4988572001457214 + mean: -0.09034643545746802 + std: 0.21381942006553892 + b: 0.16239558458328246 shape: (256, 256, 14, 14) layer3.5.relu2: inputs: 0: - min: -4.574428558349609 - max: 3.455890417098999 - avg_min: -1.8004912614822388 - avg_max: 1.494127357006073 - mean: -0.08998745903372765 - std: 0.21385513341368986 + min: -4.698740482330322 + max: 3.3609368801116943 + avg_min: -1.7777138948440552 + avg_max: 1.4988572001457214 + mean: -0.09034643545746802 + std: 0.21381942006553892 + b: 0.16239558458328246 shape: (256, 256, 14, 14) output: min: 0.0 - max: 3.455890417098999 + max: 3.3609368801116943 avg_min: 0.0 - avg_max: 1.494127357006073 - mean: 0.043055493384599686 - std: 0.09389931986430936 + avg_max: 1.4988572001457214 + mean: 0.04298026263713837 + std: 0.09398657532999506 + b: 0.061214948818087575 shape: (256, 256, 14, 14) layer3.5.conv3: inputs: 0: min: 0.0 - max: 3.455890417098999 + max: 3.3609368801116943 avg_min: 0.0 - avg_max: 1.494127357006073 - mean: 0.043055493384599686 - std: 0.09389931986430936 + avg_max: 1.4988572001457214 + mean: 0.04298026263713837 + std: 0.09398657532999506 + b: 0.061214948818087575 shape: (256, 256, 14, 14) output: - min: -1.604799509048462 - max: 1.5653789043426514 - avg_min: -0.5808867990970612 - avg_max: 0.4830966383218765 - mean: -0.0280995761975646 - std: 0.04402634514173766 + min: -1.5942188501358032 + max: 1.6467878818511963 + avg_min: -0.5832379519939421 + avg_max: 0.48611052334308624 + mean: -0.027793312817811965 + std: 0.044006184962549925 + b: 0.031050648726522925 shape: (256, 1024, 14, 14) layer3.5.bn3: inputs: 0: - min: -1.604799509048462 - max: 1.5653789043426514 - avg_min: -0.5808867990970612 - avg_max: 0.4830966383218765 - mean: -0.0280995761975646 - std: 0.04402634514173766 + min: -1.5942188501358032 + max: 1.6467878818511963 + avg_min: -0.5832379519939421 + avg_max: 0.48611052334308624 + mean: -0.027793312817811965 + std: 0.044006184962549925 + b: 0.031050648726522925 shape: (256, 1024, 14, 14) output: - min: -4.996767997741699 - max: 3.009377956390381 - avg_min: -1.7419140815734864 - avg_max: 1.1948076128959655 - mean: -0.1218911699950695 - std: 0.14199012849303966 + min: -4.571747303009033 + max: 2.951798677444458 + avg_min: -1.7450510263442993 + avg_max: 1.1962575674057008 + mean: -0.12095604911446571 + std: 0.14193320406976667 + b: 0.10260932072997093 shape: (256, 1024, 14, 14) layer3.5.relu3: inputs: 0: - min: -4.979601860046387 - max: 5.826275825500488 - avg_min: -1.6993945837020874 - avg_max: 2.372250032424927 - mean: -0.06675146967172624 - std: 0.19184784648937794 + min: -4.525286674499512 + max: 5.23931360244751 + avg_min: -1.7014144301414489 + avg_max: 2.36359326839447 + mean: -0.06558393985033036 + std: 0.19186352583657984 + b: 0.13366126269102097 shape: (256, 1024, 14, 14) output: min: 0.0 - max: 5.826275825500488 + max: 5.23931360244751 avg_min: 0.0 - avg_max: 2.372250032424927 - mean: 0.04188145287334919 - std: 0.10869858401882222 + avg_max: 2.36359326839447 + mean: 0.04217293076217175 + std: 0.1091152794488751 + b: 0.06395013406872749 shape: (256, 1024, 14, 14) layer3.5.add: inputs: 0: - min: -4.996767997741699 - max: 3.009377956390381 - avg_min: -1.7419140815734864 - avg_max: 1.1948076128959655 - mean: -0.1218911699950695 - std: 0.14199012849303966 + min: -4.571747303009033 + max: 2.951798677444458 + avg_min: -1.7450510263442993 + avg_max: 1.1962575674057008 + mean: -0.12095604911446571 + std: 0.14193320406976667 + b: 0.10260932072997093 shape: (256, 1024, 14, 14) 1: min: 0.0 - max: 5.9765801429748535 + max: 5.285286903381348 avg_min: 0.0 - avg_max: 2.8483860015869147 - mean: 0.055139701813459396 - std: 0.12426296892592821 + avg_max: 2.8475504875183106 + mean: 0.05537210628390312 + std: 0.12453756625097041 + b: 0.07891639769077301 shape: (256, 1024, 14, 14) output: - min: -4.979601860046387 - max: 5.826275825500488 - avg_min: -1.6993945837020874 - avg_max: 2.372250032424927 - mean: -0.06675146967172624 - std: 0.19184784648937794 + min: -4.525286674499512 + max: 5.23931360244751 + avg_min: -1.7014144301414489 + avg_max: 2.36359326839447 + mean: -0.06558393985033036 + std: 0.19186352583657984 + b: 0.13366126269102097 shape: (256, 1024, 14, 14) layer4.0.conv1: inputs: 0: min: 0.0 - max: 5.826275825500488 + max: 5.23931360244751 avg_min: 0.0 - avg_max: 2.372250032424927 - mean: 0.04188145287334919 - std: 0.10869858401882222 + avg_max: 2.36359326839447 + mean: 0.04217293076217175 + std: 0.1091152794488751 + b: 0.06395013406872749 shape: (256, 1024, 14, 14) output: - min: -1.8680962324142456 - max: 2.072019338607788 - avg_min: -0.8458249628543854 - avg_max: 1.1026112914085389 - mean: -0.0717989057302475 - std: 0.12618302275360743 + min: -1.4335159063339233 + max: 2.24897837638855 + avg_min: -0.8487613260746003 + avg_max: 1.11501168012619 + mean: -0.07229557856917382 + std: 0.12663921280108223 + b: 0.0972863495349884 shape: (256, 512, 14, 14) layer4.0.bn1: inputs: 0: - min: -1.8680962324142456 - max: 2.072019338607788 - avg_min: -0.8458249628543854 - avg_max: 1.1026112914085389 - mean: -0.0717989057302475 - std: 0.12618302275360743 + min: -1.4335159063339233 + max: 2.24897837638855 + avg_min: -0.8487613260746003 + avg_max: 1.11501168012619 + mean: -0.07229557856917382 + std: 0.12663921280108223 + b: 0.0972863495349884 shape: (256, 512, 14, 14) output: - min: -3.593630790710449 - max: 3.2606091499328613 - avg_min: -1.6349144220352172 - avg_max: 1.6812901854515077 - mean: -0.1790903091430664 - std: 0.23478242906040558 + min: -2.7142622470855713 + max: 3.9750595092773438 + avg_min: -1.6426753759384156 + avg_max: 1.6983023881912231 + mean: -0.18003325015306473 + std: 0.23553510291698715 + b: 0.18160098195075988 shape: (256, 512, 14, 14) layer4.0.relu1: inputs: 0: - min: -3.593630790710449 - max: 3.2606091499328613 - avg_min: -1.6349144220352172 - avg_max: 1.6812901854515077 - mean: -0.1790903091430664 - std: 0.23478242906040558 + min: -2.7142622470855713 + max: 3.9750595092773438 + avg_min: -1.6426753759384156 + avg_max: 1.6983023881912231 + mean: -0.18003325015306473 + std: 0.23553510291698715 + b: 0.18160098195075988 shape: (256, 512, 14, 14) output: min: 0.0 - max: 3.2606091499328613 + max: 3.9750595092773438 avg_min: 0.0 - avg_max: 1.6812901854515077 - mean: 0.027496328577399254 - std: 0.08083931621131461 + avg_max: 1.6983023881912231 + mean: 0.02757811862975359 + std: 0.08129693793771489 + b: 0.04465844742953777 shape: (256, 512, 14, 14) layer4.0.conv2: inputs: 0: min: 0.0 - max: 3.2606091499328613 + max: 3.9750595092773438 avg_min: 0.0 - avg_max: 1.6812901854515077 - mean: 0.027496328577399254 - std: 0.08083931621131461 + avg_max: 1.6983023881912231 + mean: 0.02757811862975359 + std: 0.08129693793771489 + b: 0.04465844742953777 shape: (256, 512, 14, 14) output: - min: -1.3391225337982178 - max: 4.449892520904541 - avg_min: -0.7592607617378234 - avg_max: 2.0322049498558044 - mean: -0.05972258634865284 - std: 0.1230026536527826 + min: -1.4324591159820557 + max: 4.7528862953186035 + avg_min: -0.7631796002388 + avg_max: 2.0517775774002076 + mean: -0.06008922792971134 + std: 0.1236309388848869 + b: 0.09124014303088188 shape: (256, 512, 7, 7) layer4.0.bn2: inputs: 0: - min: -1.3391225337982178 - max: 4.449892520904541 - avg_min: -0.7592607617378234 - avg_max: 2.0322049498558044 - mean: -0.05972258634865284 - std: 0.1230026536527826 + min: -1.4324591159820557 + max: 4.7528862953186035 + avg_min: -0.7631796002388 + avg_max: 2.0517775774002076 + mean: -0.06008922792971134 + std: 0.1236309388848869 + b: 0.09124014303088188 shape: (256, 512, 7, 7) output: - min: -2.419914722442627 - max: 2.922405242919922 - avg_min: -1.2842280507087707 - avg_max: 1.4931201457977294 - mean: -0.07085175514221191 - std: 0.20338800716012204 + min: -2.299038887023926 + max: 3.0023880004882812 + avg_min: -1.2877141833305359 + avg_max: 1.504377818107605 + mean: -0.07149159386754037 + std: 0.20444094353763842 + b: 0.15338601619005204 shape: (256, 512, 7, 7) layer4.0.relu2: inputs: 0: - min: -2.419914722442627 - max: 2.922405242919922 - avg_min: -1.2842280507087707 - avg_max: 1.4931201457977294 - mean: -0.07085175514221191 - std: 0.20338800716012204 + min: -2.299038887023926 + max: 3.0023880004882812 + avg_min: -1.2877141833305359 + avg_max: 1.504377818107605 + mean: -0.07149159386754037 + std: 0.20444094353763842 + b: 0.15338601619005204 shape: (256, 512, 7, 7) output: min: 0.0 - max: 2.922405242919922 + max: 3.0023880004882812 avg_min: 0.0 - avg_max: 1.4931201457977294 - mean: 0.04532395452260971 - std: 0.09375201163517889 + avg_max: 1.504377818107605 + mean: 0.04548850581049919 + std: 0.09431950621527688 + b: 0.06261445246636868 shape: (256, 512, 7, 7) layer4.0.conv3: inputs: 0: min: 0.0 - max: 2.922405242919922 + max: 3.0023880004882812 avg_min: 0.0 - avg_max: 1.4931201457977294 - mean: 0.04532395452260971 - std: 0.09375201163517889 + avg_max: 1.504377818107605 + mean: 0.04548850581049919 + std: 0.09431950621527688 + b: 0.06261445246636868 shape: (256, 512, 7, 7) output: - min: -0.6368839144706726 - max: 1.323559284210205 - avg_min: -0.3070966720581054 - avg_max: 0.7012514829635621 - mean: -0.010877870675176381 - std: 0.041120885136769904 + min: -0.5987082719802856 + max: 1.5258204936981201 + avg_min: -0.3098115563392639 + avg_max: 0.7123926103115082 + mean: -0.010965112689882517 + std: 0.04135415887402174 + b: 0.029770647548139097 shape: (256, 2048, 7, 7) layer4.0.bn3: inputs: 0: - min: -0.6368839144706726 - max: 1.323559284210205 - avg_min: -0.3070966720581054 - avg_max: 0.7012514829635621 - mean: -0.010877870675176381 - std: 0.041120885136769904 + min: -0.5987082719802856 + max: 1.5258204936981201 + avg_min: -0.3098115563392639 + avg_max: 0.7123926103115082 + mean: -0.010965112689882517 + std: 0.04135415887402174 + b: 0.029770647548139097 shape: (256, 2048, 7, 7) output: - min: -5.650322437286377 - max: 10.3650541305542 - avg_min: -2.660940623283386 - avg_max: 4.150222921371459 - mean: -0.05162550434470176 - std: 0.3701791434657885 + min: -5.897299289703369 + max: 10.226350784301758 + avg_min: -2.6857427835464476 + avg_max: 4.1744291305541985 + mean: -0.05250943563878536 + std: 0.372229354388355 + b: 0.2691747516393661 shape: (256, 2048, 7, 7) layer4.0.relu3: inputs: 0: - min: -6.423315048217773 - max: 14.22767448425293 - avg_min: -3.3700012683868406 - avg_max: 6.008050060272216 - mean: -0.09795540422201157 - std: 0.525356986518252 + min: -6.699728965759277 + max: 13.658317565917969 + avg_min: -3.4002754211425783 + avg_max: 6.046979331970214 + mean: -0.09980391934514046 + std: 0.5281300087414749 + b: 0.38734574913978576 shape: (256, 2048, 7, 7) output: min: 0.0 - max: 14.22767448425293 + max: 13.658317565917969 avg_min: 0.0 - avg_max: 6.008050060272216 - mean: 0.15043075829744337 - std: 0.30337482510307434 + avg_max: 6.046979331970214 + mean: 0.15064231157302857 + std: 0.3047735630655197 + b: 0.20074622333049771 shape: (256, 2048, 7, 7) layer4.0.downsample.0: inputs: 0: min: 0.0 - max: 5.826275825500488 + max: 5.23931360244751 avg_min: 0.0 - avg_max: 2.372250032424927 - mean: 0.04188145287334919 - std: 0.10869858401882222 + avg_max: 2.36359326839447 + mean: 0.04217293076217175 + std: 0.1091152794488751 + b: 0.06395013406872749 shape: (256, 1024, 14, 14) output: - min: -0.9875660538673401 - max: 1.025713562965393 - avg_min: -0.40008404552936555 - avg_max: 0.5596464991569519 - mean: -0.0018997724866494537 - std: 0.04478833314131102 + min: -0.9935919642448425 + max: 1.1387205123901367 + avg_min: -0.4057608276605606 + avg_max: 0.5647095024585723 + mean: -0.0020400895620696245 + std: 0.04503375095699802 + b: 0.03349826894700527 shape: (256, 2048, 7, 7) layer4.0.downsample.1: