diff --git a/examples/agp-pruning/resnet50.schedule_agp.filters.yaml b/examples/agp-pruning/resnet50.schedule_agp.filters.yaml index 04e35006a01422904783557d96b02de06a95ee39..0289337ff468c88d0f9041cfd9284d6a9a4e77c4 100755 --- a/examples/agp-pruning/resnet50.schedule_agp.filters.yaml +++ b/examples/agp-pruning/resnet50.schedule_agp.filters.yaml @@ -5,7 +5,7 @@ # No. of Parameters: 12,335,296 (of 25,502,912) = 43.37% dense (56.63% sparse) # Total MACs: 1,822,031,872 (of 4,089,184,256) = 44.56% compute = 2.24x # -# time python3 compress_classifier.py -a=resnet50 --pretrained -p=50 ../../../data.imagenet/ -j=22 --epochs=100 --lr=0.0005 --compress=resnet50.schedule_agp.filters.yaml --validation-split=0 --num-best-scores=10 --name="resnet50_filters_v3.2" +# time python3 compress_classifier.py -a=resnet50 --pretrained -p=50 ../../../data.imagenet/ -j=22 --epochs=100 --lr=0.0005 --compress=../agp-pruning/resnet50.schedule_agp.filters.yaml --validation-split=0 --num-best-scores=10 --name="resnet50_filters_v3.2" # # Parameters: # +----+-------------------------------------+--------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+