diff --git a/README.md b/README.md index 540056dfdc1130d855f91c89c4cb18e643bbfa96..94fe4a275b05501b82b5baaee46c6946ab7e9af1 100755 --- a/README.md +++ b/README.md @@ -127,7 +127,7 @@ Beware. - [Built With](#built-with) - [Versioning](#versioning) - [License](#license) -- [Citation](#citation) +- [Community](#community) - [Acknowledgments](#acknowledgments) - [Disclaimer](#disclaimer) @@ -384,16 +384,40 @@ We use [SemVer](http://semver.org/) for versioning. For the versions available, This project is licensed under the Apache License 2.0 - see the [LICENSE.md](LICENSE.md) file for details -## Citation +## Community -Research papers citing Distiller: -- Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev.<br> - *"Fast Adjustable Threshold For Uniform Neural Network Quantization,"*<br> - [arXiv:1812.07872v2](https://arxiv.org/abs/1812.07872v2), 2018 +### Github projects using Distiller: +- [DeGirum Pruned Models](https://github.com/DeGirum/pruned-models) - a repository containing pruned models and related information. + +### Research papers citing Distiller: + +- Gil Shomron, Tal Horowitz, Uri Weiser.<br> +*[SMT-SA: Simultaneous Multithreading in Systolic Arrays](https://ieeexplore.ieee.org/document/8742541)*,<br> +In IEEE Computer Architecture Letters (CAL), 2019. + +- Shangqian Gao , Cheng Deng , and Heng Huang.<br> + *[Cross Domain Model Compression by Structurally Weight Sharing](http://openaccess.thecvf.com/content_CVPR_2019/html/Gao_Cross_Domain_Model_Compression_by_Structurally_Weight_Sharing_CVPR_2019_paper.html),*<br> + In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8973-8982. + +- Moin Nadeem, Wei Fang, Brian Xu, Mitra Mohtarami, James Glass.<br> + *[FAKTA: An Automatic End-to-End Fact Checking System](https://arxiv.org/abs/1906.04164),*<br> + In North American Chapter of the Association for Computational Linguistics (NAACL), 2019. + +- Ahmed T. Elthakeb, Prannoy Pilligundla, Hadi Esmaeilzadeh.<br> + *[SinReQ: Generalized Sinusoidal Regularization for Low-Bitwidth Deep Quantized Training](https://arxiv.org/abs/1905.01416),*<br> + arXiv:1905.01416, 2019. + +- Ahmed T. Elthakeb, Prannoy Pilligundla, Hadi Esmaeilzadeh.<br> + *[Divide and Conquer: Leveraging Intermediate Feature Representations for Quantized Training of Neural Networks](https://arxiv.org/abs/1906.06033),* + arXiv:1906.06033, 2019 - Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, Zhiru Zhang.<br> - *"Improving Neural Network Quantization without Retraining using Outlier Channel Splitting,"*<br> - [arXiv:1901.09504v2](https://arxiv.org/abs/1901.09504v20), 2019 + *[Improving Neural Network Quantization without Retraining using Outlier Channel Splitting](https://arxiv.org/abs/1901.09504v20),*<br> + arXiv:1901.09504v2, 2019 + +- Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev.<br> + *[Fast Adjustable Threshold For Uniform Neural Network Quantization](https://arxiv.org/abs/1812.07872v2)*,<br> + arXiv:1812.07872v2, 2018 If you used Distiller for your work, please use the following citation: @@ -402,6 +426,8 @@ If you used Distiller for your work, please use the following citation: @misc{neta_zmora_2018_1297430, author = {Neta Zmora and Guy Jacob and + Lev Zlotnik and + Bar Elharar and Gal Novik}, title = {Neural Network Distiller}, month = jun,