diff --git a/mllib/src/main/scala/spark/mllib/recommendation/ALS.scala b/mllib/src/main/scala/spark/mllib/recommendation/ALS.scala
index 21eb21276ec166d3524510376d290b45a2fd854b..2abaf2f2dd8a32cdcb6fb4a1334c7632ef09999a 100644
--- a/mllib/src/main/scala/spark/mllib/recommendation/ALS.scala
+++ b/mllib/src/main/scala/spark/mllib/recommendation/ALS.scala
@@ -91,7 +91,7 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
    */
   def train(ratings: RDD[(Int, Int, Double)]): MatrixFactorizationModel = {
     val numBlocks = if (this.numBlocks == -1) {
-      math.max(ratings.context.defaultParallelism, ratings.partitions.size)
+      math.max(ratings.context.defaultParallelism, ratings.partitions.size / 2)
     } else {
       this.numBlocks
     }
@@ -384,12 +384,13 @@ object ALS {
   }
 
   def main(args: Array[String]) {
-    if (args.length != 5) {
-      println("Usage: ALS <master> <ratings_file> <rank> <iterations> <output_dir>")
+    if (args.length != 5 && args.length != 6) {
+      println("Usage: ALS <master> <ratings_file> <rank> <iterations> <output_dir> [<blocks>]")
       System.exit(1)
     }
     val (master, ratingsFile, rank, iters, outputDir) =
       (args(0), args(1), args(2).toInt, args(3).toInt, args(4))
+    val blocks = if (args.length == 6) args(5).toInt else -1
     System.setProperty("spark.serializer", "spark.KryoSerializer")
     System.setProperty("spark.locality.wait", "10000")
     val sc = new SparkContext(master, "ALS")
@@ -397,7 +398,7 @@ object ALS {
       val fields = line.split(',')
       (fields(0).toInt, fields(1).toInt, fields(2).toDouble)
     }
-    val model = ALS.train(ratings, rank, iters)
+    val model = ALS.train(ratings, rank, iters, 0.01, blocks)
     model.userFeatures.map{ case (id, vec) => id + "," + vec.mkString(" ") }
                       .saveAsTextFile(outputDir + "/userFeatures")
     model.productFeatures.map{ case (id, vec) => id + "," + vec.mkString(" ") }