import cv2 import numpy as np import math # global show_cv because I didn't want to have show_cv as an input to every function show_cv = None def init_show_cv(val): global show_cv show_cv = val def find_longest_lines(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray_img, 50, 100, apertureSize=3) if (show_cv): cv2.imshow('Canny Filter', edges) cv2.waitKey(0) cv2.destroyAllWindows() theta_thresh = 60 horizontal_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=(theta_thresh/2-1)*np.pi/theta_thresh, max_theta=(theta_thresh/2+1)*np.pi/theta_thresh) vertical_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=-np.pi/theta_thresh, max_theta=np.pi/theta_thresh) vertical_line_points = convert_to_cartesian(vertical_lines) horizontal_line_points = convert_to_cartesian(horizontal_lines) # filter lines too close to each other filtered_vertical = filter_lines(vertical_line_points, 50) filtered_horizontal = filter_lines(horizontal_line_points, 50) # get the 9 largest lines sorted_vertical = sorted(filtered_vertical, key=lambda line: min(line[0][1], line[0][3]))[:9] sorted_horizontal = sorted(filtered_horizontal, key=lambda line: min(line[0][0], line[0][2]))[:9] return sorted_vertical, sorted_horizontal def convert_to_cartesian(lines): line_points = [] if lines is not None: for line in lines: rho, theta = line[0] cos_theta = np.cos(theta) sin_theta = np.sin(theta) x0 = cos_theta * rho y0 = sin_theta * rho x1 = int(x0 + 1000 * (-sin_theta)) y1 = int(y0 + 1000 * (cos_theta)) x2 = int(x0 - 1000 * (-sin_theta)) y2 = int(y0 - 1000 * (cos_theta)) line_points.append([[x1,y1,x2,y2]]) return line_points def filter_lines(lines, min_distance): filtered_lines = [] # filter out lines too close to each other # (this assumes lines are around the same size and parallel) # (extremely simplified to improve computational speed because this is all we need) if lines is not None: for line1 in lines: x1, y1, x2, y2 = line1[0] line1_x_avg = (x1 + x2) / 2 line1_y_avg = (y1 + y2) / 2 keep_line = True for line2 in filtered_lines: x3, y3, x4, y4 = line2[0] line2_x_avg = (x3 + x4) / 2 line2_y_avg = (y3 + y4) / 2 # calculate dist between average points of the 2 lines dist = np.sqrt((line1_x_avg - line2_x_avg)**2 + (line1_y_avg - line2_y_avg)**2) if dist < min_distance: keep_line = False break if keep_line: filtered_lines.append(line1) return filtered_lines def find_board_and_pieces(img): vertical_lines, horizontal_lines = find_longest_lines(img) print("# of Vertical:",len(vertical_lines)) print("# of Horizontal:",len(horizontal_lines)) if (len(vertical_lines) != 9 or len(horizontal_lines) != 9): print("Error: Grid does not match expected 9x9") return # create bitmasks for vert and horiz so we can get lines and intersections height, width, _ = img.shape vertical_mask = np.zeros((height, width), dtype=np.uint8) horizontal_mask = np.zeros((height, width), dtype=np.uint8) for line in vertical_lines: x1, y1, x2, y2 = line[0] cv2.line(vertical_mask, (x1, y1), (x2, y2), (255), 2) for line in horizontal_lines: x1, y1, x2, y2 = line[0] cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2) # get lines and intersections of grid and corresponding contours intersection = cv2.bitwise_and(vertical_mask, horizontal_mask) board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask) contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) intersections, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # find midpoints of intersection contours (this gives us exact coordinates of the corners of the grid) intersection_points = [] for contour in intersections: M = cv2.moments(contour) if (M["m00"] != 0): midpoint_x = int(M["m10"] / M["m00"]) midpoint_y = int(M["m01"] / M["m00"]) intersection_points.append((midpoint_x, midpoint_y)) # sort the coordinates from left to right then top to bottom sorted_intersection_points = sort_square_grid_coords(intersection_points, unpacked=False) if (show_cv): board_lines_img = img.copy() cv2.drawContours(board_lines_img, contours, -1, (255, 255, 0), 2) # cv2.drawContours(board_lines_img, intersections, -1, (0, 0, 255), 2) i = 0 for points in sorted_intersection_points: for point in points: cv2.circle(board_lines_img, point, 5, (255 - (3 * i), (i % 9) * 28, 3 * i), -1) i += 1 # print(i) cv2.imshow('Lines of Board', board_lines_img) cv2.waitKey(0) cv2.destroyAllWindows() # find largest contour and get rid of it because it contains weird edges from lines max_area = 100000 # we're assuming board is going to be big (hopefully to speed up computation on raspberry pi) largest = -1 # second_largest = -1 # max_rect = None for i, contour in enumerate(contours): area = cv2.contourArea(contour) if area > max_area: max_area = area largest = i # "largest" is index of largest contour # get rid of contour containing the edges of the lines contours = list(contours) contours.pop(largest) contours = tuple(contours) # thicken lines so that connections are made contour_mask = np.zeros((height, width), dtype=np.uint8) cv2.drawContours(contour_mask, contours, -1, (255), thickness=10) thick_contours, _ = cv2.findContours(contour_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # obtain largest contour of the thickened lines (the border) and approximate a 4 sided polygon onto it max_area = 100000 largest = -1 max_rect = None for i, contour in enumerate(thick_contours): area = cv2.contourArea(contour) if area > max_area: epsilon = 0.05 * cv2.arcLength(contour, True) rect = cv2.approxPolyDP(contour, epsilon, True) # uses Douglas-Peucker algorithm (probably overkill) if (len(rect) == 4): max_area = area largest = i max_rect = rect # perspective transform based on rectangle outline of board corners = max_rect.reshape(-1, 2) # reshapes it so each row has 2 elements corners = [tuple(corner) for corner in corners] # convert to tuples print(corners) # corners.sort(key=lambda coord: (coord[0], coord[1])) # sort coords. goes from bottom left clockwise to bottom right - DIDN'T WORK corners_sorted = sort_square_grid_coords(corners, unpacked=True) tl = corners_sorted[0] tr = corners_sorted[1] bl = corners_sorted[2] br = corners_sorted[3] src = np.float32([list(tl), list(tr), list(bl), list(br)]) dest = np.float32([[0,0], [width, 0], [0, height], [width, height]]) M = cv2.getPerspectiveTransform(src, dest) Minv = cv2.getPerspectiveTransform(dest, src) warped_img = img.copy() warped_img = cv2.warpPerspective(np.uint8(warped_img), M, (width, height)) M = cv2.getPerspectiveTransform(src, dest) Minv = cv2.getPerspectiveTransform(dest, src) warped_ip = intersection.copy() # warped intersection points # warped_ip = cv2.drawContours(warped_ip, intersections, -1, (0, 0, 255), 2) warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height)) # ---- intersections, hierarchy = cv2.findContours(warped_ip, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # find midpoints of intersection contours (this gives us exact coordinates of the corners of the grid) intersection_points = [] for contour in intersections: M = cv2.moments(contour) if (M["m00"] != 0): midpoint_x = int(M["m10"] / M["m00"]) midpoint_y = int(M["m01"] / M["m00"]) intersection_points.append((midpoint_x, midpoint_y)) # sort the coordinates from left to right then top to bottom sorted_intersection_points = sort_square_grid_coords(intersection_points, unpacked=False) # ---- if (show_cv): contours_img = img.copy() # for i in range(63): # cv2.drawContours(contours_img, [sorted_contours[i]], -1, (255-4*i, 4*i, 0), 2) cv2.drawContours(contours_img, thick_contours, -1, (0, 255, 0), 2) cv2.drawContours(contours_img, [thick_contours[largest]], -1, (0, 0, 255), 2) cv2.drawContours(contours_img, [max_rect], -1, (255, 0, 0), 2) for x,y in corners: cv2.circle(contours_img, (x, y), 5, (0, 255, 255), -1) # cv2.circle(contours_img, (int(min_x), int(min_y)), 5, (255, 0, 0), -1) # cv2.circle(contours_img, (int(max_x), int(max_y)), 