Skip to content
Snippets Groups Projects
user avatar
Tarek Auel authored
This PR is based on #7186 (just fix the conflict), thanks to tarekauel .

find_in_set(string str, string strList): int

Returns the first occurance of str in strList where strList is a comma-delimited string. Returns null if either argument is null. Returns 0 if the first argument contains any commas. For example, find_in_set('ab', 'abc,b,ab,c,def') returns 3.

Only add this to SQL, not DataFrame.

Closes #7186

Author: Tarek Auel <tarek.auel@googlemail.com>
Author: Davies Liu <davies@databricks.com>

Closes #7900 from davies/find_in_set and squashes the following commits:

4334209 [Davies Liu] Merge branch 'master' of github.com:apache/spark into find_in_set
8f00572 [Davies Liu] Merge branch 'master' of github.com:apache/spark into find_in_set
243ede4 [Tarek Auel] [SPARK-8244][SQL] hive compatibility
1aaf64e [Tarek Auel] [SPARK-8244][SQL] unit test fix
e4093a4 [Tarek Auel] [SPARK-8244][SQL] final modifier for COMMA_UTF8
0d05df5 [Tarek Auel] Merge branch 'master' into SPARK-8244
208d710 [Tarek Auel] [SPARK-8244] address comments & bug fix
71b2e69 [Tarek Auel] [SPARK-8244] find_in_set
66c7fda [Tarek Auel] Merge branch 'master' into SPARK-8244
61b8ca2 [Tarek Auel] [SPARK-8224] removed loop and split; use unsafe String comparison
4f75a65 [Tarek Auel] Merge branch 'master' into SPARK-8244
e3b20c8 [Tarek Auel] [SPARK-8244] added type check
1c2bbb7 [Tarek Auel] [SPARK-8244] findInSet
b1f88a38
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.