Skip to content
Snippets Groups Projects
user avatar
Thomas Graves authored
resubmit pull request.  was https://github.com/apache/incubator-spark/pull/332.

Author: Thomas Graves <tgraves@apache.org>

Closes #33 from tgravescs/security-branch-0.9-with-client-rebase and squashes the following commits:

dfe3918 [Thomas Graves] Fix merge conflict since startUserClass now using runAsUser
05eebed [Thomas Graves] Fix dependency lost in upmerge
d1040ec [Thomas Graves] Fix up various imports
05ff5e0 [Thomas Graves] Fix up imports after upmerging to master
ac046b3 [Thomas Graves] Merge remote-tracking branch 'upstream/master' into security-branch-0.9-with-client-rebase
13733e1 [Thomas Graves] Pass securityManager and SparkConf around where we can. Switch to use sparkConf for reading config whereever possible. Added ConnectionManagerSuite unit tests.
4a57acc [Thomas Graves] Change UI createHandler routines to createServlet since they now return servlets
2f77147 [Thomas Graves] Rework from comments
50dd9f2 [Thomas Graves] fix header in SecurityManager
ecbfb65 [Thomas Graves] Fix spacing and formatting
b514bec [Thomas Graves] Fix reference to config
ed3d1c1 [Thomas Graves] Add security.md
6f7ddf3 [Thomas Graves] Convert SaslClient and SaslServer to scala, change spark.authenticate.ui to spark.ui.acls.enable, and fix up various other things from review comments
2d9e23e [Thomas Graves] Merge remote-tracking branch 'upstream/master' into security-branch-0.9-with-client-rebase_rework
5721c5a [Thomas Graves] update AkkaUtilsSuite test for the actorSelection changes, fix typos based on comments, and remove extra lines I missed in rebase from AkkaUtils
f351763 [Thomas Graves] Add Security to Spark - Akka, Http, ConnectionManager, UI to use servlets
7edbea41
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building

Spark requires Scala 2.10. The project is built using Simple Build Tool (SBT), which can be obtained here. If SBT is installed we will use the system version of sbt otherwise we will attempt to download it automatically. To build Spark and its example programs, run:

./sbt/sbt assembly

Once you've built Spark, the easiest way to start using it is the shell:

./bin/spark-shell

Or, for the Python API, the Python shell (./bin/pyspark).

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> <params>. For example:

./bin/run-example org.apache.spark.examples.SparkLR local[2]

will run the Logistic Regression example locally on 2 CPUs.

Each of the example programs prints usage help if no params are given.

All of the Spark samples take a <master> parameter that is the cluster URL to connect to. This can be a mesos:// or spark:// URL, or "local" to run locally with one thread, or "local[N]" to run locally with N threads.

Running tests

Testing first requires Building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting the SPARK_HADOOP_VERSION environment when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set SPARK_YARN=true:

# Apache Hadoop 2.0.5-alpha
$ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly

# Apache Hadoop 2.2.X and newer
$ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.