diff --git a/board_detector.py b/board_detector.py index 18f995f58c02635e3124c8066cf8333652f4de77..6267e7b1ff39251e7033bd6b5398600f380242a4 100644 --- a/board_detector.py +++ b/board_detector.py @@ -83,13 +83,14 @@ def filter_lines(lines, min_distance): return filtered_lines -def detect_board(img): +def find_board_and_pieces(img): vertical_lines, horizontal_lines = find_longest_lines(img) print("# of Vertical:",len(vertical_lines)) print("# of Horizontal:",len(horizontal_lines)) - height, width, _ = img.shape - black_img = np.zeros((height, width), dtype=np.uint8) + if (len(vertical_lines) != 9 or len(horizontal_lines) != 9): + print("Error: Grid does not match expected 9x9") + return # create bitmasks for vert and horiz so we can get lines and intersections height, width, _ = img.shape @@ -104,9 +105,10 @@ def detect_board(img): x1, y1, x2, y2 = line[0] cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2) + # get lines and intersections of grid and corresponding contours intersection = cv2.bitwise_and(vertical_mask, horizontal_mask) board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask) - + contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) intersections, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) @@ -131,7 +133,7 @@ def detect_board(img): for point in points: cv2.circle(board_lines_img, point, 5, (255 - (3 * i), (i % 9) * 28, 3 * i), -1) i += 1 - print(i) + # print(i) cv2.imshow('Lines of Board', board_lines_img) cv2.waitKey(0) cv2.destroyAllWindows() @@ -178,15 +180,6 @@ def detect_board(img): print(corners) # corners.sort(key=lambda coord: (coord[0], coord[1])) # sort coords. goes from bottom left clockwise to bottom right - DIDN'T WORK corners_sorted = sort_square_grid_coords(corners, unpacked=True) - print(corners_sorted) - - # corners_img = img.copy() - # for i, corner in enumerate(corners_sorted): - # cv2.circle(corners_img, corner, 5, (60 * i, 60 * i, 60 * i), -1) - # if (show_cv): - # cv2.imshow('Canny Filter', corners_img) - # cv2.waitKey(0) - # cv2.destroyAllWindows() tl = corners_sorted[0] tr = corners_sorted[1] @@ -201,10 +194,26 @@ def detect_board(img): M = cv2.getPerspectiveTransform(src, dest) Minv = cv2.getPerspectiveTransform(dest, src) - warped_ip = img.copy() - warped_ip = cv2.drawContours(warped_ip, intersections, -1, (0, 0, 255), 2) + warped_ip = intersection.copy() # warped intersection points + # warped_ip = cv2.drawContours(warped_ip, intersections, -1, (0, 0, 255), 2) warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height)) + # ---- + intersections, hierarchy = cv2.findContours(warped_ip, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) + + # find midpoints of intersection contours (this gives us exact coordinates of the corners of the grid) + intersection_points = [] + for contour in intersections: + M = cv2.moments(contour) + if (M["m00"] != 0): + midpoint_x = int(M["m10"] / M["m00"]) + midpoint_y = int(M["m01"] / M["m00"]) + intersection_points.append((midpoint_x, midpoint_y)) + + # sort the coordinates from left to right then top to bottom + sorted_intersection_points = sort_square_grid_coords(intersection_points, unpacked=False) + # ---- + if (show_cv): contours_img = img.copy() # for i in range(63): @@ -220,24 +229,128 @@ def detect_board(img): cv2.waitKey(0) cv2.destroyAllWindows() + # cv2.imshow('Warped', warped_img) + # cv2.waitKey(0) + # cv2.destroyAllWindows() + + # COLOR / PIECE DETECTION ------------------------------------------------ + + hsv_img = cv2.cvtColor(warped_img, cv2.COLOR_BGR2HSV) + + hsv_mask_sat = cv2.inRange(hsv_img[:,:,1], 100, 255) # saturation mask + hsv_mask_bright = cv2.inRange(hsv_img[:,:,2], 100, 255) # brightness mask + + # Combine the saturation and brightness masks + hsv_mask = cv2.bitwise_and(hsv_mask_sat, hsv_mask_bright) + + # Apply the mask to the entire HSV image + hsv_after = cv2.bitwise_and(hsv_img, hsv_img, mask=hsv_mask) + + # contours, _ = cv2.findContours(hsv_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) + # filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 20] + # contour_mask = np.zeros_like(hsv_mask) + # cv2.drawContours(contour_mask, filtered_contours, -1, (255), thickness=cv2.FILLED) + + + + + + # create color histogram for each square and find candidate color, if any + hue_thresh_dict = {'red': (170,190), 'orange':(11,30), 'yellow': (31,40), 'green': (50,70), 'blue': (110,130), 