inputs: 0: - min: -0.9875660538673401 - max: 1.025713562965393 - avg_min: -0.40008404552936555 - avg_max: 0.5596464991569519 - mean: -0.0018997724866494537 - std: 0.04478833314131102 + min: -0.9935919642448425 + max: 1.1387205123901367 + avg_min: -0.4057608276605606 + avg_max: 0.5647095024585723 + mean: -0.0020400895620696245 + std: 0.04503375095699802 + b: 0.03349826894700527 shape: (256, 2048, 7, 7) output: - min: -5.736306190490723 - max: 8.570878982543945 - avg_min: -2.5375996589660645 - avg_max: 3.4327509403228755 - mean: -0.04632990062236786 - std: 0.2795490646869294 + min: -5.771829605102539 + max: 10.470277786254883 + avg_min: -2.570528817176819 + avg_max: 3.467215657234192 + mean: -0.0472944837063551 + std: 0.28102231081108675 + b: 0.2068473920226097 shape: (256, 2048, 7, 7) layer4.0.add: inputs: 0: - min: -5.650322437286377 - max: 10.3650541305542 - avg_min: -2.660940623283386 - avg_max: 4.150222921371459 - mean: -0.05162550434470176 - std: 0.3701791434657885 + min: -5.897299289703369 + max: 10.226350784301758 + avg_min: -2.6857427835464476 + avg_max: 4.1744291305541985 + mean: -0.05250943563878536 + std: 0.372229354388355 + b: 0.2691747516393661 shape: (256, 2048, 7, 7) 1: - min: -5.736306190490723 - max: 8.570878982543945 - avg_min: -2.5375996589660645 - avg_max: 3.4327509403228755 - mean: -0.04632990062236786 - std: 0.2795490646869294 + min: -5.771829605102539 + max: 10.470277786254883 + avg_min: -2.570528817176819 + avg_max: 3.467215657234192 + mean: -0.0472944837063551 + std: 0.28102231081108675 + b: 0.2068473920226097 shape: (256, 2048, 7, 7) output: - min: -6.423315048217773 - max: 14.22767448425293 - avg_min: -3.3700012683868406 - avg_max: 6.008050060272216 - mean: -0.09795540422201157 - std: 0.525356986518252 + min: -6.699728965759277 + max: 13.658317565917969 + avg_min: -3.4002754211425783 + avg_max: 6.046979331970214 + mean: -0.09980391934514046 + std: 0.5281300087414749 + b: 0.38734574913978576 shape: (256, 2048, 7, 7) layer4.1.conv1: inputs: 0: min: 0.0 - max: 14.22767448425293 + max: 13.658317565917969 avg_min: 0.0 - avg_max: 6.008050060272216 - mean: 0.15043075829744337 - std: 0.30337482510307434 + avg_max: 6.046979331970214 + mean: 0.15064231157302857 + std: 0.3047735630655197 + b: 0.20074622333049771 shape: (256, 2048, 7, 7) output: - min: -5.776525497436523 - max: 5.520820140838623 - avg_min: -3.0566482782363895 - avg_max: 2.6946291446685793 - mean: -0.2902308404445648 - std: 0.42515803582413286 + min: -5.892574787139893 + max: 6.385313034057617 + avg_min: -3.1141114711761477 + avg_max: 2.725090193748474 + mean: -0.29104059636592866 + std: 0.42700416908975997 + b: 0.319489336013794 shape: (256, 512, 7, 7) layer4.1.bn1: inputs: 0: - min: -5.776525497436523 - max: 5.520820140838623 - avg_min: -3.0566482782363895 - avg_max: 2.6946291446685793 - mean: -0.2902308404445648 - std: 0.42515803582413286 + min: -5.892574787139893 + max: 6.385313034057617 + avg_min: -3.1141114711761477 + avg_max: 2.725090193748474 + mean: -0.29104059636592866 + std: 0.42700416908975997 + b: 0.319489336013794 shape: (256, 512, 7, 7) output: - min: -2.804481029510498 - max: 3.274775743484497 - avg_min: -1.3639482259750366 - avg_max: 1.3442501544952392 - mean: -0.1264665238559246 - std: 0.20664190172980043 + min: -2.633080244064331 + max: 3.322444438934326 + avg_min: -1.376031005382538 + avg_max: 1.3575427532196045 + mean: -0.12690107226371763 + std: 0.2076203045471985 + b: 0.1560998097062111 shape: (256, 512, 7, 7) layer4.1.relu1: inputs: 0: - min: -2.804481029510498 - max: 3.274775743484497 - avg_min: -1.3639482259750366 - avg_max: 1.3442501544952392 - mean: -0.1264665238559246 - std: 0.20664190172980043 + min: -2.633080244064331 + max: 3.322444438934326 + avg_min: -1.376031005382538 + avg_max: 1.3575427532196045 + mean: -0.12690107226371763 + std: 0.2076203045471985 + b: 0.1560998097062111 shape: (256, 