diff --git a/README.md b/README.md
index 98f56b3acc6ed141c85991a7a00c3ef3a9cde0c7..ff575fb043bbbdfcda1e13af0d6c4f1deaf2b01d 100755
--- a/README.md
+++ b/README.md
@@ -17,11 +17,11 @@
       Getting Started
     </a>
     <span> | </span>
-    <a href="https://nervanasystems.github.io/distiller/algo_pruning/index.html">
+    <a href="https://nervanasystems.github.io/distiller/algo_pruning.html">
       Algorithms
     </a>
     <span> | </span>
-    <a href="https://nervanasystems.github.io/distiller/design/index.html">
+    <a href="https://nervanasystems.github.io/distiller/design.html">
       Design
     </a>
     <span> | </span>
@@ -158,16 +158,16 @@ Beware.
 * **Quantization**
   - Automatic mechanism to transform existing models to quantized versions, with customizable bit-width configuration for different layers. No need to re-write the model for different quantization methods.
   - Post-training quantization of trained full-precision models, dynamic and static (statistics-based)
-  - Support for [quantization-aware training](https://nervanasystems.github.io/distiller/quantization/index.html#quantization-aware-training) in the loop
+  - Support for [quantization-aware training](https://nervanasystems.github.io/distiller/algo_quantization.html#quantization-aware-training) in the loop
 * **Knowledge distillation**
-  - Training with [knowledge distillation](https://nervanasystems.github.io/distiller/knowledge_distillation/index.html), in conjunction with the other available pruning / regularization / quantization methods.
+  - Training with [knowledge distillation](https://nervanasystems.github.io/distiller/knowledge_distillation.html), in conjunction with the other available pruning / regularization / quantization methods.
 * **Conditional computation**
   - Sample implementation of Early Exit, with more to come
 * Export statistics summaries using Pandas dataframes, which makes it easy to slice, query, display and graph the data.
 * A set of [Jupyter notebooks](https://nervanasystems.github.io/distiller/jupyter/index.html) to plan experiments and analyze compression results.  The graphs and visualizations you see on this page originate from the included Jupyter notebooks.  
   + Take a look at [this notebook](https://github.com/NervanaSystems/distiller/blob/master/jupyter/alexnet_insights.ipynb), which compares visual aspects of dense and sparse Alexnet models.
   + [This notebook](https://github.com/NervanaSystems/distiller/blob/master/jupyter/model_summary.ipynb) creates performance indicator graphs from model data.
-* Sample implementations of published research papers, using library-provided building blocks.  See the  research papers discussions in our [model-zoo](https://nervanasystems.github.io/distiller/model_zoo/index.html).
+* Sample implementations of published research papers, using library-provided building blocks.  See the  research papers discussions in our [model-zoo](https://nervanasystems.github.io/distiller/model_zoo.html).
 * Logging to the console, text file and TensorBoard-formatted file.
 * Export to **ONNX** (export of quantized models pending ONNX standardization)
 
@@ -242,10 +242,11 @@ We'll show you how to use it for some simple use-cases, and will point you to so
 
 For more details, there are some other resources you can refer to:
 + [Frequently-asked questions (FAQ)](https://github.com/NervanaSystems/distiller/wiki/Frequently-Asked-Questions-(FAQ))
-+ [Model zoo](https://nervanasystems.github.io/distiller/model_zoo/index.html)
-+ [Compression scheduling](https://nervanasystems.github.io/distiller/schedule/index.html)
-+ [Usage](https://nervanasystems.github.io/usage/index.html)
-+ [Tutorial: Using Distiller to prune a PyTorch language model](https://github.com/NervanaSystems/distiller/wiki/Tutorial:-Using-Distiller-to-prune-a-PyTorch-language-model)
++ [Model zoo](https://nervanasystems.github.io/distiller/model_zoo.html)
++ [Compression scheduling](https://nervanasystems.github.io/distiller/schedule.html)
++ [Usage](https://nervanasystems.github.io/distiller/usage.html)
++ [Tutorial: Using Distiller to prune a PyTorch language model](https://nervanasystems.github.io/distiller/tutorial-lang_model.html)
++ [Tutorial: Pruning Filters & Channels](https://nervanasystems.github.io/distiller/tutorial-struct_pruning.html)
 
