
JULY 24

Found a full usage for PERM SQL-PLE. All info is in the paper http://
cs.iit.edu/~dbgroup/assets/pdfpubls/G10a.pdf
If need to find specific usage, search in the paper.

All CS_TYPE:
I-CS (Influence CS):
Contribution semantics belonging to this class include all data items

in the provenance of an output data item d, that had some influence
on the creation of d.

(influence)

C-CS (Copy CS):
Under copy-CS(C-CS) a data item is considered to belong to the

provenance of an output data item, if it has been copied literally from
the input to the output (we do not specify if complete or just partial
copying is required).

(copy + partial/complete/none + transitive/none(non-

http://cs.iit.edu/~dbgroup/assets/pdfpubls/G10a.pdf
http://cs.iit.edu/~dbgroup/assets/pdfpubls/G10a.pdf

transitive))

Where-CS:
(where)

How-CS:
(how)

Input-CS:
Not Usable in PERM

Following are the outputs from How-Provenance.

DATABASE:

links (
movieId integer,
imdbId integer,
tmdbId integer

);

ratings (
userId integer,
movieId integer,
rating real,
timestamp integer

);
Imported from two csv files. Tried to restore postgresql sample

database, failed. Maybe due to PERM’s postgresql version is too old
(8.3).

1.
select provenance l.movieId
from links as l join ratings as r

 on l.movieId = r.movieId and r.rating > 4 and r.userId = 10;

Why provenance for (finding movie with rating > 4 and rated by user
10)

2.
select provenance on contribution (how) l.movieId
from links as l join ratings as r

 on l.movieId = r.movieId and r.rating > 4 and r.userId = 10;

links.csv
comma-separated values
183 KB

ratings_small.csv
comma-separated values
2.4 MB

movie_why
data
2 KB

links.csv
comma-separated values
183 KB

ratings_small.csv
comma-separated values
2.4 MB

movie_why
data
2 KB

How provenance. The output is really confusing, so I tried on a
smaller database.

Small Database:
student (

name varchar,
age integer,
major car char

)

siebel (
name archer,
time integer

)
This is the database from last week.

1.
select provenance s.name
from student as s join siebel as b
on s.name = b.name;

movie_how
data
221 bytes

movie_how
data
221 bytes

Why provenance same as last week
2.
select provenance on contribution (how) s.name
from student as s join siebel as b
on s.name = b.name;

How provenance. Here we could see that this is represented as a
tree structure. The first are the roots, and the following are the nodes.

The output is actually *00 + *00 + *00 + … + *00. And *00 is
actually 0 * 0.

0 * 0 means join of two tables.
0 * 0 + 0 * 0 means that there are two possible tuple joins which

could form the result.
And the above how-provenance result means that there are 11

possible tuple joins which may form the final result. This corresponds to
the output from why-provenance.

The only problem is that I can’t know which two tables are joined
since they are represented by two identical 0.

Then, I tried a join of three tables

third (

sqltest_how
data
436 bytes

sqltest_how
data
436 bytes

id integer
);

3.
select provenance ttt.n
from third join
(select s.name as n, s.age as a
from student as s join siebel as b
on s.name = b.name) as ttt
on third.id = ttt.a;

why-provenance

4.
select provenance on contribution (how) ttt.n
from third join
(select s.name as n, s.age as a
from student as s join siebel as b
on s.name = b.name) as ttt
on third.id = ttt.a;

The only difference is the *0*00, which means 0 * (0 * 0). This means

sqltest3_how
data
628 bytes

sqltest3_how
data
628 bytes

third join (student join Siebel).
Now, it is clear about how to understand the output of how-provenance.
The only drawback is that it can not show exactly which tuple or table
contributes to the join.