5, (255, 0, 0), -1) cv2.imshow('Contours', contours_img) cv2.waitKey(0) cv2.destroyAllWindows() # cv2.imshow('Warped', warped_img) # cv2.waitKey(0) # cv2.destroyAllWindows() # COLOR / PIECE DETECTION ------------------------------------------------ hsv_img = cv2.cvtColor(warped_img, cv2.COLOR_BGR2HSV) hsv_mask_sat = cv2.inRange(hsv_img[:,:,1], 100, 255) # saturation mask hsv_mask_bright = cv2.inRange(hsv_img[:,:,2], 100, 255) # brightness mask # Combine the saturation and brightness masks hsv_mask = cv2.bitwise_and(hsv_mask_sat, hsv_mask_bright) # Apply the mask to the entire HSV image hsv_after = cv2.bitwise_and(hsv_img, hsv_img, mask=hsv_mask) # contours, _ = cv2.findContours(hsv_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 20] # contour_mask = np.zeros_like(hsv_mask) # cv2.drawContours(contour_mask, filtered_contours, -1, (255), thickness=cv2.FILLED) # create color histogram for each square and find candidate color, if any hue_thresh_dict = {'red': (170,190), 'orange':(11,30), 'yellow': (31,40), 'green': (50,70), 'blue': (110,130), 'teal': (90,109), 'pink': (140,160)} # ^ note: 190 is above max hue but it should wrap around and start from the beginning again (or we'll just % by 180 ourselves) count = 0 color_grid = [] for i in range(0,8): color_grid.append([]) for j in range(0,8): tl = sorted_intersection_points[i][j] # cv2.circle(test_img, tl, 5, (0, 255, 255), -1) # if (show_cv): # cv2.imshow('test_img', test_img) # cv2.waitKey(0) # cv2.destroyAllWindows() tr = sorted_intersection_points[i][j+1] # cv2.circle(test_img, tr, 5, (0, 255, 255), -1) # if (show_cv): # cv2.imshow('test_img', test_img) # cv2.waitKey(0) # cv2.destroyAllWindows() bl = sorted_intersection_points[i+1][j] # cv2.circle(test_img, bl, 5, (0, 255, 255), -1) # if (show_cv): # cv2.imshow('test_img', test_img) # cv2.waitKey(0) # cv2.destroyAllWindows() br = sorted_intersection_points[i+1][j+1] # cv2.circle(test_img, br, 5, (0, 255, 255), -1) # if (show_cv): # cv2.imshow('hsv_img', hsv_img) # cv2.waitKey(0) # cv2.destroyAllWindows() height, width, _ = img.shape mask = np.zeros((height, width), dtype=np.uint8) poly = np.array([[tl, tr, br, bl]], dtype=np.int32) cv2.fillPoly(mask, poly, 255) num_pixels = 1 hue = 0 for x in range(min(tl[0],bl[0]), max(tr[0],br[0])): for y in range(min(tl[1],tr[1]), max(bl[1],br[1])): # print(hsv_after[y, x, 2]) if mask[y,x] == 255 and hsv_after[y, x, 0] != 0: # print(hsv_img[y, x, 2]) num_pixels += 1 hue += hsv_after[y, x, 0] avg_hue = hue / num_pixels print(count, avg_hue) piece_found = False for color, (lower, upper) in hue_thresh_dict.items(): if avg_hue != 0: if lower <= avg_hue <= upper: color_grid[i].append((color, avg_hue)) piece_found = True break # should only do this once if piece_found == False: color_grid[i].append((None,0)) count += 1 for row in color_grid: for tup in row: if tup[0] is None: print("\t\t|", end="") else: print(tup[0],int(tup[1]), "\t|", end="") print("") if show_cv: cv2.imshow('Warped', warped_img) hsv_after_intersections = hsv_after.copy() for points in sorted_intersection_points: for point in points: cv2.circle(hsv_after_intersections, point, 1, (255, 255, 255), -1) cv2.imshow('hsv_after_intersections', hsv_after_intersections) cv2.waitKey(0) cv2.destroyAllWindows() def sort_square_grid_coords(coordinates, unpacked): # this function assumes there are a perfect square amount of coordinates sqrt_len = int(math.sqrt(len(coordinates))) sorted_coords = sorted(coordinates, key=lambda coord: coord[1]) # first sort by y values # then group rows of the square (for example, 9x9 grid would be 81 coordinates so split into 9 arrays of 9) rows = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)] for row in rows: row.sort(key=lambda coord: coord[0]) # now sort each row by x if (unpacked == False): return rows collapsed = [coord for row in rows for coord in row] # unpack/collapse groups to just be an array of tuples return collapsed