 ### Example invocations of the sample application
 + [Training-only](#training-only)
@@ -298,7 +299,7 @@ This example performs 8-bit quantization of ResNet20 for CIFAR10.  We've include
 $ python3 compress_classifier.py -a resnet20_cifar ../../../data.cifar10 --resume ../ssl/checkpoints/checkpoint_trained_dense.pth.tar --quantize-eval --evaluate
 ```
 
-The command-line above will save a checkpoint named `quantized_checkpoint.pth.tar` containing the quantized model parameters. See more examples [here](https://github.com/NervanaSystems/distiller/blob/master/examples/quantization/post_training_quant.md).
+The command-line above will save a checkpoint named `quantized_checkpoint.pth.tar` containing the quantized model parameters. See more examples [here](https://github.com/NervanaSystems/distiller/blob/master/examples/quantization/post_train_quant/command_line.md).
 
 ### Explore the sample Jupyter notebooks
 The set of notebooks that come with Distiller is described [here](https://nervanasystems.github.io/distiller/jupyter/index.html#using-the-distiller-notebooks), which also explains the steps to install the Jupyter notebook server.<br>
@@ -414,7 +415,7 @@ If you used Distiller for your work, please use the following citation:
 
 Any published work is built on top of the work of many other people, and the credit belongs to too many people to list here.
 * The Python and PyTorch developer communities have shared many invaluable insights, examples and ideas on the Web.
-* The authors of the research papers implemented in the [Distiller model-zoo](https://nervanasystems.github.io/distiller/model_zoo/index.html) have shared their research ideas, theoretical background and results.
+* The authors of the research papers implemented in the [Distiller model-zoo](https://nervanasystems.github.io/distiller/model_zoo.html) have shared their research ideas, theoretical background and results.
 
 
 
diff --git a/docs-src/docs/usage.md b/docs-src/docs/usage.md
index 8cfcc3cde6ede6fb30a5043ed0e58dbbff768a38..362db4999138c8a8d6d90081fd4e4c67d90ea506 100755
--- a/docs-src/docs/usage.md
+++ b/docs-src/docs/usage.md
@@ -4,8 +4,8 @@ The Distiller repository contains a sample application, ```distiller/examples/cl
 
 You might also want to refer to the following resources:
 
-* An [explanation](https://nervanasystems.github.io/distiller/schedule/index.html) of the scheduler file format.
-* An in-depth [discussion](https://nervanasystems.github.io/distiller/model_zoo/index.html) of how we used these schedule files to implement several state-of-the-art DNN compression research papers.
+* An [explanation](https://nervanasystems.github.io/distiller/schedule.html) of the scheduler file format.
+* An in-depth [discussion](https://nervanasystems.github.io/distiller/model_zoo.html) of how we used these schedule files to implement several state-of-the-art DNN compression research papers.
 
 The sample application supports various features for compression of image classification DNNs, and gives an example of how to integrate distiller in your own application.  The code is documented and should be considered the best source of documentation, but we provide some elaboration here.
 
diff --git a/docs/index.html b/docs/index.html
index 0e0947451edb1adfa3f59a30ba7334bf0140a82c..3ed675d9e1e6907ba6f83a2ca35be2f6c919dcf6 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -273,5 +273,5 @@ And of course, if we used a sparse or compressed representation, then we are red
 
 <!--
 MkDocs version : 1.0.4
-Build Date UTC : 2019-05-19 08:14:18
+Build Date UTC : 2019-06-10 19:22:03
 -->
diff --git a/docs/sitemap.xml b/docs/sitemap.xml
index 01f436c0e6e6e3857f916d6f062a7d9c0430ce39..80d5c13b02db19700165ec13e9cfac970cb5c47f 100644
--- a/docs/sitemap.xml
+++ b/docs/sitemap.xml
@@ -2,87 +2,87 @@
 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
     <url>
      <loc>None</loc>
-     <lastmod>2019-05-19</lastmod>
+     <lastmod>2019-06-10</lastmod>
      <changefreq>daily</changefreq>
     </url>
 </urlset>
\ No newline at end of file
diff --git a/docs/sitemap.xml.gz b/docs/sitemap.xml.gz
index bd5612c96dd3569861878bacf144ea259767b25c..c2c610e9945ac38c6d727b95c1f69c6122a83640 100644
Binary files a/docs/sitemap.xml.gz and b/docs/sitemap.xml.gz differ
diff --git a/docs/usage.html b/docs/usage.html
index 8a96ad1fa2bb60ec6afcb3f33a531c90e444618b..3c0aa44853b53fc1afc3cbb75d90b71bf0168470 100644
--- a/docs/usage.html
+++ b/docs/usage.html
@@ -213,8 +213,8 @@
 <p>The Distiller repository contains a sample application, <code>distiller/examples/classifier_compression/compress_classifier.py</code>, and a set of scheduling files which demonstrate Distiller's features.  Following is a brief discussion of how to use this application and the accompanying schedules.</p>
 <p>You might also want to refer to the following resources:</p>
 <ul>
-<li>An <a href="https://nervanasystems.github.io/distiller/schedule/index.html">explanation</a> of the scheduler file format.</li>
-<li>An in-depth <a href="https://nervanasystems.github.io/distiller/model_zoo/index.html">discussion</a> of how we used these schedule files to implement several state-of-the-art DNN compression research papers.</li>
+<li>An <a href="https://nervanasystems.github.io/distiller/schedule.html">explanation</a> of the scheduler file format.</li>
+<li>An in-depth <a href="https://nervanasystems.github.io/distiller/model_zoo.html">discussion</a> of how we used these schedule files to implement several state-of-the-art DNN compression research papers.</li>
 </ul>
 <p>The sample application supports various features for compression of image classification DNNs, and gives an example of how to integrate distiller in your own application.  The code is documented and should be considered the best source of documentation, but we provide some elaboration here.</p>
 <p>This diagram shows how where <code>compress_classifier.py</code> fits in the compression workflow, and how we integrate the Jupyter notebooks as part of our research work.