JULY 24
Found a full usage for PERM SQL-PLE. All info is in the paper

If need to find specific usage, search in the paper.

This appendix presents a grammar for SQL-PLE. We use the grammatical representation that is used in the
PostgreSQL manual. SQL-PLE extensions are highlighted in red. The new language constructs added by
SQL-PLE are presented below.

Construct Description

PROVENANCE Marks a query for provenance computation

ON CONTRIBUTION (cs_type) Instructs Perm to use a certain CS type

BASERELATION Handle a from-clause item as if it were a base relation

PROVENANCE (attr_list) Handle attributes from attr_list as provenance attributes

TRANSPROV/TRANSSQL/TRANSXML Mark a query for transformation provenance computation

EXPLAIN SQLTEXT Return the (rewritten) SQL text of an query

EXPLAIN GRAPH Return an algebra tree for an query (as a dot-language script)

MAPPROV Compute the mapping provenance and represent it as sets of
mappings.

THIS.childpath A shortcut for generating the XML representation of the sub-
query accessed by path.

XSLT. f (xml_param) Apply XSLT function f to XML document xm1_param.

cxpath (path_expr, input) Evaluate X-Path expression path_expr over input. Returns
true if the evaluation of the XPath expression returns at least
one result.

ANNOT (annotation) Annotates the FROM clause item it is appended to with
annotation.

All CS_TYPE:

I-CS (Influence CS):

Contribution semantics belonging to this class include all data items
in the provenance of an output data item d, that had some influence
on the creation of d.

(influence)

C-CS (Copy CS):

Under copy-CS(C-CS) a data item is considered to belong to the
provenance of an output data item, if it has been copied literally from
the input to the output (we do not specify if complete or just partial
copying is required).

(copy + partial/complete/none + transitive/none(non-

http://cs.iit.edu/~dbgroup/assets/pdfpubls/G10a.pdf
http://cs.iit.edu/~dbgroup/assets/pdfpubls/G10a.pdf

transitive))

CS type Description

Complete-Direct-Copy-CS (CDC-CS) Only tuples that have been copied directly as a whole
from the input to the output of a query are considered
to belong to the provenance.

Partial-Direct-Copy-CS (PDC-CS) Only tuples from which at least one attribute value has
been copied directly from the input to the output belong
to the provenance.

Complete-Transitive-Copy-CS (CTC-CS) CTC-CS contains all directly copied tuples. In addition,
implied equalities enforced by selection conditions are
handled as copy operations.

Partial-Transitive-Copy-CS (PTC-CS) Like PDC-CS, but implied equalities are considered as
copy operations.

Figure 3.12: C-CS types

Where-CS:
(where)
How-CS:
(how)
Input-CS:
Not Usable in PERM

Following are the outputs from How-Provenance.
DATABASE:
links (
movield integer,

imdbld integer,
tmdbld integer

);

ratings (
userld integer,
movield integer,
rating real,
timestamp integer

);

Imported from two csv files. Tried to restore postgresql sample

database, failed. Maybe due to PERM's postgresql version is too old
(8.3).

links.csv
comma-separated values
183 KB

ratings_small.csv
comma-separated values
2.4 MB

1.

select provenance |.movield

from links as | join ratings as r

on l.movield = r.movield and r.rating > 4 and r.userld = 10;

I movigid | prov.public Links movieid | nrov.public links.indbid, | prov.public links tndbid, | prov.public ratings.userid. | prov.public ratings.movieid | prov.public ratings.rating. | prov.public ratings timestann

114814 | 629 50 942766420
117666 | 942766420

468 | 942767029
10217 | 942766472
544

102494 |

942766515

11893 | 942766991

603 942766515

1911 | 942766109

95270 | 11054 | 942767121

movie_why
data
2 KB

Why provenance for (finding movie with rating > 4 and rated by user
10)

2.

select provenance on contribution (how) l.movield

from links as | join ratings as r

on I.movield = r.movield and r.rating > 4 and r.userld = 10;

(SRS IS IS IS S RS IS)
[SRS IS IS S TS S)

3
*
*
*
*
*
*
*
3

(9 rows)

movie_how
data
221 bytes

How provenance. The output is really confusing, so | tried on a
smaller database.

Small Database:

student (
name varchar,
age integer,

major car char

siebel (
name archer,
time integer

)

This is the database from last week.

1.

select provenance s.name

from student as s join siebel as b
on s.name = b.name;

TOOODODODODO

Why provenance same as last week

2.

select provenance on contribution (how) s.name
from student as s join siebel as b

on s.name = b.name;

sqltest_how
data
436 bytes

How provenance. Here we could see that this is represented as a
tree structure. The first are the roots, and the following are the nodes.

The output is actually *00 + *00 + *00 + ... + *00. And *00 is
actually 0 * 0.

0 * 0 means join of two tables.

0 *0 + 0 * 0 means that there are two possible tuple joins which
could form the result.

And the above how-provenance result means that there are 11
possible tuple joins which may form the final result. This corresponds to
the output from why-provenance.

The only problem is that | can’t know which two tables are joined
since they are represented by two identical 0.

Then, | tried a join of three tables

third (

id integer

);

3.

select provenance ttt.n

from third join

(select s.name as n, s.age as a
from student as s join siebel as b
on s.name = b.name) as ttt

on third.id = ttt.a;

why-provenance

4.

select provenance on contribution (how) ttt.n
from third join

(select s.name as n, s.age as a

from student as s join siebel as b

on s.name = b.name) as ttt

on third.id = ttt.a;

sqltest3_how
data
628 bytes

The only difference is the *0*00, which means 0 * (0 * 0). This means

third join (student join Siebel).

Now, it is clear about how to understand the output of how-provenance.
The only drawback is that it can not show exactly which tuple or table
contributes to the join.