'teal': (90,109), + 'pink': (140,160)} + # ^ note: 190 is above max hue but it should wrap around and start from the beginning again (or we'll just % by 180 ourselves) + count = 0 + color_grid = [] + for i in range(0,8): + color_grid.append([]) + for j in range(0,8): + tl = sorted_intersection_points[i][j] + # cv2.circle(test_img, tl, 5, (0, 255, 255), -1) + # if (show_cv): + # cv2.imshow('test_img', test_img) + # cv2.waitKey(0) + # cv2.destroyAllWindows() + + + tr = sorted_intersection_points[i][j+1] + # cv2.circle(test_img, tr, 5, (0, 255, 255), -1) + # if (show_cv): + # cv2.imshow('test_img', test_img) + # cv2.waitKey(0) + # cv2.destroyAllWindows() + + bl = sorted_intersection_points[i+1][j] + # cv2.circle(test_img, bl, 5, (0, 255, 255), -1) + # if (show_cv): + # cv2.imshow('test_img', test_img) + # cv2.waitKey(0) + # cv2.destroyAllWindows() + + br = sorted_intersection_points[i+1][j+1] + # cv2.circle(test_img, br, 5, (0, 255, 255), -1) + # if (show_cv): + # cv2.imshow('hsv_img', hsv_img) + # cv2.waitKey(0) + # cv2.destroyAllWindows() + + height, width, _ = img.shape + mask = np.zeros((height, width), dtype=np.uint8) + poly = np.array([[tl, tr, br, bl]], dtype=np.int32) + cv2.fillPoly(mask, poly, 255) + num_pixels = 1 + hue = 0 + for x in range(min(tl[0],bl[0]), max(tr[0],br[0])): + for y in range(min(tl[1],tr[1]), max(bl[1],br[1])): + # print(hsv_after[y, x, 2]) + if mask[y,x] == 255 and hsv_after[y, x, 0] != 0: + # print(hsv_img[y, x, 2]) + num_pixels += 1 + hue += hsv_after[y, x, 0] + avg_hue = hue / num_pixels + print(count, avg_hue) + piece_found = False + for color, (lower, upper) in hue_thresh_dict.items(): + if avg_hue != 0: + if lower <= avg_hue <= upper: + color_grid[i].append((color, avg_hue)) + piece_found = True + break # should only do this once + + if piece_found == False: + color_grid[i].append((None,0)) + + count += 1 + + for row in color_grid: + for tup in row: + if tup[0] is None: + print("\t\t|", end="") + else: + print(tup[0],int(tup[1]), "\t|", end="") + print("") + + if show_cv: cv2.imshow('Warped', warped_img) + + hsv_after_intersections = hsv_after.copy() + for points in sorted_intersection_points: + for point in points: + cv2.circle(hsv_after_intersections, point, 1, (255, 255, 255), -1) + cv2.imshow('hsv_after_intersections', hsv_after_intersections) cv2.waitKey(0) cv2.destroyAllWindows() - # cv2.imshow('Warped', warped_ip) - # cv2.waitKey(0) - # cv2.destroyAllWindows() - def sort_square_grid_coords(coordinates, unpacked): + # this function assumes there are a perfect square amount of coordinates sqrt_len = int(math.sqrt(len(coordinates))) sorted_coords = sorted(coordinates, key=lambda coord: coord[1]) # first sort by y values # then group rows of the square (for example, 9x9 grid would be 81 coordinates so split into 9 arrays of 9) - groups = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)] - for group in groups: - group.sort(key=lambda coord: coord[0]) # now sort each row by x + rows = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)] + for row in rows: + row.sort(key=lambda coord: coord[0]) # now sort each row by x if (unpacked == False): - return groups + return rows - collapsed_groups = [coord for sublist in groups for coord in sublist] # unpack/collapse groups to just be an array of tuples - return collapsed_groups \ No newline at end of file + collapsed = [coord for row in rows for coord in row] # unpack/collapse groups to just be an array of tuples + return collapsed \ No newline at end of file diff --git a/game.py b/game.py index 7af99c376e64577d3b8c4ddce601a66e6850d562..cdd96110034dcc5c3d7017835db05a84e7c8a34d 100644 --- a/game.py +++ b/game.py @@ -1,7 +1,7 @@ import argparse import chess import chess.pgn -from board_detector import detect_board +from board_detector import find_board_and_pieces from board_detector import init_show_cv import color_analyzer import move_translator @@ -31,7 +31,7 @@ class ChessGame: h,w,c = orig_img.shape print(h, w) cropped_img = orig_img - # cropped_img = orig_img[0:h, int(w/2 - h/2 - 60):int(w/2 + h/2 + 100)] + cropped_img = orig_img[0:h, int(w/2 - h/2 - 60):int(w/2 + h/2 + 100)] img = cv2.resize(cropped_img, (512, 512)) # img = cv2.resize(cropped_img, (int(w/5), int(h/5))) # img = orig_img @@ -41,7 +41,7 @@ class ChessGame: cv2.waitKey(0) cv2.destroyAllWindows() - detect_board(img) + find_board_and_pieces(img) while(1): # game loop self.player_turn()