512, 7, 7) output: min: 0.0 - max: 3.274775743484497 + max: 3.322444438934326 avg_min: 0.0 - avg_max: 1.3442501544952392 - mean: 0.03091691676527262 - std: 0.08251424072731946 + avg_max: 1.3575427532196045 + mean: 0.031074754521250726 + std: 0.08300226978421395 + b: 0.04830825217068195 shape: (256, 512, 7, 7) layer4.1.conv2: inputs: 0: min: 0.0 - max: 3.274775743484497 + max: 3.322444438934326 avg_min: 0.0 - avg_max: 1.3442501544952392 - mean: 0.03091691676527262 - std: 0.08251424072731946 + avg_max: 1.3575427532196045 + mean: 0.031074754521250726 + std: 0.08300226978421395 + b: 0.04830825217068195 shape: (256, 512, 7, 7) output: - min: -1.4676694869995117 - max: 1.6270296573638916 - avg_min: -0.8793348789215087 - avg_max: 0.8756729066371918 - mean: -0.09616649672389031 - std: 0.13029953782361198 + min: -1.7283744812011719 + max: 1.7074284553527832 + avg_min: -0.8793049991130829 + avg_max: 0.8782530605793 + mean: -0.09670415595173835 + std: 0.13061944829970526 + b: 0.09738585278391837 shape: (256, 512, 7, 7) layer4.1.bn2: inputs: 0: - min: -1.4676694869995117 - max: 1.6270296573638916 - avg_min: -0.8793348789215087 - avg_max: 0.8756729066371918 - mean: -0.09616649672389031 - std: 0.13029953782361198 + min: -1.7283744812011719 + max: 1.7074284553527832 + avg_min: -0.8793049991130829 + avg_max: 0.8782530605793 + mean: -0.09670415595173835 + std: 0.13061944829970526 + b: 0.09738585278391837 shape: (256, 512, 7, 7) output: - min: -2.599773645401001 - max: 3.8549869060516357 - avg_min: -1.3596017718315125 - avg_max: 1.0324531495571136 - mean: -0.13164937347173689 - std: 0.22796876796228183 + min: -2.554882049560547 + max: 2.8101301193237305 + avg_min: -1.357684051990509 + avg_max: 1.0293413877487183 + mean: -0.1327122911810875 + std: 0.22860852008018598 + b: 0.17513000816106794 shape: (256, 512, 7, 7) layer4.1.relu2: inputs: 0: - min: -2.599773645401001 - max: 3.8549869060516357 - avg_min: -1.3596017718315125 - avg_max: 1.0324531495571136 - mean: -0.13164937347173689 - std: 0.22796876796228183 + min: -2.554882049560547 + max: 2.8101301193237305 + avg_min: -1.357684051990509 + avg_max: 1.0293413877487183 + mean: -0.1327122911810875 + std: 0.22860852008018598 + b: 0.17513000816106794 shape: (256, 512, 7, 7) output: min: 0.0 - max: 3.8549869060516357 + max: 2.8101301193237305 avg_min: 0.0 - avg_max: 1.0324531495571136 - mean: 0.034236426651477816 - std: 0.08112417540127474 + avg_max: 1.0293413877487183 + mean: 0.0341867882758379 + std: 0.0812101367215543 + b: 0.05145231895148754 shape: (256, 512, 7, 7) layer4.1.conv3: inputs: 0: min: 0.0 - max: 3.8549869060516357 + max: 2.8101301193237305 avg_min: 0.0 - avg_max: 1.0324531495571136 - mean: 0.034236426651477816 - std: 0.08112417540127474 + avg_max: 1.0293413877487183 + mean: 0.0341867882758379 + std: 0.0812101367215543 + b: 0.05145231895148754 shape: (256, 512, 7, 7) output: - min: -0.4920940697193146 - max: 0.9806932806968689 - avg_min: -0.3192786365747452 - avg_max: 0.3261650323867798 - mean: -0.0005754437879659235 - std: 0.03354625255049893 + min: -0.5584905743598938 + max: 0.7271759510040283 + avg_min: -0.3177788823843003 + avg_max: 0.3269481897354126 + mean: -0.0006348539493046701 + std: 0.03355272402253311 + b: 0.02459335662424564 shape: (256, 2048, 7, 7) layer4.1.bn3: inputs: 0: - min: -0.4920940697193146 - max: 0.9806932806968689 - avg_min: -0.3192786365747452 - avg_max: 0.3261650323867798 - mean: -0.0005754437879659235 - std: 0.03354625255049893 + min: -0.5584905743598938 + max: 0.7271759510040283 + avg_min: -0.3177788823843003 + avg_max: 0.3269481897354126 + mean: -0.0006348539493046701 + std: 0.03355272402253311 + b: 0.02459335662424564 shape: (256, 2048, 7, 7) output: - min: -5.395097732543945 - max: 14.336352348327637 - avg_min: -2.411039137840271 - avg_max: 3.4030594348907472 - mean: -0.055087806284427644 - std: 0.38007112753406547 + min: -4.98611307144165 + max: 10.873602867126465 + avg_min: -2.399258136749268 + avg_max: 3.3770268917083737 + mean: -0.05591708905994892 + std: 0.3803597915008399 + b: 0.28279241025447843 shape: (256, 2048, 7, 7) layer4.1.relu3: inputs: 0: - min: -5.395097732543945 - max: 21.834545135498047 - avg_min: -2.382943248748779 - avg_max: 7.608690929412842 - mean: 0.09534295722842218 - std: 0.5429858198158471 + min: -4.98611307144165 + max: 15.573689460754395 + avg_min: -2.3728135108947757 + avg_max: 7.612712144851685 + mean: 0.09472521916031837 + std: 0.5441690529259338 + b: 0.38570883572101594 shape: (256, 2048, 7, 7) output: min: 0.0 - max: 21.834545135498047 + max: 15.573689460754395 avg_min: 0.0 - avg_max: 7.608690929412842 - mean: 0.2376137301325798 - std: 0.42102969218495145 + avg_max: 7.612712144851685 + mean: 0.23763893991708757 + std: 0.421922963559466 + b: 0.28288681507110597 shape: (256, 2048, 7, 7) layer4.1.add: inputs: 0: - min: -5.395097732543945 - max: 14.336352348327637 - avg_min: -2.411039137840271 - avg_max: 3.4030594348907472 - mean: -0.055087806284427644 - std: 0.38007112753406547 + min: -4.98611307144165 + max: 10.873602867126465 + avg_min: -2.399258136749268 + avg_max: 3.3770268917083737 + mean: -0.05591708905994892 + std: 0.3803597915008399 + b: 0.28279241025447843 shape: (256, 2048, 7, 7) 1: min: 0.0 - max: 14.22767448425293 + max: 13.658317565917969 avg_min: 0.0 - avg_max: 6.008050060272216 - mean: 0.15043075829744337 - std: 0.30337482510307434 + avg_max: 6.046979331970214 + mean: 0.15064231157302857 + std: 0.3047735630655197 + b: 0.20074622333049771 shape: (256, 2048, 7, 7) output: - min: -5.395097732543945 - max: 21.834545135498047 - avg_min: -2.382943248748779 - avg_max: 7.608690929412842 - mean: 0.09534295722842218 - std: 0.5429858198158471 + min: -4.98611307144165 + max: 15.573689460754395 + avg_min: -2.3728135108947757 + avg_max: 7.612712144851685 + mean: 0.09472521916031837 + std: 0.5441690529259338 + b: 0.38570883572101594 shape: (256, 2048, 7, 7) layer4.2.conv1: inputs: 0: min: 0.0 - max: 21.834545135498047 + max: 15.573689460754395 avg_min: 0.0 - avg_max: 7.608690929412842 - mean: 0.2376137301325798 - std: 0.42102969218495145 + avg_max: 7.612712144851685 + mean: 0.23763893991708757 + std: 0.421922963559466 + b: 0.28288681507110597 shape: (256, 2048, 7, 7) output: - min: -8.234384536743164 - max: 10.143657684326172 - avg_min: -3.6996648788452147 - avg_max: 4.8178520679473875 - mean: -0.37534233629703523 - std: 0.5932820885697296 + min: -9.58436393737793 + max: 11.206789016723633 + avg_min: -3.72519166469574 + avg_max: 4.8316075801849365 + mean: -0.37615325152873996 + std: 0.595941064560886 + b: 0.4408860713243485 shape: (256, 512, 7, 7) layer4.2.bn1: inputs: 0: - min: -8.234384536743164 - max: 10.143657684326172 - avg_min: -3.6996648788452147 - avg_max: 4.8178520679473875 - mean: -0.37534233629703523 - std: 0.5932820885697296 + min: -9.58436393737793 + max: 11.206789016723633 + avg_min: -3.72519166469574 + avg_max: 4.8316075801849365 + mean: -0.37615325152873996 + std: 0.595941064560886 + b: 0.4408860713243485 shape: (256, 512, 7, 7) output: - min: -4.7313079833984375 - max: 3.271481513977051 - avg_min: -1.9235025644302368 - avg_max: 1.3267321467399598 - mean: -0.18585808724164962 - std: 0.23886620528361513 + min: -4.725255012512207 + max: 3.7600879669189453 + avg_min: -1.9559222102165221 + avg_max: 1.3456191301345826 + mean: -0.18621423989534377 + std: 0.23998140957227934 + b: 0.18112000524997712 shape: (256, 512, 7, 7) layer4.2.relu1: inputs: 0: - min: -4.7313079833984375 - max: 3.271481513977051 - avg_min: -1.9235025644302368 - avg_max: 1.3267321467399598 - mean: -0.18585808724164962 - std: 0.23886620528361513 + min: -4.725255012512207 + max: 3.7600879669189453 + avg_min: -1.9559222102165221 + avg_max: 1.3456191301345826 + mean: -0.18621423989534377 + std: 0.23998140957227934 + b: 