diff --git a/board_detector.py b/board_detector.py
index 18f995f58c02635e3124c8066cf8333652f4de77..6267e7b1ff39251e7033bd6b5398600f380242a4 100644
--- a/board_detector.py
+++ b/board_detector.py
@@ -83,13 +83,14 @@ def filter_lines(lines, min_distance):
             
     return filtered_lines
 
-def detect_board(img):
+def find_board_and_pieces(img):
     vertical_lines, horizontal_lines = find_longest_lines(img)
     print("# of Vertical:",len(vertical_lines))
     print("# of Horizontal:",len(horizontal_lines))
 
-    height, width, _ = img.shape
-    black_img = np.zeros((height, width), dtype=np.uint8)
+    if (len(vertical_lines) != 9 or len(horizontal_lines) != 9):
+        print("Error: Grid does not match expected 9x9")
+        return
 
     # create bitmasks for vert and horiz so we can get lines and intersections
     height, width, _ = img.shape
@@ -104,9 +105,10 @@ def detect_board(img):
         x1, y1, x2, y2 = line[0]
         cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2)
 
+    # get lines and intersections of grid and corresponding contours
     intersection = cv2.bitwise_and(vertical_mask, horizontal_mask)
     board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask)
-        
+
     contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
     intersections, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 
@@ -131,7 +133,7 @@ def detect_board(img):
             for point in points:
                 cv2.circle(board_lines_img, point, 5, (255 - (3 * i), (i % 9) * 28, 3 * i), -1)
                 i += 1
-                print(i)
+                # print(i)
         cv2.imshow('Lines of Board', board_lines_img)
         cv2.waitKey(0)
         cv2.destroyAllWindows()
@@ -178,15 +180,6 @@ def detect_board(img):
     print(corners)
     # corners.sort(key=lambda coord: (coord[0], coord[1])) # sort coords. goes from bottom left clockwise to bottom right - DIDN'T WORK
     corners_sorted = sort_square_grid_coords(corners, unpacked=True)
-    print(corners_sorted)
-
-    # corners_img = img.copy()
-    # for i, corner in enumerate(corners_sorted):
-    #     cv2.circle(corners_img, corner, 5, (60 * i, 60 * i, 60 * i), -1)
-    # if (show_cv):
-    #     cv2.imshow('Canny Filter', corners_img)
-    #     cv2.waitKey(0)
-    #     cv2.destroyAllWindows()
 
     tl = corners_sorted[0]
     tr = corners_sorted[1]
@@ -201,10 +194,26 @@ def detect_board(img):
 
     M = cv2.getPerspectiveTransform(src, dest)
     Minv = cv2.getPerspectiveTransform(dest, src)
-    warped_ip = img.copy()
-    warped_ip = cv2.drawContours(warped_ip, intersections, -1, (0, 0, 255), 2)
+    warped_ip = intersection.copy() # warped intersection points
+    # warped_ip = cv2.drawContours(warped_ip, intersections, -1, (0, 0, 255), 2)
     warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height))
 
+    # ----
+    intersections, hierarchy = cv2.findContours(warped_ip, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+
+    # find midpoints of intersection contours (this gives us exact coordinates of the corners of the grid)
+    intersection_points = []
+    for contour in intersections:
+        M = cv2.moments(contour)
+        if (M["m00"] != 0):
+            midpoint_x = int(M["m10"] / M["m00"])
+            midpoint_y = int(M["m01"] / M["m00"])
+            intersection_points.append((midpoint_x, midpoint_y))
+
+    # sort the coordinates from left to right then top to bottom
+    sorted_intersection_points = sort_square_grid_coords(intersection_points, unpacked=False)
+    # ----
+
     if (show_cv):
         contours_img = img.copy()
         # for i in range(63):
@@ -220,24 +229,128 @@ def detect_board(img):
         cv2.waitKey(0)
         cv2.destroyAllWindows()
 
