Skip to content
Snippets Groups Projects
user avatar
Andrew Ray authored
## What changes were proposed in this pull request?

Fixes a bug in the python implementation of rdd cartesian product related to batching that showed up in repeated cartesian products with seemingly random results. The root cause being multiple iterators pulling from the same stream in the wrong order because of logic that ignored batching.

`CartesianDeserializer` and `PairDeserializer` were changed to implement `_load_stream_without_unbatching` and borrow the one line implementation of `load_stream` from `BatchedSerializer`. The default implementation of `_load_stream_without_unbatching` was changed to give consistent results (always an iterable) so that it could be used without additional checks.

`PairDeserializer` no longer extends `CartesianDeserializer` as it was not really proper. If wanted a new common super class could be added.

Both `CartesianDeserializer` and `PairDeserializer` now only extend `Serializer` (which has no `dump_stream` implementation) since they are only meant for *de*serialization.

## How was this patch tested?

Additional unit tests (sourced from #14248) plus one for testing a cartesian with zip.

Author: Andrew Ray <ray.andrew@gmail.com>

Closes #16121 from aray/fix-cartesian.
3c68944b
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page

Python Packaging

This README file only contains basic information related to pip installed PySpark. This packaging is currently experimental and may change in future versions (although we will do our best to keep compatibility). Using PySpark requires the Spark JARs, and if you are building this from source please see the builder instructions at "Building Spark".

The Python packaging for Spark is not intended to replace all of the other use cases. This Python packaged version of Spark is suitable for interacting with an existing cluster (be it Spark standalone, YARN, or Mesos) - but does not contain the tools required to setup your own standalone Spark cluster. You can download the full version of Spark from the Apache Spark downloads page.

NOTE: If you are using this with a Spark standalone cluster you must ensure that the version (including minor version) matches or you may experience odd errors.

Python Requirements

At its core PySpark depends on Py4J (currently version 0.10.4), but additional sub-packages have their own requirements (including numpy and pandas).