import cv2 import numpy as np import math # global show_cv because I didn't want to have show_cv as an input to every function show_cv = None def init_show_cv(val): global show_cv show_cv = val def find_longest_lines(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hsv_mask = cv2.inRange(hsv_img[:,:,1], 50, 255) # hsv_after = cv2.bitwise_and(img, img, mask=hsv_mask) # if (show_cv): # cv2.imshow('HSV', hsv_after) # cv2.waitKey(0) # cv2.destroyAllWindows() # gray_hsv = cv2.cvtColor(hsv_after, cv2.COLOR_HSV2BGR) # gray_hsv = cv2.cvtColor(hsv_after, cv2.COLOR_BGR2GRAY) # gray_img = gray_img - gray_hsv # # sobel gradients # sobel_x = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=3) # sobel_y = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=3) # abs_sobel_x = np.absolute(sobel_x) # abs_sobel_y = np.absolute(sobel_y) # # threshold on abs values of sobel gradients and combine them # _, threshold_x = cv2.threshold(abs_sobel_x, 25, 255, cv2.THRESH_BINARY) # _, threshold_y = cv2.threshold(abs_sobel_y, 25, 255, cv2.THRESH_BINARY) # combined_threshold = cv2.bitwise_or(threshold_x, threshold_y) # combined_threshold = np.uint8(combined_threshold) # median blur needs this # combined_threshold = cv2.medianBlur(combined_threshold, 5) # this gets rid of outliers so weird diagonal lines don't get made # edges = combined_threshold edges = cv2.Canny(gray_img, 50, 100, apertureSize=3) if (show_cv): cv2.imshow('Canny Filter', edges) cv2.waitKey(0) cv2.destroyAllWindows() # lines = cv2.HoughLinesP(edges, 1, np.pi/180, 200, minLineLength=400, maxLineGap=15) # print(lines) # lines = cv2.HoughLines(edges, 1, np.pi / 180, 200) # lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=80, min_theta=0, max_theta=np.pi) theta_thresh = 50 horizontal_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=80, min_theta=(theta_thresh/2-1)*np.pi/theta_thresh, max_theta=(theta_thresh/2+1)*np.pi/theta_thresh) vertical_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=80, min_theta=-np.pi/theta_thresh, max_theta=np.pi/theta_thresh) vertical_line_points = convert_lines(vertical_lines) horizontal_line_points = convert_lines(horizontal_lines) # vertical_lines = [] # horizontal_lines = [] # # separate horizontal and vertical lines # if line_points is not None: # for line in line_points: # x1, y1, x2, y2 = line[0] # if abs(x2 - x1) < abs(y2 - y1): # vertical line # vertical_lines.append(line) # else: # horizontal_lines.append(line) # # filter lines too close to each other filtered_vertical = filter_lines(vertical_line_points, 50) filtered_horizontal = filter_lines(horizontal_line_points, 50) sorted_vertical = sorted(filtered_vertical, key=lambda line: min(line[0][1], line[0][3]))[:9] sorted_horizontal = sorted(filtered_horizontal, key=lambda line: min(line[0][0], line[0][2]))[:9] return sorted_vertical, sorted_horizontal # return vertical_line_points, horizontal_line_points def convert_lines(lines): line_points = [] if lines is not None: for line in lines: rho, theta = line[0] cos_theta = np.cos(theta) sin_theta = np.sin(theta) x0 = cos_theta * rho y0 = sin_theta * rho x1 = int(x0 + 1000 * (-sin_theta)) y1 = int(y0 + 1000 * (cos_theta)) x2 = int(x0 - 1000 * (-sin_theta)) y2 = int(y0 - 1000 * (cos_theta)) line_points.append([[x1,y1,x2,y2]]) return line_points def filter_lines(lines, min_distance): filtered_lines = [] # filter out lines too close to each other # (this assumes lines are around the same size and parallel) # (extremely simplified to improve computational speed because this is all we need) if lines is not None: for line1 in lines: x1, y1, x2, y2 = line1[0] line1_x_avg = (x1 + x2) / 2 line1_y_avg = (y1 + y2) / 2 keep_line = True for line2 in filtered_lines: x3, y3, x4, y4 = line2[0] line2_x_avg = (x3 + x4) / 2 line2_y_avg = (y3 + y4) / 2 # calculate dist between average points of the 2 lines dist = np.sqrt((line1_x_avg - line2_x_avg)**2 + (line1_y_avg - line2_y_avg)**2) if dist < min_distance: keep_line = False break if keep_line: filtered_lines.append(line1) return filtered_lines def detect_board(img): vertical_lines, horizontal_lines = find_longest_lines(img) print("# of Vertical:",len(vertical_lines)) print("# of Horizontal:",len(horizontal_lines)) height, width, _ = img.shape black_img = np.zeros((height, width), dtype=np.uint8) # create bitmasks for vert and horiz so we can get lines and intersections height, width, _ = img.shape vertical_mask = np.zeros((height, width), dtype=np.uint8) horizontal_mask = np.zeros((height, width), dtype=np.uint8) for line in vertical_lines: x1, y1, x2, y2 = line[0] cv2.line(vertical_mask, (x1, y1), (x2, y2), (255), 2) for line in horizontal_lines: x1, y1, x2, y2 = line[0] cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2) intersection = cv2.bitwise_and(vertical_mask, horizontal_mask) board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask) contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) intersection_points, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if (show_cv): board_lines_img = img.copy() cv2.drawContours(board_lines_img, contours, -1, (255, 255, 0), 2) cv2.drawContours(board_lines_img, intersection_points, -1, (0, 0, 255), 2) cv2.imshow('Lines of Board', board_lines_img) cv2.waitKey(0) cv2.destroyAllWindows() # find largest contour and get rid of it because it contains weird edges from lines max_area = 100000 # we're assuming board is going to be big (hopefully to speed up computation on raspberry pi) largest = -1 # second_largest = -1 # max_rect = None for i, contour in enumerate(contours): area = cv2.contourArea(contour) if area > max_area: max_area = area largest = i # "largest" is index of largest contour # get rid of contour containing the edges of the lines contours = list(contours) contours.pop(largest) contours = tuple(contours) # thicken lines so that connections are made contour_mask = np.zeros((height, width), dtype=np.uint8) cv2.drawContours(contour_mask, contours, -1, (255), thickness=10) thick_contours, _ = cv2.findContours(contour_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # obtain largest contour of the thickened lines (the border) and approximate a 4 sided polygon onto it max_area = 100000 largest = -1 max_rect = None for i, contour in enumerate(thick_contours): area = cv2.contourArea(contour) if area > max_area: epsilon = 0.05 * cv2.arcLength(contour, True) rect = cv2.approxPolyDP(contour, epsilon, True) # uses Douglas-Peucker algorithm (probably overkill) if (len(rect) == 4): max_area = area largest = i max_rect = rect # perspective transform based on rectangle outline of board corners = max_rect.reshape(-1, 2) # reshapes it so each row has 2 elements corners = [tuple(corner) for corner in corners] # convert to tuples print(corners) # corners.sort(key=lambda coord: (coord[0], coord[1])) # sort coords. goes from bottom left clockwise to bottom right corners_sorted = sort_square_grid_coords(corners) print(corners_sorted) corners = corners_sorted corners_img = img.copy() for i, corner in enumerate(corners): cv2.circle(corners_img, corner, 5, (60 * i, 60 * i, 60 * i), -1) if (show_cv): cv2.imshow('Canny Filter', corners_img) cv2.waitKey(0) cv2.destroyAllWindows() tl = corners[0] tr = corners[1] bl = corners[2] br = corners[3] src = np.float32([list(tl), list(tr), list(bl), list(br)]) dest = np.float32([[0,0], [width, 0], [0, height], [width, height]]) M = cv2.getPerspectiveTransform(src, dest) Minv = cv2.getPerspectiveTransform(dest, src) warped_img = img.copy() warped_img = cv2.warpPerspective(np.uint8(warped_img), M, (width, height)) M = cv2.getPerspectiveTransform(src, dest) Minv = cv2.getPerspectiveTransform(dest, src) warped_ip = img.copy() warped_ip = cv2.drawContours(warped_ip, intersection_points, -1, (0, 0, 255), 2) warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height)) if (show_cv): contours_img = img.copy() # for i in range(63): # cv2.drawContours(contours_img, [sorted_contours[i]], -1, (255-4*i, 4*i, 0), 2) cv2.drawContours(contours_img, thick_contours, -1, (0, 255, 0), 2) cv2.drawContours(contours_img, [thick_contours[largest]], -1, (0, 0, 255), 2) cv2.drawContours(contours_img, [max_rect], -1, (255, 0, 0), 2) for x,y in corners: cv2.circle(contours_img, (x, y), 5, (0, 255, 255), -1) # cv2.circle(contours_img, (int(min_x), int(min_y)), 5, (255, 0, 0), -1) # cv2.circle(contours_img, (int(max_x), int(max_y)), 5, (255, 0, 0), -1) cv2.imshow('Contours', contours_img) cv2.waitKey(0) cv2.destroyAllWindows() cv2.imshow('Warped', warped_img) cv2.waitKey(0) cv2.destroyAllWindows() # cv2.imshow('Warped', warped_ip) # cv2.waitKey(0) # cv2.destroyAllWindows() def sort_square_grid_coords(coordinates): sqrt_len = int(math.sqrt(len(coordinates))) sorted_coords = sorted(coordinates, key=lambda coord: coord[1]) # first sort by y values # then group rows of the square (for example, 9x9 grid would be 81 coordinates so split into 9 arrays of 9) groups = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)] for group in groups: group.sort(key=lambda coord: coord[0]) # now sort each row by x collapsed_groups = [coord for sublist in groups for coord in sublist] return collapsed_groups