diff --git a/examples/classifier_compression/compress_classifier.py b/examples/classifier_compression/compress_classifier.py
index 6c5ab5903b45d1e677e590daa7c39fa7045d7279..bf228801163df2d09cae1989a93b7c0d8b2d78ee 100755
--- a/examples/classifier_compression/compress_classifier.py
+++ b/examples/classifier_compression/compress_classifier.py
@@ -152,7 +152,9 @@ parser.add_argument('--earlyexit_thresholds', type=float, nargs='*', dest='early
                     help='List of EarlyExit thresholds (e.g. --earlyexit 1.2 0.9)')
 parser.add_argument('--num-best-scores', dest='num_best_scores', default=1, type=int,
                     help='number of best scores to track and report (default: 1)')
-
+parser.add_argument('--load-serialized', dest='load_serialized', action='store_true', default=False,
+                    help='Load a model without DataParallel wrapping it')
+                    
 quant_group = parser.add_argument_group('Arguments controlling quantization at evaluation time'
                                         '("post-training quantization)')
 quant_group.add_argument('--quantize-eval', '--qe', action='store_true',
@@ -289,7 +291,8 @@ def main():
         args.exiterrors = []
 
     # Create the model
-    model = create_model(args.pretrained, args.dataset, args.arch, device_ids=args.gpus)
+    model = create_model(args.pretrained, args.dataset, args.arch,
+                         parallel=not args.load_serialized, device_ids=args.gpus)
     compression_scheduler = None
     # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
     # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
@@ -666,7 +669,7 @@ def earlyexit_validate_loss(output, target, criterion, args):
     this_batch_size = target.size()[0]
     earlyexit_validate_criterion = nn.CrossEntropyLoss(reduction='none').cuda()
     for exitnum in range(args.num_exits):
-        # calculate losses at each sample separately in the minibatch. 
+        # calculate losses at each sample separately in the minibatch.
         args.loss_exits[exitnum] = earlyexit_validate_criterion(output[exitnum], target)
         # for batch_size > 1, we need to reduce this down to an average over the batch
         args.losses_exits[exitnum].add(torch.mean(args.loss_exits[exitnum]))