diff --git a/examples/baseline_networks/imagenet/mobilenet_imagenet_baseline_training.yaml b/examples/baseline_networks/imagenet/mobilenet_imagenet_baseline_training.yaml deleted file mode 120000 index 582d1417248f8ccb4c2fb4806fa3abc973c6f119..0000000000000000000000000000000000000000 --- a/examples/baseline_networks/imagenet/mobilenet_imagenet_baseline_training.yaml +++ /dev/null @@ -1 +0,0 @@ -../../agp-pruning/mobilenet_imagenet_baseline_training.yaml \ No newline at end of file diff --git a/examples/baseline_networks/imagenet/mobilenet_imagenet_baseline_training.yaml b/examples/baseline_networks/imagenet/mobilenet_imagenet_baseline_training.yaml new file mode 100644 index 0000000000000000000000000000000000000000..bd9402e5adfaff2b4b9df6fa6d900305b6422db0 --- /dev/null +++ b/examples/baseline_networks/imagenet/mobilenet_imagenet_baseline_training.yaml @@ -0,0 +1,30 @@ +# +# This YAML file contains the configuration and command-line arguments for training MobileNet v1 from scratch. +# Top1: 71.156 Top5: 89.972 +# +# compress_classifier.py --arch=mobilenet ../../../data.imagenet --lr=0.045 --batch=256 -j=32 --vs=0 --name=mobilenet_v1_training -p=50 --wd=1e-4 --epochs=200 --compress=../baseline_networks/mobilenet_imagenet_baseline_training.yaml +# +# +# 2019-07-01 19:22:09,917 - ==> Best [Top1: 71.156 Top5: 89.972 Sparsity:0.00 Params: 4209088 on epoch: 199] +# 2019-07-01 19:22:09,917 - Saving checkpoint to: logs/mobilenet_v1_training___2019.06.29-122534/mobilenet_v1_training_checkpoint.pth.tar +# 2019-07-01 19:22:10,145 - --- test --------------------- +# 2019-07-01 19:22:10,145 - 50000 samples (256 per mini-batch) +# 2019-07-01 19:22:28,635 - Test: [ 50/ 195] Loss 1.189988 Top1 70.539062 Top5 89.781250 +# 2019-07-01 19:22:35,567 - Test: [ 100/ 195] Loss 1.182166 Top1 70.851562 Top5 89.792969 +# 2019-07-01 19:22:43,253 - Test: [ 150/ 195] Loss 1.177892 Top1 70.927083 Top5 89.903646 +# 2019-07-01 19:22:50,377 - ==> Top1: 71.156 Top5: 89.972 Loss: 1.175 +# + +lr_schedulers: + training_lr: + class: ExponentialLR + gamma: 0.98 + +policies: + - lr_scheduler: + instance_name: training_lr + starting_epoch: 0 + ending_epoch: 200 + frequency: 1 + +