+        # cv2.imshow('Warped', warped_img)
+        # cv2.waitKey(0)
+        # cv2.destroyAllWindows()
+
+    # COLOR / PIECE DETECTION ------------------------------------------------
+
+    hsv_img = cv2.cvtColor(warped_img, cv2.COLOR_BGR2HSV)
+
+    hsv_mask_sat = cv2.inRange(hsv_img[:,:,1], 100, 255) # saturation mask
+    hsv_mask_bright = cv2.inRange(hsv_img[:,:,2], 100, 255) # brightness mask
+
+    # Combine the saturation and brightness masks
+    hsv_mask = cv2.bitwise_and(hsv_mask_sat, hsv_mask_bright)
+
+    # Apply the mask to the entire HSV image
+    hsv_after = cv2.bitwise_and(hsv_img, hsv_img, mask=hsv_mask)
+
+    # contours, _ = cv2.findContours(hsv_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
+    # filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 20]
+    # contour_mask = np.zeros_like(hsv_mask)
+    # cv2.drawContours(contour_mask, filtered_contours, -1, (255), thickness=cv2.FILLED)
+
+
+
+
+
+    # create color histogram for each square and find candidate color, if any
+    hue_thresh_dict = {'red': (170,190), 'orange':(11,30), 'yellow': (31,40), 'green': (50,70), 'blue': (110,130), 'teal': (90,109),
+                       'pink': (140,160)} 
+    # ^ note: 190 is above max hue but it should wrap around and start from the beginning again (or we'll just % by 180 ourselves)
+    count = 0
+    color_grid = []
+    for i in range(0,8):
+        color_grid.append([])
+        for j in range(0,8):
+            tl = sorted_intersection_points[i][j]
+            # cv2.circle(test_img, tl, 5, (0, 255, 255), -1)
+            # if (show_cv):
+            #     cv2.imshow('test_img', test_img)
+            #     cv2.waitKey(0)
+            #     cv2.destroyAllWindows()
+
+
+            tr = sorted_intersection_points[i][j+1]
+            # cv2.circle(test_img, tr, 5, (0, 255, 255), -1)
+            # if (show_cv):
+            #     cv2.imshow('test_img', test_img)
+            #     cv2.waitKey(0)
+            #     cv2.destroyAllWindows()
+
+            bl = sorted_intersection_points[i+1][j]
+            # cv2.circle(test_img, bl, 5, (0, 255, 255), -1)
+            # if (show_cv):
+            #     cv2.imshow('test_img', test_img)
+            #     cv2.waitKey(0)
+            #     cv2.destroyAllWindows()
+
+            br = sorted_intersection_points[i+1][j+1]
+            # cv2.circle(test_img, br, 5, (0, 255, 255), -1)
+            # if (show_cv):
+            #     cv2.imshow('hsv_img', hsv_img)
+            #     cv2.waitKey(0)
+            #     cv2.destroyAllWindows()
+
+            height, width, _ = img.shape
+            mask = np.zeros((height, width), dtype=np.uint8)
+            poly = np.array([[tl, tr, br, bl]], dtype=np.int32)
+            cv2.fillPoly(mask, poly, 255)
+            num_pixels = 1
+            hue = 0
+            for x in range(min(tl[0],bl[0]), max(tr[0],br[0])):
+                for y in range(min(tl[1],tr[1]), max(bl[1],br[1])):
+                    # print(hsv_after[y, x, 2])
+                    if mask[y,x] == 255 and hsv_after[y, x, 0] != 0:
+                        # print(hsv_img[y, x, 2])
+                        num_pixels += 1
+                        hue += hsv_after[y, x, 0]
+            avg_hue = hue / num_pixels
+            print(count, avg_hue)
+            piece_found = False
+            for color, (lower, upper) in hue_thresh_dict.items():
+                if avg_hue != 0:
+                    if lower <= avg_hue <= upper:
+                        color_grid[i].append((color, avg_hue))
+                        piece_found = True
+                        break # should only do this once
+            
+            if piece_found == False:
+                color_grid[i].append((None,0))
+
+            count += 1
+
+    for row in color_grid:
+        for tup in row:
+            if tup[0] is None:
+                print("\t\t|", end="")
+            else:
+                print(tup[0],int(tup[1]), "\t|", end="")
+        print("")
+
+    if show_cv:
         cv2.imshow('Warped', warped_img)
+
+        hsv_after_intersections = hsv_after.copy()
+        for points in sorted_intersection_points:
+                for point in points:
+                    cv2.circle(hsv_after_intersections, point, 1, (255, 255, 255), -1)
+        cv2.imshow('hsv_after_intersections', hsv_after_intersections)
         cv2.waitKey(0)
         cv2.destroyAllWindows()
 
-        # cv2.imshow('Warped', warped_ip)
-        # cv2.waitKey(0)
-        # cv2.destroyAllWindows()
-
 def sort_square_grid_coords(coordinates, unpacked):
+    # this function assumes there are a perfect square amount of coordinates
     sqrt_len = int(math.sqrt(len(coordinates)))
     sorted_coords = sorted(coordinates, key=lambda coord: coord[1]) # first sort by y values
     # then group rows of the square (for example, 9x9 grid would be 81 coordinates so split into 9 arrays of 9)
-    groups = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)]
-    for group in groups:
-        group.sort(key=lambda coord: coord[0]) # now sort each row by x
+    rows = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)]
+    for row in rows:
+        row.sort(key=lambda coord: coord[0]) # now sort each row by x
 
     if (unpacked == False):
-        return groups
+        return rows
     
-    collapsed_groups = [coord for sublist in groups for coord in sublist] # unpack/collapse groups to just be an array of tuples
-    return collapsed_groups
\ No newline at end of file
+    collapsed = [coord for row in rows for coord in row] # unpack/collapse groups to just be an array of tuples
+    return collapsed
\ No newline at end of file
diff --git a/game.py b/game.py
index 7af99c376e64577d3b8c4ddce601a66e6850d562..cdd96110034dcc5c3d7017835db05a84e7c8a34d 100644
--- a/game.py
+++ b/game.py
@@ -1,7 +1,7 @@
 import argparse
 import chess
 import chess.pgn
-from board_detector import detect_board
+from board_detector import find_board_and_pieces
 from board_detector import init_show_cv
 import color_analyzer
 import move_translator
@@ -31,7 +31,7 @@ class ChessGame:
         h,w,c = orig_img.shape
         print(h, w)
         cropped_img = orig_img
-        # cropped_img = orig_img[0:h, int(w/2 - h/2 - 60):int(w/2 + h/2 + 100)]
+        cropped_img = orig_img[0:h, int(w/2 - h/2 - 60):int(w/2 + h/2 + 100)]
         img = cv2.resize(cropped_img, (512, 512))
         # img = cv2.resize(cropped_img, (int(w/5), int(h/5)))
         # img = orig_img
@@ -41,7 +41,7 @@ class ChessGame:
             cv2.waitKey(0)
             cv2.destroyAllWindows()
 
-        detect_board(img)
+        find_board_and_pieces(img)
 
         while(1): # game loop
             self.player_turn()