0.18112000524997712 shape: (256, 512, 7, 7) output: min: 0.0 - max: 3.271481513977051 + max: 3.7600879669189453 avg_min: 0.0 - avg_max: 1.3267321467399598 - mean: 0.027702832594513893 - std: 0.08519395028712683 + avg_max: 1.3456191301345826 + mean: 0.027887877076864246 + std: 0.08590010349519465 + b: 0.04585573598742485 shape: (256, 512, 7, 7) layer4.2.conv2: inputs: 0: min: 0.0 - max: 3.271481513977051 + max: 3.7600879669189453 avg_min: 0.0 - avg_max: 1.3267321467399598 - mean: 0.027702832594513893 - std: 0.08519395028712683 + avg_max: 1.3456191301345826 + mean: 0.027887877076864246 + std: 0.08590010349519465 + b: 0.04585573598742485 shape: (256, 512, 7, 7) output: - min: -1.5278054475784302 + min: -1.7627720832824707 max: 1.3895208835601807 - avg_min: -0.7480606913566589 - avg_max: 0.4983356356620789 - mean: -0.09653943628072739 - std: 0.11747523190693027 + avg_min: -0.7464761197566987 + avg_max: 0.49596920609474177 + mean: -0.09737756326794625 + std: 0.1179024859188269 + b: 0.08659397140145303 shape: (256, 512, 7, 7) layer4.2.bn2: inputs: 0: - min: -1.5278054475784302 + min: -1.7627720832824707 max: 1.3895208835601807 - avg_min: -0.7480606913566589 - avg_max: 0.4983356356620789 - mean: -0.09653943628072739 - std: 0.11747523190693027 + avg_min: -0.7464761197566987 + avg_max: 0.49596920609474177 + mean: -0.09737756326794625 + std: 0.1179024859188269 + b: 0.08659397140145303 shape: (256, 512, 7, 7) output: - min: -3.4718167781829834 - max: 3.0931997299194336 - avg_min: -1.5589052200317381 - avg_max: 1.1348651885986327 - mean: -0.10689140781760216 - std: 0.2426536058698193 + min: -3.6767067909240723 + max: 3.5860390663146973 + avg_min: -1.5616470336914063 + avg_max: 1.1276326537132264 + mean: -0.10860036164522172 + std: 0.24351960352418686 + b: 0.17832687497138977 shape: (256, 512, 7, 7) layer4.2.relu2: inputs: 0: - min: -3.4718167781829834 - max: 3.0931997299194336 - avg_min: -1.5589052200317381 - avg_max: 1.1348651885986327 - mean: -0.10689140781760216 - std: 0.2426536058698193 + min: -3.6767067909240723 + max: 3.5860390663146973 + avg_min: -1.5616470336914063 + avg_max: 1.1276326537132264 + mean: -0.10860036164522172 + std: 0.24351960352418686 + b: 0.17832687497138977 shape: (256, 512, 7, 7) output: min: 0.0 - max: 3.0931997299194336 + max: 3.5860390663146973 avg_min: 0.0 - avg_max: 1.1348651885986327 - mean: 0.04021419957280159 - std: 0.08940358768433947 + avg_max: 1.1276326537132264 + mean: 0.03995291851460933 + std: 0.08932434644843026 + b: 0.05705068595707417 shape: (256, 512, 7, 7) layer4.2.conv3: inputs: 0: min: 0.0 - max: 3.0931997299194336 + max: 3.5860390663146973 avg_min: 0.0 - avg_max: 1.1348651885986327 - mean: 0.04021419957280159 - std: 0.08940358768433947 + avg_max: 1.1276326537132264 + mean: 0.03995291851460933 + std: 0.08932434644843026 + b: 0.05705068595707417 shape: (256, 512, 7, 7) output: - min: -0.38114556670188904 - max: 0.9265015721321106 - avg_min: -0.17205106019973754 - avg_max: 0.33860428631305695 - mean: -0.004819883033633232 - std: 0.031674283868545705 + min: -0.355619341135025 + max: 0.9995235800743103 + avg_min: -0.17218078225851058 + avg_max: 0.33757891058921813 + mean: -0.004912816500291228 + std: 0.03159407352457316 + b: 0.02231343388557434 shape: (256, 2048, 7, 7) layer4.2.bn3: inputs: 0: - min: -0.38114556670188904 - max: 0.9265015721321106 - avg_min: -0.17205106019973754 - avg_max: 0.33860428631305695 - mean: -0.004819883033633232 - std: 0.031674283868545705 + min: -0.355619341135025 + max: 0.9995235800743103 + avg_min: -0.17218078225851058 + avg_max: 0.33757891058921813 + mean: -0.004912816500291228 + std: 0.03159407352457316 + b: 0.02231343388557434 shape: (256, 2048, 7, 7) output: - min: -8.627450942993164 - max: 23.089508056640625 - avg_min: -3.8609111070632935 - avg_max: 8.419857215881347 - mean: 0.044161788746714586 - std: 0.7364083810472319 + min: -8.60328197479248 + max: 25.900434494018555 + avg_min: -3.8589781522750854 + avg_max: 8.387232303619385 + mean: 0.0419552706182003 + std: 0.7342189054779193 + b: 0.5134885013103485 shape: (256, 2048, 7, 7) layer4.2.relu3: inputs: 0: - min: -8.627450942993164 - max: 37.85447692871094 - avg_min: -3.8068380832672117 - avg_max: 12.922265243530273 - mean: 0.28177551329135897 - std: 0.9598800299108187 + min: -8.60328197479248 + max: 33.94049072265625 + avg_min: -3.8049381256103514 + avg_max: 12.866481399536132 + mean: 0.27959421277046204 + std: 0.9580428712984075 + b: 0.6664626657962799 shape: (256, 2048, 7, 7) output: min: 0.0 - max: 37.85447692871094 + max: 33.94049072265625 avg_min: 0.0 - avg_max: 12.922265243530273 - mean: 0.4688317000865936 - std: 0.7975003649671909 + avg_max: 12.866481399536132 + mean: 0.46672946214675903 + std: 0.7957383819844129 + b: 0.5334559381008148 shape: (256, 2048, 7, 7) layer4.2.add: inputs: 0: - min: -8.627450942993164 - max: 23.089508056640625 - avg_min: -3.8609111070632935 - avg_max: 8.419857215881347 - mean: 0.044161788746714586 - std: 0.7364083810472319 + min: -8.60328197479248 + max: 25.900434494018555 + avg_min: -3.8589781522750854 + avg_max: 8.387232303619385 + mean: 0.0419552706182003 + std: 0.7342189054779193 + b: 0.5134885013103485 shape: (256, 2048, 7, 7) 1: min: 0.0 - max: 21.834545135498047 + max: 15.573689460754395 avg_min: 0.0 - avg_max: 7.608690929412842 - mean: 0.2376137301325798 - std: 0.42102969218495145 + avg_max: 7.612712144851685 + mean: 0.23763893991708757 + std: 0.421922963559466 + b: 0.28288681507110597 shape: (256, 2048, 7, 7) output: - min: -8.627450942993164 - max: 37.85447692871094 - avg_min: -3.8068380832672117 - avg_max: 12.922265243530273 - mean: 0.28177551329135897 - std: 0.9598800299108187 + min: -8.60328197479248 + max: 33.94049072265625 + avg_min: -3.8049381256103514 + avg_max: 12.866481399536132 + mean: 0.27959421277046204 + std: 0.9580428712984075 + b: 0.6664626657962799 shape: (256, 2048, 7, 7) avgpool: inputs: 0: min: 0.0 - max: 37.85447692871094 + max: 33.94049072265625 avg_min: 0.0 - avg_max: 12.922265243530273 - mean: 0.4688317000865936 - std: 0.7975003649671909 + avg_max: 12.866481399536132 + mean: 0.46672946214675903 + std: 0.7957383819844129 + b: 0.5334559381008148 shape: (256, 2048, 7, 7) output: min: 0.0 - max: 11.611199378967285 - avg_min: 0.00023435175244230778 - avg_max: 4.508990335464477 - mean: 0.46883170604705815 - std: 0.47031575008549364 + max: 11.13111686706543 + avg_min: 0.00022523058578372002 + avg_max: 4.461482810974122 + mean: 0.4667294651269912 + std: 0.46829107389433205 + b: 0.3259382039308548 shape: (256, 2048, 1, 1) fc: inputs: 0: min: 0.0 - max: 11.611199378967285 - avg_min: 0.00023435175244230778 - avg_max: 4.508990335464477 - mean: 0.46883170604705815 - std: 0.47031575008549364 + max: 11.13111686706543 + avg_min: 0.00022523058578372002 + avg_max: 4.461482810974122 + mean: 0.4667294651269912 + std: 0.46829107389433205 + b: 0.3259382039308548 shape: (256, 2048) output: - min: -11.310169219970703 - max: 40.48712158203125 - avg_min: -5.810240793228149 - avg_max: 16.912589836120606 - mean: 8.312767749885096e-06 - std: 2.4802703537784003 + min: -9.757831573486328 + max: 36.7446174621582 + avg_min: -5.790046501159668 + avg_max: 16.712891578674316 + mean: 8.333060395671055e-06 + std: 2.483018996892336 + b: 1.8292282938957214 shape: (256, 1000) diff --git a/tests/test_quant_utils.py b/tests/test_quant_utils.py index 4243438..de9afe3 100644 --- a/tests/test_quant_utils.py +++ b/tests/test_quant_utils.py @@ -241,3 +241,7 @@ def test_get_tensor_mean_n_stds_min_max(): t_min, t_max = qu.get_tensor_mean_n_stds_min_max(test_tensor, n_stds=2) torch.testing.assert_allclose(t_min, torch.tensor(-95.)) torch.testing.assert_allclose(t_max, torch.tensor(87.)) + +# TODO - Implement testing for ACIQ clipping +# def test_aciq_clipping(): +# pass -- GitLab